
ISO/IEC JTC1/SC7
Software Engineering
Secretariat: CANADA (SCC)

Address reply to: ISO/IEC JTC1/SC7 Secretariat
Bell Canada - IT Procurement & Supplier Quality

2265 Roland Therrien, Room 226, Longueuil (Québec) Canada J4N 1C5
Tel.: +1 (514) 448-5100 Fax: +1 (514) 448-2090 or +1 (514) 647-3163

sc7@qc.bell.ca

ISO/IEC JTC1/SC7 N1667
1997-02-12

DOC TYPE: CD Ballot

TITLE: CD 9126-1 - Information technology -
Software quality characteristics and metrics Part 1 -
Quality characteristics and sub-characteristics

SOURCE: JTC1/SC7/WG6

PROJECT: 07.13.01.1

STATUS: CD

REFERENCES: ISO 9126, SC7 N 1558, N1626 & N1666

ACTION ID: ACT

DUE DATE: 1997-05-26

MAILING DATE: 1997-02-12

DISTRIBUTION: P, O and L

MEDIUM: E-Mail - uuencoded Word, Diskette - Word file

NO. OF PAGES: 27

DISK NUMBER: 19

NOTE:

Address reply to: ISO/IEC JTC1/SC7 Secretariat
Bell Canada - IT Procurement & Supplier Quality

2265 Roland Therrien, Room 226, Longueuil (Québec) Canada J4N 1C5
Tel.: +1 (514) 448-5100 Fax: +1 (514) 448-2090 or +1 (514) 647-3163

sc7@qc.bell.ca

ISO/IEC JTC1/SC7 CD 9126-1
Date

1997-02-12
Reference number
ISO/JTC 1/SC 7 N 1667

Supersedes document
 SC7 N 1558

THIS DOCUMENT IS STILL UNDER STUDY AND SUBJECT TO
CHANGE. IT SHOULD NOT BE USED FOR REFERENCE
PURPOSES.

ISO/JTC 1/SC 7
Committee Title
Software Engineering

Secretariat:
Standards Council of Canada (SCC)

Circulated to P- and O-members, and to technical committees and
organizations in liaison for:

 discussion at
X comments by 1997-05-26
X voting by (P-members only)

1997-05-26

Please return all votes and comments in electronic form directly to
the SC 7 Secretariat by the due date indicated.

ISO/IEC JTC1/SC7

Title: Information Technology - Software quality characteristics and metrics Part 1 -
Quality characteristics and sub-characteristics.

Project: 07.13.01.1.

Introductory note: See comment disposition report in N1666 and Annex C of the attached document.

Medium: E-Mail - uuencoded Word, Diskette - Word file

No. of pages: 27

Address reply to: ISO/IEC JTC1/SC7 Secretariat
Bell Canada - IT Procurement & Supplier Quality

2265 Roland Therrien, Room 226, Longueuil (Québec) Canada J4N 1C5
Tel.: +1 (514) 448-5100 Fax: +1 (514) 448-2090 or +1 (514) 647-3163

sc7@qc.bell.ca

Vote on Second Committee Draft ISO/IEC 9126-1
Date of circulation

1997-02-12

Closing date
1997-05-26

Reference number
ISO/JTC 1/SC 7 N 1667

ISO/JTC 1/SC 7
Committee Title
Software Engineering

Secretariat:
Standards Council of Canada (SCC)

Circulated to P-members of the committee for voting

Please return all votes and comments in electronic form directly to
the SC 7 Secretariat by the due date indicated.

Title: Information Technology - Software quality characteristics and metrics Part 1 -
Quality characteristics and sub-characteristics.

Project: 07.13.01.1

Vote:

_
_

APPROVAL OF THE DRAFT AS PRESENTED

_
_

APPROVAL OF THE DRAFT WITH COMMENTS AS GIVEN ON THE ATTACHED

general:

technical:

_
_

editorial:

_
_

DISAPPROVAL OF THE DRAFT FOR REASONS ON THE ATTACHED

_
Acceptance of these reasons and appropriate changes in the text will change our vote to approval

_
_

ABSTENTION (FOR REASONS BELOW):

P-member voting:
National Body (Acronym)

Date:
YYCC-MM-DD

Submitted by:
Name

ISO/IEC JTC1/SC7/WG6 N385
Evaluation and Metrics

TITLE: ISO/IEC 9126-1:
Information Technology - Software quality characteristics and metrics -

Part 1: Quality characteristics and sub-characteristics

DATE: 12-Feb-97

SOURCE: JTC1/SC7/WG6

WORK ITEM: Project 7.13.01.1

STATUS: Version 6.3 based on feedback after the Curitiba meeting

DOCUMENT
 TYPE: CD

ACTION: For vote

PROJECT Prof. Motoei AZUMA
EDITOR: Department of Industrial Eng. and Management

Waseda University
3-4-1, Okubo, Shinjuku-ku, Tokyo 169, Japan
FAX: +81-3-3200-2567
azuma@azuma.mgmt.waseda.ac.jp

DOCUMENT Nigel BEVAN
EDITOR: National Physical Laboratory

NPL Usability Services
Teddington, Middx. TW11 0LW, United Kingdom
FAX: +44 181 943 6306
Nigel@hci.npl.co.uk

CO-EDITOR: Julie MCMULLAN
Centre for Software Engineering Ltd
Dublin City University Campus
Dublin 9
Ireland
FAX: +353-1-7045605
julie@cse.dcu.ie

REVIEWERS V Godamunne, T Komiyama, D Natale

ISO/IEC CD 9126-1 12-Feb-97

ii

Contents

1. SCOPE 5

2. NORMATIVE REFERENCES 5

3. CONFORMANCE 6

4. DEFINITIONS 6

5. QUALITY RELATIONSHIPS 6

5.1 Quality and the life-cycle 6

5.2 Approaches to quality 8

5.3 Item to be evaluated 8

5.4 Quality model 9

6. METRICS 9

6.1 Attributes and characteristics 9

6.2 Internal metrics 10

6.3 External metrics 10

6.4 Relationship between external and internal metrics 10

6.5 Quality in use metrics 11

6.6 Choice of metrics 11

7. SOFTWARE QUALITY CHARACTERISTICS 12

7.1 Functionality 12

7.2 Reliability 13

7.3 Usability 13

7.4 Efficiency 14

7.5 Maintainability 14

7.6 Portability 14

8. QUALITY IN USE 16

ANNEX A (INFORMATIVE) DEFINITIONS FROM OTHER STANDARDS 17

ANNEX B (INFORMATIVE) BIBLIOGRAPHY 20

ANNEX C (INFORMATIVE) HISTORY OF THE WORK 21

ISO/IEC CD 9126-1 12-Feb-97

iii

FOREWORD

ISO (the International Organisation for Standardisation) and IEC (the International Electrotechnical Commission)
form the specialised system for worldwide standardisation. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the
respective organisation to deal with particular fields of mutual interest. Other international organisations,
governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee ISO/IEC JTC 1.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75% of the national bodies casting a vote.

International Standard ISO/IEC 9126-1 was prepared by Joint Technical Committee ISO/IEC JTC1 Information
Technology.

ISO/IEC 9126 consists of the following parts under the general title Information Technology - Software quality
characteristics and metrics

Part 1: Quality characteristics and sub-characteristics
Part 2: External Metrics
Part 3: Internal Metrics

Annexes A, B and C of this part of ISO/IEC 9126 are for information.

ISO/IEC CD 9126-1 12-Feb-97

iv

Introduction

As software applications have grown, so too has the importance of software quality. In order to specify and evaluate
software product quality objectively and quantitatively, a framework for software quality is necessary. This part of
ISO/IEC 9126 when used in conjunction with ISO/IEC 14598 provides that framework.

This part of ISO/IEC 9126 is a revision of ISO/IEC 9126 (1991), and retains the same software quality
characteristics. The major changes have been to:
- introduce normative sub-characteristics;
- specify a quality model;
- remove the evaluation process (which is now contained in ISO/IEC 14598-1);
- ensure consistency with ISO/IEC 14598-1.

ISO/IEC CD 9126-1 12-Feb-97

5

COMMITTEE DRAFT ISO/IEC 9126-1

Information Technology - Software Quality Characteristics and
Metrics-

Part 1: Quality characteristics and sub-characteristics

1. Scope

This part of ISO/IEC 9126 specifies a quality model which categorises software quality into six characteristics,
which are further sub-divided into sub-characteristics. These sub-characteristics are manifested externally when the
software is used as a part of a computer system, and are a result of internal software attributes. The combined result
of the software quality characteristics for the end user is defined as quality in use. Other parts of ISO/IEC 9126
describe software quality metrics based on internal software attributes and external computer system behaviour.
These types of metrics are applicable when specifying quality requirements and design goals for software products
and intermediate products. An explanation of how this quality model can be applied in software product evaluation
is contained in ISO/IEC 14598-1.

The characteristics defined are applicable to every kind of software, including computer programs and data
contained in firmware.

This part of ISO/IEC 9126 is intended for those associated with acquisition, development, use, evaluate, support,
maintenance, or audit of software. The quality model defined in this part of ISO/IEC 9126 can be used to:

− validate the completeness of a requirements definition
− identify software requirements
− identify software design objectives
− identify software testing objectives
− identify user acceptance criteria for a completed software product

2. Normative References

The following standards contain provisions which, through reference in this text, constitute provisions of this part
of ISO/IEC 9126. At the time of publication, the editions indicated were valid. All standards are subject to
revision, and parties to agreements based on this part of ISO/IEC 9126 are encouraged to investigate the possibility
of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers
of currently valid International Standards.

ISO/IEC 2382-1:1993 Data processing - Vocabulary - Part 1: Fundamental terms

ISO/IEC 2382-14: Reliability, maintainability and availability

ISO 8402:(1994) Quality Vocabulary.

ISO/IEC 9126-2:(new) Information Technology - Software quality characteristics and metrics - Part 2: External
metrics

ISO/IEC 9126-3:(new) Information Technology - Software quality characteristics and metrics - Part 3: Internal
metrics

ISO 9241-10 (1996) Ergonomic requirements for office work with visual display terminals (VDT)s - Part 10:
Dialogue principles

ISO/IEC CD 9126-1 12-Feb-97

6

ISO DIS 9241-11 (1997) Ergonomic requirements for office work with visual display terminals (VDT)s - Part 11:
Guidance on usability.

ISO/IEC 12207 (1995) Information Technology - Software life-cycle processes

ISO/IEC DIS 14598-1 (1996) Information Technology - Software product evaluation - Part 1: General overview

IEC 50(191) International Electrotechnical vocabulary - Dependability and quality of service

[Editor's Note - any of the above which are not referenced, or have not reached at least DIS stage at the time of
publication, will be moved to Annex A or deleted.]

3. Conformance

Any specification of software quality conforming to this part of ISO/IEC 9126 shall include all relevant information
of the following types:
1. Criteria for internal metrics for the characteristics and sub-characteristics in clause 7.

NOTE: Examples of appropriate metrics are given in ISO/IEC 9126-3.

2. Criteria for external metrics for the characteristics and sub-characteristics in clause 7.

NOTE: Examples of appropriate metrics are given in ISO/IEC 9126-2.

3. Criteria for quality in use metrics in clause 8.

NOTE: Examples of appropriate metrics are given in ISO/IEC 9126-2.

4. Compliance to any relevant standards, conventions or regulations in laws and similar prescriptions.

NOTE: Examples of appropriate metrics are given in ISO/IEC 9126-2 and ISO/IEC 9126-3.

4. Definitions

For the purpose of this part of ISO/IEC 9126, the following definitions and the definitions contained in ISO/IEC
14598-1 apply.

NOTE - the relevant definitions are reproduced in informative annex A.

4.1 level of performance: The degree to which the needs are satisfied, represented by a specific set of values for
the quality characteristics.

5. Quality relationships
Software quality shall be evaluated using a defined quality model. A quality model shall be used when setting
quality goals for software products and intermediate products. This part of ISO/IEC 9126 provides a recommended
quality model which can be used as a checklist of issues related to quality (although other ways of categorising
quality may be more appropriate in particular circumstances). When a quality model other than that in this part of
ISO/IEC 9126 is used it shall be clearly described.

5.1 Quality and the life-cycle
Quality changes with the life-cycle of the software, i.e., required quality at the start of the life-cycle differs from
actual or delivered quality. Quality is also a reflection of diverse points of view. It is necessary to define these
diverse views of quality and changes in quality with the life-cycle, in order to manage quality properly at each stage
of the life-cycle. The following are the different views of quality at different stages in the life-cycle:

Goal Quality (GQ) means necessary and sufficient quality that reflects real user needs.

ISO/IEC CD 9126-1 12-Feb-97

7

ISO 8402 defines quality in terms of the ability to satisfy stated and implied needs. However, needs stated by a user
do not always reflect real user needs, because a user is often not aware of his real needs and needs may change after
they are stated. So GQ is a conceptual entity which cannot be completely defined at the beginning of design. Yet,
developers must keep this goal in mind and try to get closer to it. GQ does not necessarily mean perfect quality, but
necessary and sufficient quality. Part of the requirements for GQ can be measured by quality in use (QIU) when the
product is complete, and requirements for QIU may optionally be included in the quality requirements
specification.

Required Product Quality (RPQ) means quality reflected by what is actually stated in the quality requirements
specification.

RPQ should be used as the target for initial validation. Quality requirements for all the quality characteristics
defined in ISO/IEC 9126 should be stated in the quality requirements specification. Not only the optimal
requirements, but also the minimum requirements, should be stated so that both the user and the developer can
avoid unnecessary cost and schedule overruns.

Design Quality (DQ) means the quality represented in the core parts or backbone of software design, e.g., software
architecture, program structure, and user interface design strategy.

DQ is the reflection of the design philosophy and strategy. Details of software quality may be improved during code
implementation and testing, but the fundamental nature of the software product quality represented by DQ remains
unchanged.

Estimated (or Predicted) Product Quality (EPQ) is quality that is estimated or predicted for the end software
product quality at each stage of development, and which is based on DQ.

Product quality may be estimated and predicted during development for each quality characteristic defined in
ISO/IEC 9126-1. For the purposes of prediction, technology should be developed to show the co-relation between
DQ and EPQ.

Delivered Product Quality (DPQ) represents the quality of the delivered product, tested in a simulated
environment with simulated data.

During testing, most faults should be discovered and eliminated. However, some faults may still remain after
testing. As it is difficult to correct the software architecture or other fundamental design aspects of the software,
fundamental design remains unchanged throughout testing.

Quality in Use (QIU) is the quality that is perceived by users when the software is actually used in the users'
environment. It can be measured by effectiveness, task efficiency and satisfaction.

The quality in the users' environment may be different from that in the developers' environment, because some
functionality may not be visible to a user, or may not be used by a user. The user evaluates only those attributes of
software, which are visible to him/her during actual use. Sometimes, software attributes specified by a user during
the requirements analysis phase, are perceived as not preferable.

ISO/IEC CD 9126-1 12-Feb-97

8

5.2 Approaches to quality

life cycle
processes

internal
measures

external
measures

product

resources

effect of
the product

quality process product quality quality in use

contexts of use

Figure 1. Quality in the life-cycle

Evaluation of software products in order to achieve software product quality is one of the processes in the software
development life-cycle. Software product quality can be measured internally (typically by static measures of the
code), or externally (typically by measuring the behaviour of the code when executed). The objective is for the
product to have the required effect in a particular context of use.

Process quality contributes to improving product quality, and product quality contributes to improving quality in
use. Therefore, assessing and improving a process is a mean to improve product quality, and evaluating and
improving a product quality is one means of improving quality in use.

Appropriate quality processes are required to support the measurement of quality during development. Appropriate
internal attributes of the software are a pre-requisite for achieving the required external behaviour, and appropriate
external behaviour is a pre-requisite for achieving quality in use.

5.3 Item to be evaluated

Items can be evaluated by direct measurement, or indirectly by measuring their consequences. For example, a
process may be assessed by measuring and evaluating it's product, and a product may be evaluated by measuring the
task performance of a user.

Software never runs alone, but always as part of a larger system consisting of other software products with which it
has interfaces, hardware, human operators, and work flows. The delivered software product is evaluated by the
levels of the chosen external metrics. These metrics describe its interaction with its environment, and are assessed
by observing the software in operation. External quality (the extent to which a product satisfies stated and implied
needs) can be measured in the operational environment by evaluating quality in use: the extent to which the
software can be used by specified users to achieve specified goals productively with effectiveness and satisfaction.
This will normally be complemented by measures of more specific software quality characteristics, which is also
possible earlier in the development process.

At the earliest stages of development, only resources and process can be measured. When intermediate products
(specifications, source code, etc.) become available, these can be evaluated by the levels of the chosen internal
metrics. These metrics can be used to predict values of the external metrics. They may also be measured in their
own right, as essential pre-requisites for external quality.

A further distinction can be made between the evaluation of a software product and the evaluation of the system in
which it is executed. For example, the reliability of a system is assessed by observing all failures due to whatever
cause (hardware, software, human error, etc.), whereas the reliability of the software product is assessed by
extracting from the observed sample of failures only those that are due to design faults in the software. Also, where
the boundary of the system is judged to be depends upon the purpose of the evaluation, and upon who the users are.
For example, if the users of an aircraft with a computer-based flight control system are taken to be the passengers,
then the system upon which they depend includes the flight crew, the airframe, and the hardware and software in

ISO/IEC CD 9126-1 12-Feb-97

9

the flight control system, whereas if the flight crew are taken to be the users, then the system upon which they
depend consists only of the airframe and the flight control system.

5.4 Quality model

software
product
quality

functionality

suitability
accuracy

interoperability
security

reliability

maturity
fault tolerance
recoverability

usability

understandability
learnability
operability

attractiveness

efficiency

time behaviour
resource utilisation

maintainability

analysability
changeability

stability
testability

portability

adaptability
installability
co-existence

replaceability

Figure 2. Software product quality

This part of ISO/IEC 9126 categorises the attributes of software quality into six characteristics (functionality,
reliability, usability, efficiency, maintainability and portability), which are further sub-divided into sub-
characteristics (see clause 7). Sub-characteristics can either be measured by internal metrics or by external metrics.
Pure internal metrics (such as program size) are measures of the software which are not normally used alone as
software quality metrics, but are used in combination with other measures to create metrics.

Quality in use is the user’s view of quality. Achieving quality in use is dependent on meeting criteria for external
measures of the relevant quality sub-characteristics, which in turn is dependent on achieving related criteria for the
associated internal measures. Measures are normally required at all three levels, as meeting criteria for internal
measures is not usually sufficient to ensure achievement of criteria for external measures, and meeting criteria for
external measures of sub-characteristics is not usually sufficient to ensure achieving criteria for quality in use.

It is not practically possible to measure all sub-characteristics internally or externally for all parts of a large
software product. Similarly it is not usually practical to measure quality in use for all possible user-task scenarios.
Resources for evaluation need to be allocated between the different types of measurement dependent on the
business objectives and the nature of the product and design process.

6. Metrics

6.1 Attributes and characteristics

The levels of certain internal attributes have been found to influence the levels of some external measures, so that
there is both an external aspect and an internal aspect to most characteristics. For example, reliability may be
measured externally by observing the number of failures in a given period of execution time during a trial of the
software, and internally by inspecting the detailed specifications and source code to assess the level of fault
tolerance. The internal attributes are said to be indicators of the external characteristics. One internal attribute may
influence one or more characteristics as well as one characteristic may be influenced by more than one attribute
(figure 3).

ISO/IEC CD 9126-1 12-Feb-97

10

attribute

sub-characteristic

characteristic

Internal attributes External attributes

Figure 3: Quality characteristics, subcharacteristics and attributes

Note that the correlation between internal attributes and external measures is never perfect however, and the effect
that a given internal attribute has upon an associated external measure will be determined by experience, and will
depend on the particular context in which the software is used.

In the same way, external properties (such as suitability, accuracy, fault tolerance or time behaviour) will influence
the observed quality. A failure in quality in use (e.g. the user cannot complete the task) can be traced to external
quality (e.g. suitability or operability) and the associated internal attributes which have to be changed.

6.2 Internal metrics

Internal metrics can be applied to a non executable software product (such as a specification or source code) during
designing and coding. When developing a software product the intermediate products should be evaluated using
internal metrics which measure intrinsic properties derived from simulated behaviour. The primary purpose of
these internal metrics is to ensure that the required external quality is achieved: examples are given in ISO/IEC
9126-3. Internal metrics provide users, evaluators, testers, and developers with the benefit that they are able to
evaluate software product quality and address quality issues early before the software product becomes executable.

Internal metrics measure internal attributes or indicate external attributes by analysis of the static properties of the
intermediate or deliverable software products. The measurements of internal metrics use numbers or frequencies of
software composition elements which appear on source code statements, the control graph, data flow and state
transition representations.
NOTE - Documentation can also be evaluated using internal metrics.

6.3 External metrics

External metrics use measures of a software product derived from measures of the behaviour of the system of which
it is a part, by testing, operating and observing the executable software or system. Before acquiring or using a
software product it should be evaluated using metrics based on business objectives related to the use, exploitation
and management of the product in a specified organisational and technical environment. These are primarily
external metrics: examples are given in ISO/IEC 9126-2. External metrics provide users, evaluators, testers, or
developers with the benefit that they are able to evaluate software product quality during testing or operation.

6.4 Relationship between external and internal metrics

When the software quality requirements are defined, the software quality characteristics or sub-characteristics
which represent the quality requirements are listed. Then, the appropriate external metrics and acceptable ranges are
specified to quantify the quality criteria which validate that the software meets the user needs. The internal quality

ISO/IEC CD 9126-1 12-Feb-97

11

attributes of the software are then defined and specified to plan to achieve the required external quality
characteristics finally and to build them into the intermediate product during development. Appropriate internal
metrics and acceptable range are specified to quantify the internal quality characteristics so that they can be used for
verifying that the intermediate software meets the internal quality specifications during the development.

It is recommended that the internal metrics are used which have as strong a relation as possible with the target
external metrics, so that they can be used to predict the values of external metrics. However, it is generally difficult
to design a rigorous theoretical model which provides a strong relationship between internal metrics and external
metrics.

6.5 Quality in use metrics

The objective of software quality is to achieve quality in use. For systems with end users this means that specified
types of users should be able to carry out specified types of tasks to a required level of productivity and user
satisfaction in specified environments. Evaluating quality in use validates software quality in specific user-task
scenarios.

Quality in use is the user’s view of the quality of a system containing software, and is measured in terms of the
result of using the software, rather than properties of the software itself. Quality in use is the combined effect of the
software quality characteristics for the end user.

The relationship of quality in use to the other software quality characteristics depends on the type of user:

- the end user for whom quality in use is a result of functionality, reliability, usability and efficiency
- the person maintaining the software for whom quality in use is a result of maintainability
- the person porting the software for whom quality in use is a result of portability

Quality in use may be influenced by any of the quality characteristics, and is thus broader than usability, which is
only concerned with the ease of use and attractiveness.

NOTE - Usability is defined in ISO 9241-11 in a similar way to the definition of quality in use in this part of ISO/IEC 9126.
For the purposes of this part of ISO/IEC 9126 usability refers only to the ease of use and attractiveness of the software.

6.6 Choice of metrics

The basis on which the metrics are selected will depend on the business priorities for the product and the needs of
the evaluator. The model in this part of ISO/IEC 9126 supports a variety of evaluation requirements, for example:

- a user or a user’s business unit could evaluate the suitability of a software product using metrics for quality in
use;

- an acquirer could evaluate a software product against criterion values of external measures of functionality,
reliability, usability and efficiency;

- a maintainer could evaluate a software product using metrics for maintainability;

- a person responsible for implementing the software in different environments could evaluate a software
product using metrics for portability;

- a developer could evaluate a software product against criterion values using internal measures of any of the
quality characteristics.

ISO/IEC CD 9126-1 12-Feb-97

12

7. Software quality characteristics

The quality model in clause 5 categorises software product quality into six characteristics (functionality, reliability,
usability, efficiency, maintainability and portability). These are further sub-divided into the sub-characteristics
listed below. In addition there are pure internal metrics (see ISO/IEC 9126-3) and pure external metrics (quality in
use, see clause 8).

Definitions are given for each quality characteristic and the sub-characteristics of the software which influence the
quality characteristic. For each characteristic and sub-characteristic, the capability of the software is determined by
a set of internal attributes which can be measured. Examples of internal metrics are given in ISO/IEC 9126-3. The
characteristics and sub-characteristics can be measured externally by the extent to which the capability is provided
by the system containing the software. Examples of external metrics are given in ISO/IEC 9126-2.

It is also necessary to define metrics which assess the capability of the software to comply with any relevant
standards, conventions or regulations in laws and similar prescriptions which may exist for each characteristic, e.g.

- the capability of the software to adhere to application related standards, conventions or regulations in laws and
similar prescriptions:

- the capability of the software to adhere to standards, style guides or regulations relating to ergonomics and ease of
use;

- the capability of the software to adhere to standards or conventions relating to portability.

NOTE - Some of the characteristics in this part of ISO/IEC 9126 relate to dependability. Dependability characteristics are
defined for all types of systems in IEC 50(191), and where a term in this part of ISO/IEC 9126 is also defined in IEC 50(191),
the definition given is broadly compatible.

7.1 Functionality

functionality: The capability of the software to provide functions which meet stated and implied needs when the
software is used under specified conditions.

NOTES
1 This characteristic is concerned with what the software does to fulfil needs, whereas the other characteristics are mainly
concerned with when and how it does.
2 For the stated and implied needs in this characteristic, the note to the definition of quality applies, (see A.1.1).
3 For a system which is operated by a user, the combination of functionality, usability and efficiency can be measured
externally by quality in use (see clause 8).

7.1.1 Suitability: The capability of the software to provide an appropriate set of functions for specified tasks and
user objectives.

NOTES
1 Examples of appropriateness are task oriented composition of functions from constituent sub-functions, capacities of tables.
2 Suitability corresponds to suitability for the task in ISO 9241-10, and is a pre-requisite for operability.

7.1.2 Accuracy: The capability of the software to provide the right or agreed results or effects.

NOTE - This includes the expected data with the needed degree of precision of calculated values.

7.1.3 Interoperability: The capability of the software to interact with one or more specified systems.

NOTE - Interoperability is used in place of compatibility in order to avoid possible ambiguity with replaceability (see 7.6.4).

7.1.4 Security: The capability of the software to prevent unintended access and resist deliberate attacks intended
to gain unauthorised access to confidential information, or to make unauthorised modifications to information or to
the program so as to provide the attacker with some advantage or so as to deny service to legitimate users.

ISO/IEC CD 9126-1 12-Feb-97

13

NOTES
1 This also applies to data in transmission.
2 Safety is not defined as a sub-characteristic, as it does not relate to software alone, but to a whole system.

7.2 Reliability

reliability: The capability of the software to maintain the level of performance of the system when used under
specified conditions

NOTES
1 Wear or ageing does not occur in software. Limitations in reliability are due to faults in requirements, design, and
implementation. Failures due to these faults depend on the way the software product is used and the program options selected
rather than on elapsed time.
2 The definition of reliability in ISO/IEC DIS 2382-14:1994 is "The ability of functional unit to perform a required
function...". In this document, functionality is only one of the characteristics of software quality. Therefore, the definition of
reliability has been broadened to "maintain its level of performance..." instead of "...perform a required function"

7.2.1 Maturity: The capability of the software to avoid failure as a result of faults in the software.

7.2.2 Fault tolerance: The capability of the software to maintain a specified level of performance in cases of
software faults or of infringement of its specified interface.

NOTE - The specified level of performance may include fail safe capability.

7.2.3 Recoverability: The capability of the software to re-establish its level of performance and recover the data
directly affected in the case of a failure.

NOTES
1 Following a failure, a software product will sometimes be down for a certain period of time, the length of which is assessed by
its recoverability.
2 Availability is the capability of the software to be in a state to perform a required function at a given point in time, under
stated conditions of use. Externally, availability can be assessed by the proportion of total time during which the software
product is in an up state. Availability is therefore a combination of maturity (which governs the frequency of failure) and
recoverability (which governs the length of down time following each failure).

7.3 Usability

usability: The capability of the software to be understood, learned, used and liked by the user, when used under
specified conditions.

NOTES
1. Some aspects of functionality, reliability and efficiency will also affect usability, but for the purposes of ISO/IEC 9126 are

not classified as usability.
2. Users may include operators, end users and indirect users who are under the influence of or dependent on the use of the

software. Usability should address all of the different user environments that the software may affect, which may include
preparation for usage and evaluation of results.

7.3.1 Understandability: The capability of the software product to enable the user to understand whether the
software is suitable, and how it can be used for particular tasks and conditions of use.

NOTE - This will depend on the documentation and initial impressions given by the software.

7.3.2 Learnability: The capability of the software product to enable the user to learn its application.

NOTE - The internal attributes correspond to suitability for learning as defined in ISO 9241-10.

7.3.3 Operability: The capability of the software product to enable the user to operate and control it.

NOTES

ISO/IEC CD 9126-1 12-Feb-97

14

1 Aspects of changeability, adaptability and installability may be pre-requisites for operability.
2 Operability corresponds to controllability, error tolerance and conformity with user expectations as defined in ISO 9241-10.
3 For a system which is operated by a user, the combination of functionality, usability and efficiency can be measured
externally by quality in use.

7.3.4 Attractiveness: The capability of the software product to be liked by the user.

NOTE - This refers to attributes of the software intended to make the software more attractive to the user.

7.4 Efficiency

efficiency: The capability of the software to provide the required performance, relative to the amount of resources
used, under stated conditions.

NOTES
1 Resources may include other software products, hardware facilities, materials, (e.g. print paper, diskettes).

2 For a system which is operated by a user, the combination of functionality, operability and efficiency can be measured
externally by quality in use.

7.4.1 Time behaviour: The capability of the software to provide appropriate response and processing times and
throughput rates when performing its function, under stated conditions.

7.4.2 Resource utilisation: The capability of the software to use appropriate resources in an appropriate time
when the software performs its function under stated conditions.

7.5 Maintainability

maintainability: The capability of the software to be modified. Modifications may include corrections,
improvements or adaptation of the software to changes in environment, and in requirements and functional
specifications.

7.5.1 Analysability: The capability of the software product to be diagnosed for deficiencies or causes of failures
in the software, or for the parts to be modified to be identified.

7.5.2 Changeability: The capability of the software product to enable a specified modification to be implemented.

NOTES
1 Implementation includes coding, designing and documenting changes.
2 If the software is to be modified by the end user, changeability may be a pre-requisite for operability.

7.5.3 Stability: The capability of the software to minimise unexpected effects from modifications of the software.

7.5.4 Testability: The capability of the software product to enable modified software to be validated.

NOTE - Values of this sub-characteristic may be altered by the modifications under consideration.

7.6 Portability

portability: The capability of software to be transferred from one environment to another.

NOTE - The environment may include organisational, hardware or software environment.

7.6.1 Adaptability: The capability of the software to be modified for different specified environments without
applying actions or means other than those provided for this purpose for the software considered.

NOTES
1. Adaptability includes the scalability of internal capacity (e.g. screen fields, tables, transaction volumes, report formats, etc.).

ISO/IEC CD 9126-1 12-Feb-97

15

2. If the software is to be adapted by the end user, adaptability corresponds to suitability for individualisation as defined in ISO
9241-10, and may be a pre-requisite for operability.

7.6.2 Installability: The capability of the software to be installed in a specified environment.

NOTE - If the software is to be installed by an end user, installability will be a pre-requisite for operability.

7.6.3 Co-existence: The capability of the software to co-exist with other independent software in a common
environment sharing common resources.

7.6.4 Replaceability: The capability of the software to be used in place of other specified software in the
environment of that software.

NOTES
1 Replaceability is used in place of compatibility in order to avoid possible ambiguity with interoperability (see 7.1.3).
2 Replaceability does not imply that this software is able to replace the software under consideration.
3 Replaceability may include attributes of both installability and adaptability. The concept has been introduced as a sub-
characteristic of its own because of its importance.

8. Quality in use

Quality in use is the user’s view of the quality of a system containing software, and is measured in terms of the
result of using the software, rather than properties of the software itself.

8.1 quality in use: the extent to which a product can be used by specified users to meet their needs to achieve
specified goals with effectiveness, productivity and satisfaction in a specified context of use.

8.1.1 effectiveness: the accuracy and completeness with which users achieve specified goals

8.1.2 productivity: the resources expended in relation to task effectiveness

8.1.3 satisfaction: attitudes to the use of the product

Examples of metrics for quality in use are given in ISO/IEC 9126-2.

NOTE - Quality in use is an external measure of the combination of functionality, usability and efficiency.

ISO/IEC CD 9126-1 12-Feb-97

16

Annex A (informative)
Definitions from other standards

Definitions are from ISO/IEC 14598-1 unless otherwise stated.

A.1 Quality

A.1.1 quality: The totality of characteristics of an entity that bear on its ability to satisfy stated and implied
needs. [ISO 8402]

NOTE - In a contractual environment, or in a regulated environment, such as the nuclear safety field, needs are specified,
whereas in other environments, implied needs should be identified and defined (ISO 8402 : 1994, note 1).

A.1.2 implied needs: Needs that may not have been stated but are actual needs when the entity is used in
particular conditions.

NOTE - Implied needs are real needs which may not have been documented.

A.1.3 quality model: The set of characteristics and the relationships between them which provide the basis
for specifying quality requirements and evaluating quality.

A.1.4 external quality: The extent to which a product satisfies stated and implied needs when used under
specified conditions.

A.1.5 internal quality: The totality of attributes of a product that determine its ability to satisfy stated and
implied needs when used under specified conditions.

NOTE - The term “internal quality”, used in this standard to contrast with “external quality”, has essentially the same meaning
as “quality” in ISO 8402. The term “attribute” is used as the term “characteristic” is used in a more specific sense in ISO/IEC
9126.

A.1.6 quality in use: The extent to which a product can be used by specified users to meet their needs to
achieve specified goals with effectiveness, task efficiency and satisfaction in a specified context of use.

A.2 Software and user

A.2.1 software: All or part of the programs, procedures, rules, and associated documentation of an
information processing system. (ISO/IEC 2382-1 : 1993)

NOTE - Software is an intellectual creation that is independent of the medium on which it is recorded.

A.2.2 software product: The set of computer programs, procedures, and possibly associated documentation
and data designated for delivery to a user. [ISO/IEC 12207]

NOTE - products include intermediate products, and products intended for users such as developers and maintainers.

A.2.3 fault: An incorrect step, process or data definition in a computer programme. [IEEE 610.12-1990]

A.2.4 user: An individual that uses the software product to perform a specific function.

NOTE - Users may include operators, recipients of the results of the software, or developers or maintainers of software.

A.3 Measurement

A.3.1 attribute: A measurable physical or abstract property of an entity.

A.3.2 measurement: The process of assigning a number or category to an entity to describe an attribute of
that entity.

ISO/IEC CD 9126-1 12-Feb-97

17

NOTE - "category" is used to denote qualitative measures of attributes. For example, some important attributes of software
products, e.g. the language of a source program (ADA, C, COBOL, etc.) are qualitative.

A.3.3 measure (verb): Make a measurement.

A.3.4 measure (noun) The number or category assigned to an attribute of an entity by making a measurement.

A.3.5 direct measure: A measure of an attribute that does not depend upon a measure of any other attribute.

A.3.6 indirect measure: A measure of an attribute that is derived from measures of one or more other
attributes.

NOTE - An external measure of an attribute of a computing system (such as the response time to user input) is an indirect
measure of attributes of the software as the measure will be influenced by attributes of the computing environment as well as
attributes of the software.

A.3.7 internal measure: A measure derived from the product itself, either direct or indirect; it is not derived
from measures of the behaviour of the system of which it is a part.

NOTE - Lines of code, complexity, the number of faults found in a walk through and the Fog Index are all internal measures
made on the product itself.

A.3.8 external measure: An indirect measure of a product derived from measures of the behaviour of the
system of which it is a part.

NOTES
1. The system includes any associated hardware, software and users.
2. The number of faults found during testing is an external measure of the number of faults in the program because the number
of faults are counted during the operation of a computer system running the program to find the number of faults in the code.
3. External measures can be used to evaluate quality attributes closer to the ultimate objectives of the design.

A.3.9 measurement scale: A scale that constrains the type of data analysis that can be performed on it.

NOTE - Examples of scales are: a nominal scale which corresponds to a set of categories; an ordinal scale which corresponds
to an ordered set of scale points; an interval scale which corresponds to an ordered scale with equidistant scale points; and a
ratio scale which not only has equidistant scale point but also possess an absolute zero.

A.3.10 rating: The action of mapping the measured value to the appropriate rating level. Used to determine
the rating level associated with the software for a specific quality characteristic.

A.3.11 rating level: A scale point on an ordinal scale which is anchored to a range of values on another
ordinal, interval or ratio scale measure.

NOTES
1. The rating level enables software to be classified (rated) in accordance with the stated or implied needs.
2. Appropriate rating levels may be associated with the different views of quality i.e. Users', Managers' or ‘Developers'.
3. These rating levels are different from the "grades" defined in ISO 8402.

A.3.12 indicator: An indirect measure that can be used to estimate or predict another measure.

NOTES
1. The measure may be of the same or a different characteristic.
2. Indicators may be used both to estimate software quality attributes and to estimate attributes of the production process.

A.3.13 metric: A measurement scale and the method used for measurement.

NOTES
1. Metrics can be internal or external
2. Metrics include methods for categorising qualitative data.

ISO/IEC CD 9126-1 12-Feb-97

18

A.4 Evaluation

A.4.1 quality evaluation: Systematic examination of the extent to which an entity is capable of fulfilling
specified requirements. [ISO 8402]

A.4.2 verification: Confirmation by examination and provision of objective evidence that specified
requirements have been fulfilled.

NOTES
1. In design and development, verification concerns the process of examining the result of a given activity to determine
conformity with the stated requirement for that activity.
2. "Verified" is used to designate the corresponding status.

[ISO 8402: 1994, 2.17]

A.4.3 validation: Confirmation by examination and provision of objective evidence that the particular
requirements for a specific intended use are fulfilled.

NOTES
1. In design and development, validation concerns the process of examining a product to determine conformity with user
needs.
2. Validation is normally performed on the final product under defined operating conditions. It may be necessary in earlier
stages.
3. "Validated" is used to designate the corresponding status.
4. Multiple validations may be carried out if there are different intended uses.

[ISO 8402: 1994, 2.18]

ISO/IEC CD 9126-1 12-Feb-97

19

Annex B (informative)

Bibliography

IEEC 610.12-1990
ISO/IEC 2382-20 :1990, Information technology -- Vocabulary - Part 20 : Systems development.
ISO 8402 : 1994, Quality -Vocabulary .
ISO/IEC 2382-1:1993 Data processing - Vocabulary - Part 1: Fundamental terms

ISO/IEC 14598-2:(new) Information Technology - Software product evaluation - Part 2: Planning and
management

ISO/IEC 14598-3:(new) Information Technology - Software product evaluation - Part 3: Process for developers

ISO/IEC 14598-4:(new) Information Technology - Software product evaluation - Part 4: Process for acquirers

ISO/IEC 14598-5:(new) Information Technology - Software product evaluation - Part 5: Process for evaluators

ISO/IEC 14598-6:(new) Information Technology - Software product evaluation - Part 6: Documentation of
evaluation modules

ISO/IEC CD 9126-1 12-Feb-97

20

Annex C (informative)

History of the work

C.1 Background

The software industry is entering a period of some maturing, while at the same time software is becoming a crucial
component of many of today's products. This pervasive aspect of software makes it a major new factor in trade.
Furthermore, with new global demands for safety and quality, the need for international agreements on software
quality assessment procedures is becoming important.

There are essentially two approaches that can be followed to ensure product quality, one being assurance of the
process by which the product is developed, and the other being the evaluation of the quality of the end product.
Both avenues are important and both require the presence of a system for managing quality. Such a system
identifies the management commitment to quality, and states its policies, as well as the detailed steps that must be
in place.

To evaluate the quality of a product through some quantitative means, a set of quality characteristics that describe
the product and form the basis for the evaluation is required. This part of ISO/IEC 9126 defines these quality
characteristics for software products.

C.2 History

State of the art in software technology does not yet present a well established and widely accepted description
scheme for assessing the quality of software product. Much work has been done since about 1976 by a number of
individuals to define a software quality framework. Models by McCall, Boehm, the US Air Force, and others
have been adopted and enhanced over the years. However, today it is difficult for a user or consumer of software
products to understand or compare the quality of software.

For a long time, reliability has been the only way to gauge quality. Other quality models have been proposed and
submitted for use. While studies were useful, they also caused confusion because of the many quality aspects
offered. Thus, the need for one standard model came about.

It is for this reason that the ISO/IEC JTC1 began to develop the required consensus and encourage standardization
worldwide.

First considerations originated in 1978, and in 1985 the development of ISO/IEC 9126 was started. The models
proposed initially introduced properties of software that depend on application or implementation aspects (or
both), to describe the quality of software.

The first step of the ISO technical committee to arrange these properties systematically failed for lack of
definitions. Terms were interpreted in different ways by experts. All structures discussed were, therefore, of an
arbitrary nature, without a common basis.

As a result it was decided that the best chance for establishing an International Standard was to stipulate a set of
characteristics based on a definition of quality that that was subsequently used in ISO 8402. This definition is
accepted for all kinds of products and services. It starts with the user's needs.

C.3 Six ISO software quality characteristics

The requirements for choosing the characteristics described in ISO/IEC 9126 were as follows:

 - To cover together all aspects of software quality resulting from the ISO quality definition.
 - To describe the product quality with a minimum of overlap.
 - To be as close as possible to the established terminology.

ISO/IEC CD 9126-1 12-Feb-97

21

 - To form a set of not more than six to eight characteristics for reason of clarity and handling.
 - To identify areas of attributes of software products for further refinement.

The work of the technical committee resulted in the above set of characteristics.

However, a pure terminology standard, containing definitions of characteristics would not have provided sufficient
support to users in assessing software quality. Therefore, a description on how to proceed with evaluating the
quality of a software product was included.

Evaluating product quality in practice requires characteristics beyond the set at hand, and requires metrics for each
of the characteristics. The state of art at present did not permit standardization in this area. Waiting for
enhancements would have delayed the publication of ISO/IEC 9126 substantially.

For this reason, the technical committee issued the 1991 version of ISO/IEC 9126 to harmonize further
development.

C.4 Revision of ISO/IEC 9126

In 1994 it was felt that other Standards being produced in the area of product quality evaluation necessitated the
revision of ISO/IEC 9126. The revision retains the same 6 quality characteristics, but clarifies their relationship to
internal and external metrics. The relationship between the characteristics and quality in use is also explained.

Quality is defined in ISO 8402 in terms of “Totality of characteristics of an entity that bear on ...”. Note 4 in this
definition states that “The term quality should not be used as a single term to express a degree of excellence in a
comparative sense”. For this reason the terms “internal quality” and “external quality” have been defined in
ISO/IEC 14598-1 to refer to aspects of quality which can be measured. The wording of the definitions of the
quality characteristics has been changed from: “A set of attributes that bear on” to: “The capability of the software
to ...” so they can be interpreted in terms which enable both internal and external quality to be measured.

Sub-characteristics have been introduced, based on those in the informative annex of the previous version of
ISO/IEC 9126. Conformance and compliance were removed as subcharacteristics, as the principles are generally
applicable to all the software characteristics.

The evaluation process model has been moved to ISO/IEC 14598-1. Two new technical reports are being
prepared as parts 2 and 3 of ISO/IEC 9126, giving examples of external and internal metrics.

