
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Video and Image Processing Suite
User Guide

Software Version: 9.0
Document Date: March 2009

http://www.altera.com

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

UG-VIPSUITE-8.0

 © March 2009 Altera Corporation
Contents
Chapter 1. About This MegaCore Function Suite
New Features . 1–1
Release Information . 1–1
Device Family Support . 1–1
Features . 1–2
General Description . 1–3

Color Space Converter . 1–3
Chroma Resampler . 1–3
Gamma Corrector . 1–3
2D FIR Filter . 1–3
2D Median Filter . 1–3
Alpha Blending Mixer . 1–4
Scaler . 1–4
Clipper . 1–4
Deinterlacer . 1–4
Frame Buffer . 1–4
Line Buffer Compiler . 1–4
Clocked Video Input . 1–4
Clocked Video Output . 1–5
Color Plane Sequencer . 1–5
Test Pattern Generator . 1–5
Example Design . 1–5

MegaCore Verification . 1–5
Performance and Resource Utilization . 1–5

Color Space Converter . 1–6
Chroma Resampler . 1–6
Gamma Corrector . 1–7
2D FIR Filter . 1–7
2D Median Filter . 1–8
Alpha Blending Mixer . 1–9
Scaler . 1–9
Clipper . 1–10
Deinterlacer . 1–10
Frame Buffer . 1–11
Line Buffer Compiler . 1–12
Clocked Video Input . 1–12
Clocked Video Output . 1–13
Color Plane Sequencer . 1–13
Test Pattern Generator . 1–14

Installation and Licensing . 1–15
OpenCore Plus Evaluation . 1–15
OpenCore Plus Time-Out Behavior . 1–16

Chapter 2. Getting Started
Design Flows . 2–1
SOPC Builder Flow . 2–1
MegaWizard Plug-in Manager Flow . 2–2
Generated Files . 2–6
Video and Image Processing Suite User Guide

ii Contents
Simulating the Design . 2–6
Compiling the Design and Programming a Device . 2–6

Chapter 3. Parameter Settings
Color Space Converter . 3–1
Chroma Resampler . 3–4
Gamma Corrector . 3–6
2D FIR Filter . 3–7
2D Median Filter . 3–10
Alpha Blending Mixer . 3–11
Scaler . 3–12
Clipper . 3–17
Deinterlacer . 3–18
Frame Buffer . 3–20
Line Buffer Compiler . 3–22
Clocked Video Input . 3–23
Clocked Video Output . 3–24
Color Plane Sequencer . 3–26
Test Pattern Generator . 3–29

Chapter 4. Interfaces
Interface Types . 4–1
Avalon-ST Video Protocol . 4–1

Video Data Packets . 4–2
Examples . 4–3

Data Transfer in Parallel . 4–4
Data Transfer in Sequence . 4–6

Control Data Packets . 4–7
Packet Propagation . 4–9
Avalon-ST Video Specification . 4–10

Avalon-ST Video Parameters . 4–10
Type of Avalon-ST Interfaces Used . 4–11
Avalon-ST Video Rules . 4–11

Avalon-MM Slave Interfaces . 4–14
Specification of the Type of Avalon-MM Slave Interfaces Used . 4–16

Avalon-MM Master Interfaces . 4–16
Specification of the Type of Avalon-MM Master Interfaces Used . 4–16

Buffering of Non-Image Data Packets in Memory . 4–17

Chapter 5. Functional Descriptions
Color Space Converter . 5–1

Input and Output Data Types . 5–1
Color Space Conversion . 5–1
Constant Precision . 5–2
Calculation Precision . 5–2
Result of Output Data Type Conversion . 5–3

Chroma Resampler . 5–4
Horizontal Resampling (4:2:2) . 5–4

4:4:4 to 4:2:2 . 5–4
4:2:2 to 4:4:4 . 5–5

Vertical Resampling (4:2:0) . 5–6
Gamma Corrector . 5–7
2D FIR Filter . 5–8
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Contents iii
Calculation Precision . 5–8
Coefficient Precision . 5–8
Result to Output Data Type Conversion . 5–8

2D Median Filter . 5–9
Alpha Blending Mixer . 5–10
Scaler . 5–12

Nearest Neighbor Algorithm . 5–12
Bilinear Algorithm . 5–13

Resource Usage . 5–13
Algorithmic Description . 5–13

Polyphase and Bicubic Algorithms . 5–14
Resource Usage . 5–15
Algorithmic Description . 5–16
Choosing and Loading Coefficients . 5–17
Recommended Parameters . 5–19

Clipper . 5–20
Deinterlacer . 5–20

Deinterlacing Methods . 5–21
Bob with Scanline Duplication . 5–21
Bob with Scanline Interpolation . 5–21
Weave . 5–21
Motion-Adaptive . 5–22
Pass-Through Mode for Progressive Frames . 5–23

Frame Buffering . 5–23
Frame Rate Conversion . 5–24
Behavior When Unexpected Fields are Received . 5–25
Handling of Avalon-ST Video Control Packets . 5–25

Frame Buffer . 5–26
Handling of Avalon-ST Video Control Packets . 5–27

Line Buffer Compiler . 5–28
Clocked Video Input . 5–30

Video Formats . 5–30
Embedded Sync Format . 5–30
Separate Sync Format . 5–31
Video Locked Signal . 5–32

Control Port . 5–32
Format Detection . 5–33

Interrupt . 5–34
Overflow . 5–34
Timing Constraints . 5–35

Clocked Video Output . 5–35
Video Formats . 5–35

Embedded Sync Format . 5–37
Separate Sync Format . 5–37

Control Port . 5–37
Video Modes . 5–38

Interrupt . 5–41
Underflow . 5–41
Timing Constraints . 5–41

Color Plane Sequencer . 5–42
Combining Color Patterns . 5–42
Splitting/Duplicating . 5–43
Subsampled Data . 5–44
Avalon-ST Video Stream Requirements . 5–44
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

iv Contents
Test Pattern Generator . 5–45
Generation of Avalon-ST Video Control Packets and Run-Time Control . 5–45

Output Data Types . 5–45
Test Pattern . 5–46

Stall Behavior . 5–47
Color Space Converter . 5–48

Error Recovery . 5–48
Chroma Resampler . 5–48

Error Recovery . 5–49
Gamma Corrector . 5–49

Error Recovery . 5–49
2D FIR Filter . 5–49

Error Recovery . 5–49
2D Median Filter . 5–49

Error Recovery . 5–49
Alpha Blending Mixer . 5–50
Scaler . 5–50

Error Recovery . 5–51
Clipper . 5–51

Error Recovery . 5–51
Deinterlacer . 5–51

Error Recovery . 5–52
Frame Buffer . 5–52

Error Recovery . 5–53
Color Plane Sequencer . 5–53

Error Recovery . 5–53
Test Pattern Generator . 5–53

Latency . 5–53

Appendix A. Reference
Compile Time Parameters . A–1

Color Space Converter . A–1
 Chroma Resampler . A–3
Gamma Corrector . A–3
2D FIR Filter . A–3
 2D Median Filter . A–5
Alpha Blending Mixer . A–5
Scaler . A–6
Clipper . A–8
Deinterlacer . A–9
Frame Buffer . A–10
Line Buffer Compiler . A–11
Clocked Video Input . A–12
Clocked Video Output . A–13
Color Plane Sequencer . A–14
Test Pattern Generator . A–15

Run-Time Control Register Maps . A–16
Color Space Converter . A–16
Gamma Corrector . A–16
2D FIR Filter . A–18
Alpha Blending Mixer . A–18
Scaler . A–19
Clipper . A–21
Deinterlacer . A–21
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Contents v
Frame Buffer . A–22
Clocked Video Input . A–23
Clocked Video Output . A–24
Test Pattern Generator . A–25

Signals . A–26
Color Space Converter . A–26
Chroma Resampler . A–27
Gamma Corrector . A–28
2D FIR Filter . A–29
2D Median Filter . A–29
Alpha Blending Mixer . A–30
Scaler . A–31
Clipper . A–32
Deinterlacer . A–33
Frame Buffer . A–35
Line Buffer Compiler . A–37
Clocked Video Input . A–38
Clocked Video Output . A–39
Color Plane Sequencer . A–40
Test Pattern Generator . A–41

References . A–42

Additional Information . Info–1
Revision History . Info–1
How to Contact Altera . Info–2
Typographic Conventions . Info–3
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

vi Contents
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

© March 2009 Altera Corporation
1. About This MegaCore Function Suite
New Features
This release supports the following new features:

■ The Deinterlacer MegaCore function supports controlled frame dropping or
repeating to keep the input and output frame rates locked together.

■ The Test Pattern Generator MegaCore function can generate a user-specified
constant color that can be used as a uniform background.

■ Added preliminary support for Arria® II GX devices.

Release Information
Table 1–1 provides information about this release of the Altera® Video and Image
Processing Suite MegaCore® functions.

f For more information about this release, refer to the MegaCore IP Library Release Notes
and Errata.

Device Family Support
MegaCore functions provide either full or preliminary support for target Altera
device families:

■ Full support means the MegaCore function meets all functional and timing
requirements for the device family and may be used in production designs.

Table 1–1. Video and Image Processing Suite Release Information

Item Description

Version 9.0 (All MegaCore functions)

Release Date March 2009

Ordering Code IPS-VIDEO (Video and Image Processing Suite)

Product IDs 0003 (Color Space Converter)

00B1 (Chroma Resampler)

00B2 (Gamma Corrector)

00B3 (2D FIR Filter)

00B4 (2D Median Filter)

00B5 (Alpha Blending Mixer)

00B6 (Deinterlacer)

00C3 (Frame Buffer)

00B7 (Scaler)

00B8 (Line Buffer Compiler)

00C8 (Clipper)

00C4 (Clocked Video Input)

00C5 (Clocked Video Output)

00C9 (Color Plane Sequencer)

00CA (Test Pattern Generator)

Vendor ID(s) 6AF7
Video and Image Processing Suite User Guide

http://www.altera.com/literature/rn/rn_ip.pdf
http://www.altera.com/literature/rn/rn_ip.pdf

1–2 Chapter 1: About This MegaCore Function Suite
Features
■ Preliminary support means the MegaCore function meets all functional
requirements, but may still be undergoing timing analysis for the device family; it
may be used in production designs with caution.

Table 1–2 shows the level of support offered by the Video and Image Processing Suite
MegaCore functions to each Altera device family.

Features
The following key fetaures are common to all of the Video and Image Processing Suite
MegaCore functions:

■ Common Avalon® Streaming (Avalon-ST) interface and Avalon-ST Video protocol

■ Avalon Memory-Mapped (Avalon-MM) interfaces for run-time control input and
connections to external memory blocks

■ Easy-to-use MegaWizard™ interface for parameterization and hardware
generation

■ IP functional simulation models for use in Altera-supported VHDL and Verilog
HDL simulators

■ Support for OpenCore Plus evaluation

■ SOPC Builder ready

Table 1–2. Device Family Support

Device Family Support

Arria® II GX Preliminary

Arria GX Full

Cyclone® II Full

Cyclone III Full

HardCopy® II Full

Stratix® Full

Stratix II Full

Stratix II GX Full

Stratix III Full

Stratix IV Preliminary

Stratix GX Full

Other device families No support
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 1: About This MegaCore Function Suite 1–3
General Description
General Description
The Altera Video and Image Processing Suite is a collection of MegaCore functions
that facilitate the development of video and image processing designs. The MegaCore
functions are suitable for use in a wide variety of image processing and display
applications.

Color Space Converter
The Color Space Converter MegaCore function transforms video data between color
spaces. These color spaces allow you to specify colors using three coordinate values.
The MegaCore function supports some pre-defined conversions between standard
color spaces, and allows the entry of custom coefficients to translate between any two
three-valued color spaces. You can configure this MegaCore function to change
conversion values at run time using an Avalon-MM slave interface.

Chroma Resampler
The Chroma Resampler MegaCore function resamples video data to and from
common sampling formats. The human eye is more sensitive to brightness than it is to
tone. Taking advantage of this characteristic, video transmitted in the Y’CbCr color
space often subsamples the color components (Cb and Cr) to save on data bandwidth.
The sampling formats that specify how this subsampling is done are part of the
MPEG-1, MPEG-2, H.261 and other standards.

Gamma Corrector
The Gamma Corrector MegaCore function allows video streams to be corrected for
the physical properties of display devices. For example, the brightness displayed by a
cathode-ray tube monitor has a non-linear response to the voltage of a video signal.
To account for this response, you can program the MegaCore function with a look-up
table that models the non-linear function. The look-up table is then used to transform
the video data and give the best image on the display.

2D FIR Filter
The 2D FIR Filter MegaCore function performs 2D convolution using matrices of 3×3,
5×5, or 7×7 coefficients. The MegaCore function retains full precision throughout the
calculation while making efficient use of FPGA resources. With suitable coefficients,
the MegaCore function can perform operations such as sharpening, smoothing, and
edge detection. You can configure this MegaCore function to change coefficient
values at run time using an Avalon-MM slave interface.

2D Median Filter
The 2D Median Filter MegaCore function provides a means to apply 3×3, 5×5, or 7×7
pixel median filters to video images. Median filtering removes speckle noise and
salt-and-pepper noise while preserving the sharpness of edges in video images.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

1–4 Chapter 1: About This MegaCore Function Suite
General Description
Alpha Blending Mixer
The Alpha Blending Mixer MegaCore function can mix together up to 12 image
layers. The MegaCore function supports both picture-in-picture mixing and image
blending. Each image layer can be independently activated and moved at run time
using an Avalon-MM slave interface.

Scaler
The Scaler MegaCore function provides a means to resize video streams. The
MegaCore function supports nearest-neighbor, bilinear, bicubic, and polyphase
scaling algorithms. You can configure this MegaCore function to change resolutions
and/or filter coefficients at run time using an Avalon-MM slave interface.

Clipper
The Clipper MegaCore function provides a means to clip video streams. You can
configure this MegaCore function at compile time or optionally at run time using an
Avalon-MM slave interface.

Deinterlacer
The Deinterlacer MegaCore function converts interlaced video to progressive video
using a bob, weave, or simple motion-adaptive algorithm. Interlaced video is
commonly used in television standards such as phase alternation line (PAL) and
national television system committee (NTSC), but progressive video is required by
LCD displays and is often more useful for subsequent image processing functions.

Additionally, the Deinterlacer MegaCore function can provide double -buffering or
triple-buffering in external RAM. Double-buffering can help solve throughput
problems (burstiness) in video systems. Triple-buffering can provide simple frame
rate conversion.

Frame Buffer
The Frame Buffer MegaCore function buffers video frames into external RAM. The
MegaCore function supports double or triple-buffering with a range of options for
frame dropping and repeating.

Line Buffer Compiler
The Line Buffer Compiler MegaCore function efficiently maps video line buffers to
Altera on-chip memories.

1 The Line Buffer Compiler MegaCore function is not available in SOPC Builder.

Clocked Video Input
The Clocked Video Input MegaCore function converts clocked video formats (such as
BT656 and DVI) to Avalon-ST Video. You can configure this MegaCore function at
run time using an Avalon-MM slave interface.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 1: About This MegaCore Function Suite 1–5
MegaCore Verification
Clocked Video Output
The Clocked Video Output MegaCore function converts Avalon-ST Video to clocked
video formats (such as BT656 and DVI). You can configure this MegaCore function at
run time using an Avalon-MM slave interface.

Color Plane Sequencer
The Color Plane Sequencer MegaCore function changes how color plane samples are
transmitted across the Avalon-ST interface.

You can configure the channel order in sequence or in parallel. In addition to
reordering color plane samples, this MegaCore function splits and joins video
streams, giving control over the routing of color plane samples.

Test Pattern Generator
The Test Pattern Generator generates a video stream that displays either still color
bars for use as a test pattern or a constant color for use as a uniform background. You
can use this MegaCore function during the design cycle to validate a video system
without the possible throughput issues associated with a real video input.

Example Design
An example design is available that illustrates the cost, performance, and quality
capabilities of Video and Image Processing MegaCore functions in the Altera design
flow.

f For more information about this example design, refer to AN427: Video and Image
Processing Up Conversion Example Design.

MegaCore Verification
Before releasing a version of each MegaCore function, Altera runs comprehensive
regression tests to verify quality and correctness.

Custom variations of the MegaCore functions are generated to exercise various
parameter options. The resulting simulation models are thoroughly simulated and the
results verified against bit-accurate master simulation models.

Performance and Resource Utilization
This section shows typical expected performance for the Video and Image Processing
Suite MegaCore functions when using the Quartus II with Cyclone III and Stratix III
devices.

1 Cyclone III devices use combinational look-up tables (LUTs) and logic registers;
Stratix III devices use combinational adaptive look-up tables (ALUTs) and logic
registers.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

http://www.altera.com/literature/an/an427.pdf
http://www.altera.com/literature/an/an427.pdf

1–6 Chapter 1: About This MegaCore Function Suite
Performance and Resource Utilization
Color Space Converter
Table 1–3 shows the performance figures for the Color Space Converter.

Chroma Resampler
Table 1–4 shows the performance figures for the Chroma Resampler.

Table 1–3. Color Space Converter Performance

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory DSP Blocks
fMAX

(MHz)Bits M9K (9×9) (18×18)

Converting 1,080 pixel 10-bit Studio R’G’B’ to HDTV Y’CbCr using 18-bit coefficients and 27-bit summands.

Cyclone III (1) 517 592 — — 6 — 237

Stratix III (2) 430 505 — — — 6 350

Converting 1024×768 14-bit Y’UV to Computer R’G’B’ using 18-bit coefficients and 15-bit summands.

Cyclone III (1) 525 633 — — 6 — 237

Stratix III (2) 421 537 — — — 6 329

Converting 640×480 8-bit SDTV Y’CbCr to Computer R’G’B’ using 9-bit coefficients and 16-bit summands, color planes in
parallel.

Cyclone III (1) 574 818 — — 9 — 238

Stratix III (2) 469 665 — — — 9 394

Converting 720×576 8-bit Computer R’G’B’ to Y’UV using 9-bit coefficients and 8-bit summands.

Cyclone III (1) 394 427 — — 3 — 238

Stratix III (2) 337 376 — — — 3 395

Notes to Table 1–3:

(1) Using EP3C10F256C6 devices.
(2) Using EP3SE50F780C2 devices.

Table 1–4. Chroma Resampler Performance (Part 1 of 2)

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory DSP Blocks
fMAX

(MHz)Bits M9K (9×9) (18×18)

Upsampling from 4:2:0 to 4:4:4 with a parallel data interface and run time control of resolutions up to extended graphics
array format (XGA - 1024x768). This parameterization uses luma-adaptive filtering on the horizontal resampling and
nearest-neighbor on the vertical resampling.

Cyclone III (1) 2,262 1,771 16,384 4 — — 158

Stratix III (2) 1,559 1,769 16,384 4 — — 261

Upsamping from 4:2:2 to 4:4:4 with a sequential data interface at quarter common intermediate format (QCIF - 176x144)
using luma-adaptive filtering.

Cyclone III (1) 998 787 — — — — 212

Stratix III (2) 656 785 — — — — 356

Downsampling from 4:4:4 to 4:2:0 with a parallel data interface and run-time control of resolutions up to XGA (1024x768).
The parameterization uses anti-aliasing filtering on the horizontal resampling and nearest-neighbor on the vertical.

Cyclone III (1) 1,848 1,236 4,096 1 — — 149

Stratix III (2) 1,115 1,240 4,096 1 — — 296
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 1: About This MegaCore Function Suite 1–7
Performance and Resource Utilization
Gamma Corrector
Table 1–5 shows the performance figures for the Gamma Corrector.

2D FIR Filter
Table 1–6 on page 1–8 shows the performance figures for the 2D FIR Filter.

Downsamping from 4:4:4 to 4:2:2 with a sequential data interface at quarter common intermediate format (QCIF - 176x144)
using an anti-aliasing filter.

Cyclone III (1) 848 531 — — — — 194

Stratix III (2) 419 533 — — — — 357

Notes to Table 1–4:

(1) Using EP3C10F256C6 devices.
(2) Using EP3SE50F780C2 devices.

Table 1–4. Chroma Resampler Performance (Part 2 of 2)

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory DSP Blocks
fMAX

(MHz)Bits M9K (9×9) (18×18)

Table 1–5. Gamma Corrector Performance

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory DSP Blocks
fMAX

(MHz)Bits M9K (9×9) (18×18)

Gamma correcting 1,080 pixel one color 10-bit data.

Cyclone III (1) 242 153 10,260 3 — — 233

Stratix III (2) 172 153 10,260 3 — — 393

Gamma correcting 720×576 one color 10-bit data.

Cyclone III (1) 242 153 10,260 3 — — 233

Stratix III (2) 172 153 10,260 3 — — 393

Gamma correcting 128×128 three color 8-bit data.

Cyclone III (1) 226 137 2,064 1 — — 229

Stratix III (2) 160 137 2,064 1 — — 383

Gamma correcting 64×64 three color 8-bit data.

Cyclone III (1) 226 137 2,064 1 — — 229

Stratix III (2) 160 137 2,064 1 — — 383

Notes to Table 1–5:

(1) Using EP3C10F256C6 devices.
(2) Using EP3SE50F780C2 devices.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

1–8 Chapter 1: About This MegaCore Function Suite
Performance and Resource Utilization
2D Median Filter
Table 1–7 shows the performance figures for the 2D Median Filter.

Table 1–6. 2D FIR Filter Performance

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory DSP Blocks
fMAX

(MHz)Bits M9K (9×9) (18×18)

Edge detecting 3×3 asymmetric filter, working on 352×288 8-bit R’G’B’, using 3 bit coefficients

Cyclone III (1) 965 987 16,896 4 9 — 190

Stratix III (2) 750 830 16,896 4 — 9 349

Smoothing 3×3 symmetric filter, working on 640×480 8-bit R’G’B’, using 9 bit coefficients.

Cyclone III (1) 981 960 30,720 4 6 — 195

Stratix III (2) 761 909 30,720 4 — 4 354

Sharpening 5×5 symmetric filter, working on 640×480 in 8-bit R’G’B’, using 9 bit coefficients.

Cyclone III (1) 1,858 1,791 61,440 8 12 — 183

Stratix III (2) 1,398 1,598 61,440 8 — 8 295

Smoothing 7×7 symmetric filter, working on 1,280×720 in 10-bit R’G’B’, using 15 bit coefficients

Cyclone III (1) 3,584 3,612 230,400 30 20 — 164

Stratix III (2) 2,663 3,365 230,400 30 — 20 263

Notes to Table 1–6:

(1) Using EP3C10F256C6 devices.
(2) Using EP3SE50F780C2 devices.

Table 1–7. 2D Median Filter Performance

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory DSP Blocks
fMAX

(MHz)Bits M9K (9×9) (18×18)

3×3 median filtering HDTV 720 pixel monochrome video.

Cyclone III (1) 1,575 1,200 25,600 6 — — 233

Stratix III (2) 994 1,200 25,600 6 — — 351

Median filtering 64×64 pixel R’G’B frames using a 3×3 kernel of pixels.

Cyclone III (1) 1,535 1,154 3,072 2 — — 230

Stratix III (2) 971 1,155 3,072 2 — — 349

Median filtering 352×288 pixel two color frames using a 5×5 kernel of pixels.

Cyclone III (1) 5,416 3,828 28,160 8 — — 203

Stratix III (2) 2,682 3,832 28,160 8 — — 300

7×7 median filtering 352×288 pixel monochrome video.

Cyclone III (3) 10,813 7,296 16,896 6 — — 191

Stratix III (2) 4,850 7,296 16,896 6 — — 270

Notes to Table 1–7:

(1) Using EP3C10F256C6 devices.
(2) Using EP3SE50F780C2 devices.
(3) Using EP3C16F484C6 devices.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 1: About This MegaCore Function Suite 1–9
Performance and Resource Utilization
Alpha Blending Mixer
Table 1–8 shows the performance figures for the Alpha Blending Mixer.

Scaler
Table 1–9 shows the performance figures for the Scaler.

Table 1–8. Alpha Blending Mixer Performance

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory DSP Blocks
fMAX

(MHz)Bits M9K (9×9) (18×18)

Alpha blending an on-screen display within a region of 1,024×768 pixel 10-bit Y’CbCr 4:4:4 video. Alpha blending is
performed using 16 levels of opacity from fully opaque to fully translucent.

Cyclone III (1) 1,103 764 752 1 4 — 178

Stratix III (2) 797 733 752 1 — 3 319

Drawing a picture-in-picture window over the top of a 128×128 pixel background image in 8-bit R’G’B’ color.

Cyclone III (1) 735 492 8,432 3 — — 136

Stratix III (2) 609 548 752 1 — — 354

Rendering two images over 352×240 pixel background 8-bit R’G’B’ video.

Cyclone III (1) 1,207 760 752 1 — — 189

Stratix III (2) 853 758 752 1 — — 325

Using alpha blending to composite three layers over the top of PAL resolution background video in 8-bit monochrome.
Alpha blending is performed using 256 levels of opacity from fully opaque to fully translucent.

Cyclone III (1) 1,924 1,300 752 1 6 — 169

Stratix III (2) 1,428 1,205 752 1 — 6 276

Notes to Table 1–8:

(1) Using EP3C10F256C6 devices.
(2) Using EP3SE50F780C2 devices.

Table 1–9. Scaler Performance (Part 1 of 2)

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory DSP Blocks
fMAX

(MHz)Bits M9K (9×9) (18×18)

Scaling 640×480, 8-bit, three color data up to 1,024×768 with linear interpolation. This can be used to convert video
graphics array format (VGA - 640×480) to video electronics standards association format (VESA - 1024×768).

Cyclone III (1) 945 687 30,720 6 4 — 191

Stratix III (2) 682 624 30,720 6 — 4 346

Scaling R’G’B’ QCIF to common intermediate format (CIF) with no interpolation.

Cyclone III (1) 434 297 4,224 3 — — 223

Stratix III (2) 304 298 4,224 3 — — 393

Scaling up or down between NTSC standard definition and 1080 pixel high definition using 10 taps horizontally and 9
vertically. Resolution and coefficients are set by a run-time control interface.

Cyclone III (3) 3,842 3,095 417,456 58 19 — 161

Stratix III (2) 2,225 2,757 417,456 58 — 19 264
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

1–10 Chapter 1: About This MegaCore Function Suite
Performance and Resource Utilization
Clipper
Table 1–10 shows the performance figures for the Clipper.

Deinterlacer
Table 1–11 shows the performance figures for the Deinterlacer.

Scaling NTSC standard definition (720x480) RGB to high definition 1080p using a bicubic algorithm.

Cyclone III (1) 1,687 1,185 69,444 13 8 8 169

Stratix III (2) 1,039 1,050 69,444 14 — 8 294

Notes to Table 1–9:

(1) Using EP3C10F256C6 devices.
(2) Using EP3SE50F780C2 devices.
(3) Using EP3C40F780C6 devices.

Table 1–9. Scaler Performance (Part 2 of 2)

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory DSP Blocks
fMAX

(MHz)Bits M9K (9×9) (18×18)

Table 1–10. Clipper Performance

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory DSP Blocks
fMAX

(MHz)Bits M9K (9x9) (18x18)

A 1080p60-compatible clipper with a clipping window that has fixed offsets from the size of the input frames.

Cyclone III (1) 649 484 — — — — 202

Stratix III (2) 475 484 — — — — 332

A 100×100 pixel clipper with a clipping window that is a rectangle from the input frames.

Cyclone III (1) 416 275 — — — — 192

Stratix III (2) 323 276 — — — — 333

A 1080p60-compatible clipper with a runtime interface which uses offsets to set the clipping window.

Cyclone III (1) 819 619 — — — — 189

Stratix III (2) 597 620 — — — — 327

A 100×100 pixel clipper with a run-time interface which uses a rectangle to set the clipping window.

Cyclone III (1) 560 468 — — — — 207

Stratix III (2) 449 468 — — — — 326

Notes to Table 1–10:

(1) Using EP3C10F256C6 devices.
(2) Using EP3SE50F780C2 devices.

Table 1–11. Deinterlacer Performance (Part 1 of 2)

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory DSP Blocks
fMAX

(MHz)ALUTs Bits M9K (9×9) (18×18)

Deinterlacing 64×64 pixel 8-bit R’G’B’ frames using the bob algorithm with scanline duplication.

Cyclone III (1) 538 292 — 1,536 1 — — 189

Stratix III (2) 386 293 — 1,536 1 — — 325
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 1: About This MegaCore Function Suite 1–11
Performance and Resource Utilization
Frame Buffer
Table 1–12 shows the performance figures for the Frame Buffer.

Deinterlacing with scanline interpolation using the bob algorithm working on 352×288 pixel 12-bit Y’CbCr 4:2:2 frames.

Cyclone III (1) 673 395 — 8,448 2 — — 184

Stratix III (2) 492 398 — 8,448 2 — — 312

Deinterlacing PAL (720×576) with 8-bit Y'CbCr 4:4:4 color using the motion-adaptive algorithm.

Cyclone III (3) 5,723 5,678 — 81,514 39 1 — 121

Stratix III (4) 4,803 5,772 5 73,292 41 — 1 243

Deinterlacing HDTV 1080i resolution with 12-bit Y’CbCr 4:4:4 color using the weave algorithm.

Cyclone III (1) 3,231 2,546 — 3,078 15 — — 170

Stratix III (2) 3,539 2,540 — 3,078 19 — — 280

Notes to Table 1–11:

(1) Using EP3C10F256C6 devices.
(2) Using EP3SE50F780C2 devices.
(3) Using EP3C40F780C6 devices.
(4) Using EP3SE110F1152C2 devices.

Table 1–11. Deinterlacer Performance (Part 2 of 2)

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory DSP Blocks
fMAX

(MHz)ALUTs Bits M9K (9×9) (18×18)

Table 1–12. Frame Buffer Performance

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory DSP Blocks
fMAX

(MHz)Bits M9K (9×9) (18×18)

Double-buffering XGA (1024×768) 8-bit RGB with a sequential data interface.

Cyclone III (1) 2,103 1,725 8,408 6 — — 161

Stratix III (2) 1,749 1,726 8,432 11 — — 300

Triple-buffering VGA (640×480) 8-bit RGB with a parallel data interface.

Cyclone III (1) 2,121 1,670 7,368 6 — — 169

Stratix III (2) 1,737 1,671 7,368 10 — — 290

Triple-buffering VGA (640×480) 8-bit RGB buffering up to 32 large Avalon-ST Video packets into RAM.

Cyclone III (1) 3,796 2,495 11,168 6 — — 145

Stratix III (2) 2,723 2,496 11,168 11 — — 228

Triple-buffering 720×576 8-bit RGB with sequential data interface and runtime control interface.

Cyclone III (1) 2,177 1,763 8,504 7 — — 162

Stratix III (2) 1,826 1,763 8,504 12 — — 304

Notes to Table 1–12:

(1) Using EP3C10F256C6 devices.
(2) Using EP3SE50F780C2 devices.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

1–12 Chapter 1: About This MegaCore Function Suite
Performance and Resource Utilization
Line Buffer Compiler
Table 1–13 shows the performance figures for the Line Buffer Compiler.

Clocked Video Input
Table 1–14 shows the performance figures for the Clocked Video Input.

Table 1–13. Line Buffer Compiler Performance

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory DSP Blocks
fMAX

(MHz)Bits M9K (9×9) (18×18)

Two 10-bit wide 1,920 pixel lines. This configuration could be used in an HDTV 1080i system.

Cyclone III (1) 40 38 38,400 5 — — 357

Stratix III (2) 43 38 38,400 5 — — 655

Two 8-bit wide 720 pixel lines. This configuration would be appropriate for 8-bit PAL line buffering.

Cyclone III (1) 34 32 12,288 2 — — 357

Stratix III (2) 38 32 12,288 2 — — 696

Three 8-bit wide 64 pixel lines.

Cyclone III (1) 20 20 1,536 1 — — 357

Stratix III (2) 21 20 1,536 1 — — 717

Four 10-bit wide 1,280 pixel lines. This parameterization might be used for 10-bit HDTV 720 pixel line buffering.

Cyclone III (1) 33 32 51,200 7 — — 357

Stratix III (2) 36 32 51,200 7 — — 655

Notes to Table 1–13:

(1) Using EP3C10F256C6 devices.
(2) Using EP3SE50F780C2 devices.

Table 1–14. Clocked Video Input Performance (Part 1 of 2)

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory
fMAX

(MHz)ALUTs M9K Bits MLAB Bits

Converts DVI 1080p60 clocked video to Avalon-ST Video.

Cyclone III (1) 411 414 — 7 51,200 — 187

Stratix III (2) 264 414 — 7 51,200 — 245

Converts PAL clocked video to Avalon-ST Video.

Cyclone III (1) 417 417 — 3 22,528 — 183

Stratix III (2) 301 417 — 3 22,528 — 228

Converts SDI 1080i60 clocked video to Avalon-ST Video.

Cyclone III (1) 417 439 — 7 43,028 — 169

Stratix III (2) 319 458 10 6 43,028 40 226
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 1: About This MegaCore Function Suite 1–13
Performance and Resource Utilization
Clocked Video Output
Table 1–15 shows the performance figures for the Clocked Video Output.

Color Plane Sequencer
Table 1–16 shows the performance figures for the Color Plane Sequencer.

Converts SDI 1080p60 clocked video to Avalon-ST Video.

Cyclone III (1) 414 430 — 7 43,008 — 174

Stratix III (2) 292 458 10 6 43,008 40 226

Notes to Table 1–14:

(1) Using EP3C10F256C6 devices.
(2) Using EP3SE50F780C2 devices.

Table 1–14. Clocked Video Input Performance (Part 2 of 2)

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory
fMAX

(MHz)ALUTs M9K Bits MLAB Bits

Table 1–15. Clocked Video Output Performance

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory
fMAX

(MHz)ALUTs M9K Bits MLAB Bits

Converts Avalon-ST video to DVI 1080p60 clocked video.

Cyclone III (1) 261 221 — 7 51,200 — 191

Stratix III (2) 174 221 — 7 51,200 — 287

Converts Avalon-ST video to PAL clocked video.

Cyclone III (1) 279 207 — 3 22,528 — 212

Stratix III (2) 213 207 — 3 22,528 — 317

Converts Avalon-ST video to SDI 1080i60 clocked video.

Cyclone III (1) 294 216 — 6 43,008 — 199

Stratix III (2) 230 216 — 6 43,008 — 301

Converts Avalon-ST video to SDI 1080p60 clocked video.

Cyclone III (1) 295 216 — 6 43,008 — 200

Stratix III (2) 229 216 — 6 43,008 — 271

Notes to Table 1–15:

(1) Using EP3C10F256C6 devices.
(2) Using EP3SE50F780C2 devices.

Table 1–16. Color Plane Sequencer Performance (Part 1 of 2)

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory DSP Blocks
fMAX

(MHz)Bits M9K (9×9) (18×18)

Rearranging a channels in sequence 4:2:2 stream, from Cb,Y,Cr,Y to Y,Cb,Y,Cr. 8 bit data.

Cyclone III (1) 291 243 — — — — 261

Stratix III (2) 204 243 — — — — 436
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

1–14 Chapter 1: About This MegaCore Function Suite
Performance and Resource Utilization
Test Pattern Generator
Table 1–16 shows the performance figures for the Test Pattern Generator

Joining a single channel luminance stream and a channels in sequence horizontally half-subsampled chrominance stream
to a single 4:2:2 channels in sequence output stream. 8 bit data.

Cyclone III (1) 374 313 — — — — 261

Stratix III (2) 262 313 — — — — 391

Splitting a 4:2:2 stream from 2 channels in parallel to a single channel luminance output stream and a channels in sequence
horizontally half-subsampled chrominance output stream. 8 bit data.

Cyclone III (1) 451 335 — — — — 231

Stratix III (2) 305 336 — — — — 369

Rearranging 3 channels in sequence to 3 channels in parallel. 8 bit data.

Cyclone III (1) 242 249 — — — — 258

Stratix III (2) 186 253 — — — — 440

Notes to Table 1–16:

(1) Using EP3C10F256C6 devices.
(2) Using EP3SE50F780C2 devices.

Table 1–16. Color Plane Sequencer Performance (Part 2 of 2)

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory DSP Blocks
fMAX

(MHz)Bits M9K (9×9) (18×18)

Table 1–17. Test Pattern Generator Performance

Device Family
Combinational

LUTs/ALUTs
Logic

Registers

Memory DSP Blocks
fMAX

(MHz)Bits M9K (9×9) (18×18)

Producing a 400×x200, 8-bit 4:2:0 Y'Cb'Cr' stream with a parallel data interface.

Cyclone III (1) 164 112 192 2 — — 332

Stratix III (2) 158 113 192 2 — — 545

Producing a 640×480, 8-bit R'G'B' stream with a sequential data interface.

Cyclone III (1) 212 118 192 3 — — 287

Stratix III (2) 181 119 192 3 — — 485

Producing a 720×480, 10-bit 4:2:2 Y'Cb'Cr' interlaced stream with a sequential data interface.

Cyclone III (1) 258 138 240 3 — — 245

Stratix III (2) 233 138 240 3 — — 489

Producing a 1920×1080, 10-bit 4:2:2 Y'Cb'Cr' interlaced stream with a parallel data interface. The resolution of the pattern
can be changed using the run-time control interface.

Cyclone III (1) 365 208 304 4 — — 263

Stratix III (2) 248 208 304 4 — — 481

Notes to Table 1–17:

(1) Using EP3C10F256C6 devices.
(2) Using EP3SE50F780C2 devices.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 1: About This MegaCore Function Suite 1–15
Installation and Licensing
Installation and Licensing
The Video and Image Processing Suite MegaCore functions are included in the Altera
MegaCore IP Library, which is a part of the Altera Complete Design Suite. To install a
MegaCore function, install the MegaCore IP Library.

f For system requirements and installation instructions, refer to Quartus II Installation &
Licensing for Windows and Linux Workstations.

Figure 1–1 shows the directory structure for a typical Video and Image Processing
Suite MegaCore function where <path> is the installation directory for the Quartus® II
software.

The default installation directory on Windows is c:\altera\<version>; or on Linux is
/opt/altera<version>.

OpenCore Plus Evaluation
You can use Altera's free OpenCore Plus evaluation feature to evaluate the MegaCore
function in simulation and in hardware before you purchase a license. You can
perform the following actions:

■ Simulate the behavior of a megafunction (Altera MegaCore function or AMPPSM
megafunction) in your system.

■ Verify the functionality of your design, and quickly evaluate its size and speed.

■ Generate time-limited device programming files for designs that include
MegaCore functions.

■ Program a device and verify your design in hardware.

You must purchase a license for the MegaCore function only when you are
completely satisfied with its functionality and performance, and want to take your
design to production.

Figure 1–1. Directory Structure

doc
Contains the documentation for the MegaCore function.

lib
Contains encrypted lower-level design files.

ip
Contains the Altera MegaCore IP Library and third-party IP cores.

<path>
Installation directory.

altera
Contains the Altera MegaCore IP Library.

common
Contains shared components.
CSC
Contains the Color Space Converter MegaCore function files and documentation.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

1–16 Chapter 1: About This MegaCore Function Suite
Installation and Licensing
After you purchase a license, you can request a license file from the Altera website at
www.altera.com/licensing and install it on your computer. When you request a
license file, Altera emails you a license.dat file. If you do not have Internet access,
contact your local Altera representative

f For more information on OpenCore Plus hardware evaluation using MegaCore
functions, refer to AN 320: OpenCore Plus Evaluation of Megafunctions.

OpenCore Plus Time-Out Behavior
OpenCore Plus hardware evaluation supports the following modes of operation:

■ Untethered—the design runs for a limited time.

■ Tethered—requires a connection between your board and the host computer. If
tethered mode is supported by all megafunctions in a design, the device can
operate for a longer time or indefinitely.

All megafunctions in a device time out simultaneously when the most restrictive
evaluation time is reached. If there is more than one megafunction in a design, a
specific megafunction’s time-out behavior might be masked by the time-out behavior
of the other megafunctions.

The untethered time-out for all Video and Image Processing Suite MegaCore
functions is one hour; the tethered time-out value is indefinite. The reset signal is
forced high when the hardware evaluation time expires. This keeps the Video and
Image Processing MegaCore function permanently in its reset state.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/licensing

© March 2009 Altera Corporation
2. Getting Started
Design Flows
The Video and Image Processing Suite MegaCore functions support the following
design flows:

■ SOPC Builder: Use this flow if you want to create an SOPC Builder system that
includes a Video and Image Processing Suite MegaCore function variation. The
SOPC Builder flow supports a wide range of connectable components including
direct memory access (DMA) controllers, on-chip memories, Nios® II processor
and other components with Avalon Memory-Mapped (Avalon-MM) or Avalon
Streaming (Avalon-ST) interfaces.

■ MegaWizard™ Plug-In Manager: Use this flow if you want to create a Video and
Image Processing Suite MegaCore function variation that you can instantiate
manually in your design.

This chapter describes how you can use a Video and Image Processing Suite
MegaCore function in each of these flows. The parameterization available for each
MegaCore function is similar and is described in “Parameter Settings” on page 3–1.

1 The Line Buffer Compiler MegaCore function is available only in the MegaWizard
Plug-In Manager flow.

After parameterizing and simulating a design in either of these flows, you can
compile and program the completed design in the Quartus II software.

SOPC Builder Flow
SOPC Builder is a Quartus II software tool that enables you to rapidly and easily build
systems and evaluate embedded systems. The SOPC Builder flow allows you to add a
Video and Image Processing Suite MegaCore function directly to a new or existing
SOPC Builder system. You can add components to create an SOPC Builder system
with other components such as a Nios II processor and external memory controller.
SOPC Builder automatically creates the system interconnect logic and system
simulation environment.

The following steps describe how you can use Video and Image Processing Suite
MegaCore functions in the SOPC Builder flow:

1. Create a new Quartus II project using the New Project Wizard available from the
File menu.

2. Launch SOPC Builder from the Tools menu.

3. For a new system, specify the system name and language.

4. Add and parameterize any required memory and processor modules to your
system from the System Contents tab.

5. Add the required Video and Image Processing Suite MegaCore function to your
system from the Video and Image Processing section in the System Contents tab.
Video and Image Processing Suite User Guide

2–2 Chapter 2: Getting Started
MegaWizard Plug-in Manager Flow
Figure 2–1 shows the SOPC Builder System Contents tab.

1. Use the MegaWizard interface to specify the required parameters for the
MegaCore function variation. For information about the parameters available for
each MegaCore function, refer to Chapter 3, Parameter Settings.

2. Click Finish in the MegaWizard interface to complete the parameterization and
add it to the system.

3. Connect the components using the SOPC Builder patch panel.

4. If you intend to simulate your SOPC builder system, select Simulation on the
System Generation tab and click Generate to generate a functional simulation
model for the system.

For information about the generated files, refer to “Generated Files” on page 2–6.

f For more information about the SOPC Builder flow, refer to volume 4 of the Quartus II
Handbook.

MegaWizard Plug-in Manager Flow
The MegaWizard Plug-in Manager flow allows you to customize a Video and Image
Processing Suite MegaCore function, and manually integrate the MegaCore function
variation in a Quartus II design.

Figure 2–1. Video and Image Processing Components in SOPC Builder
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/quartus2/lit-qts-sopc.jsp
http://www.altera.com/literature/quartus2/lit-qts-sopc.jsp

Chapter 2: Getting Started 2–3
MegaWizard Plug-in Manager Flow
The following steps describe how you can use Video and Image Processing Suite
MegaCore functions in the MegaWizard Plug-in Manager flow:

1. Create a new project using the New Project Wizard available from the File menu
in the Quartus II software.

2. Launch MegaWizard Plug-in Manager from the Tools menu, and select the option
to create a new custom megafunction variation.

3. Click Next and select the required MegaCore function from the DSP Video and
Image Processing section in the Installed Plug-Ins tab (Figure 2–2).

4. Verify that the device family is the same as you specified in the New Project
Wizard.

5. Select the top-level output file type for your design; the wizard supports VHDL
and Verilog HDL.

6. Specify the top level output file name for your MegaCore function variation and
click Next to display the MegaWizard interface Parameter Settings page. Use the
MegaWizard interface to specify the required parameters for the MegaCore
function variation. For information about the parameters available for each
MegaCore function, refer to Chapter 3, Parameter Settings.

Figure 2–2. Selecting the MegaCore Function
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

2–4 Chapter 2: Getting Started
MegaWizard Plug-in Manager Flow
7. Click Next to complete the parameterization and display the EDA page. For
example, Figure 2–3 shows the EDA page for the Chroma Resampler.

8. On the EDA page, turn on Generate Simulation Model.

1 An IP functional simulation model is a cycle-accurate VHDL or Verilog
HDL model produced by the Quartus II software.

c Use the simulation models only for simulation and not for synthesis or any
other purposes. Using these models for synthesis creates a non-functional
design.

9. Some third-party synthesis tools can use a netlist that contains only the structure
of the MegaCore function, but not detailed logic, to optimize performance of the
design that contains the MegaCore function. If your synthesis tool supports this
feature, turn on Generate netlist.

Figure 2–3. EDA Page for the Chroma Resampler
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 2: Getting Started 2–5
MegaWizard Plug-in Manager Flow
10. Click Next to display the Summary page. For example, Figure 2–4 shows the
Summary page for the Chroma Resampler.

11. On the Summary tab, turn on the check boxes for the files you want to generate. A
grey checkmark indicates a file that is automatically generated. All other files are
optional.

12. Click Finish to generate the MegaCore function and supporting files. The
generation phase may take several minutes to complete. The generation progress
and status displays in a report window.

13. Click Exit to close the progress report window. Then click Yes on the Quartus II IP
Files prompt to add the Quartus II IP file (.qip) file describing your custom
MegaCore function variation to the current Quartus II project. For information
about the .qip file, refer to Table 2–1 on page 2–6.

f For more information about the MegaWizard Plug-In Manager flow, refer to the
Quartus II Help.

Figure 2–4. Summary Page for the Chroma Resampler
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

2–6 Chapter 2: Getting Started
Generated Files
Generated Files
Table 2–1 describes the generated files and other files that may be in your project
directory.

The names and types of files vary depending on the variation name and HDL type
you specify during parameterization For example, a different set of files are created
based on whether you create your design in Verilog HDL or VHDL.

For a full description of the signals supported on external ports for your MegaCore
function variation, refer to “Signals” on page A–26.

Simulating the Design
You can simulate your design using the MegaWizard-generated VHDL or Verilog
HDL IP functional simulation models (.vo or .vho generated files). Compile the file in
your simulation environment and perform functional simulation of your custom
MegaCore function variation.

f For more information on IP functional simulation models, refer to the Simulating
Altera IP in Third-Party Simulation Tools chapter in volume 3 of the Quartus II Handbook.

Compiling the Design and Programming a Device
You can use the Quartus II software to compile your design, program a device, and
verify your design in hardware.

Table 2–1. Generated Files (Note 1)

File Name Description

<variation name>.bsf Quartus II block symbol file for the MegaCore function variation. You can use this file in the
Quartus II block diagram editor.

<variation name>.cmp A VHDL component declaration file for the MegaCore function variation. Add the contents
of this file to any VHDL architecture that instantiates the MegaCore function.

<variation name>.qip A single Quartus IP file is generated that contains all of the assignments and other
information required to process your MegaCore function variation in the Quartus II
compiler. In the SOPC Builder flow, this file is automatically included in your project. In the
Megawizard plug-in Manager flow, you are prompted to add the .qip file to the current
Quartus II project when you exit from the wizard. In SOPC Builder, a .qip file is generated
for each MegaCore function and SOPC Builder component. Each of these .qip files are
referenced by the system level .qip file and together include all the information required to
process the system.

<variation name>.vhd, or .v A VHDL or Verilog HDL file that defines the top-level description of the custom MegaCore
function variation. Instantiate the entity defined by this file inside your design. Include this
file when compiling your design in the Quartus II software.

<variation name>.vho or .vo VHDL or Verilog HDL output files that defines an IP functional simulation model.

<variation name>_bb.v A Verilog HDL black box file for the MegaCore function variation. Use this file when using a
third-party EDA tool to synthesize your design.

<variation name>_syn.v A timing and resource estimation netlist for use in some third-party synthesis tools.

Note to Table 2–1:

(1) The <variation name> prefix is added automatically using the base output file name you specified in the MegaWizard interface.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53014.pdf
http://www.altera.com/literature/hb/qts/qts_qii53014.pdf

Chapter 2: Getting Started 2–7
Compiling the Design and Programming a Device
f For instructions on compiling and programming your design, and more information
about the MegaWizard Plug-In Manager flow, refer to the Quartus II Help.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

2–8 Chapter 2: Getting Started
Compiling the Design and Programming a Device
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

© March 2009 Altera Corporation
3. Parameter Settings
This chapter gives examples of how to parameterize a Video and Image Processing
Suite MegaCore function.

The Parameter Settings page provides the same options whether the MegaWizard
interface has been opened from the SOPC Builder flow or the MegaWizard Plug-In
Manager flow.

1 The EDA and Summary tabs are not visible when you are using the SOPC Builder
flow.

For information about opening the MegaWizard interface, refer to the “Design Flows”
section in Chapter 2, Getting Started.

The parameters available depend on the MegaCore function you have selected. Some
MegaCore functions provide multiple parameter setting pages.

1 The MegaWizard interface allows you to only select legal combinations of parameters,
and warns you of any invalid configurations.

Color Space Converter
A typical application for a Color Space Converter is to convert Y'CbCr standard
definition television images to R'G'B' for display on a computer monitor.

To parameterize the MegaCore function for this conversion, perform the following
steps:

1. Set the parameters listed in Table 3–1 in the General tab of the Parameter Settings
page (Figure 3–1 on page 3–2).

For more information about the options on the General tab of the Color Space
Converter Parameter Settings page, refer to Table A–1 on page A–1.

Table 3–1. Parameters for the Color Space Converter, General Tab

Parameter Value

Color Plane Configuration Three color planes in sequence.

Input Data Type 8 bits per pixel per color plane, unsigned data type, guard bands on with Max = 240 and
Min = 16. (Note 1)

Output Data Type 8 bits per pixel per color plane, unsigned data type, guard bands off. (Note 2)

Result to output Data Type
Conversion procedure

Leave these options with their default values until after you have set the parameters in the
Operands tab.

Notes to Table 3–1:

(1) These values mean that the MegaCore function never receives data in the guard bands, in this case between 241 to 255 and from 0 to 15.
(2) The output guard bands option is off because the full output range of 0 to 255 is required.
Video and Image Processing Suite User Guide

3–2 Chapter 3: Parameter Settings
Color Space Converter
2. Click Next to display the Operands tab of the Parameter Settings page (Figure 3–2
on page 3–3) and set the parameters listed in Table 3–2.

For more information about the options on the Operands tab of the Color Space
Converter Parameter Settings page, refer to Table A–2 on page A–2.

Figure 3–1. General Parameter Settings for the Color Space Converter

Table 3–2. Parameters for the Color Space Converter, Operands Tab

Parameter Value

Run-time controlled Off

Color Model Conversion CbCrY’: SDTV to Computer B'G'R' (Note 1)

Coefficients Signed, integer bits = 2 (Note 2)

Summands Signed, integer bits = 9 (Note 2)

Coefficient and summand fraction bits 7 (Note 2)

Notes to Table 3–2:

(1) Notice that the coefficient values are updated to preset values. If you edit these values, the color model conversion option changes to Custom.
(2) Notice how the actual coefficients and summands change. Signed coefficients allow negative values; increasing the integer bits increases the

magnitude range; and increasing the fraction bits increases the precision.
(3) You may need to increase the number of bits available to avoid small numbers rounding to zero.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 3: Parameter Settings 3–3
Color Space Converter
3. Click Back to re-display the General tab of the Parameter Settings page.

Notice that after changing the coefficients, the ranges shown under Result to
Output Data Type Conversion Procedure have been updated.

4. Change the precision parameters on the General tab as listed in Table 3–3.

Notice that the scaled integer results no longer have a fractional part, the scaled,
integer, sign handled results no longer include negative values but the result range
is greater than the output data type range. The results must be constrained to this
range. This is achieved by saturating to the minimum and maximum values of the
output data range and is performed automatically.

Figure 3–2. Coefficients Parameter Settings for the Color Space Converter

Table 3–3. Updated Parameters for the Color Space Converter, General Tab

Parameter Value

Move binary point right 0

Remove fraction bits by Round values - Half up

Convert from signed to unsigned by Saturating to minimum value at stage 4
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

3–4 Chapter 3: Parameter Settings
Chroma Resampler
Figure 3–3 shows the updated Result to Output Data Type Conversion section of
the General tab in the Parameter Settings page.

1 If a set of custom coefficients is required, you can type the values into the white cells
in the tables on the Operands tab of the Parameter Settings page. Alternatively, you
can paste custom coefficients into the table from a spreadsheet (such as Microsoft
Excel). Blank lines must be left in your input data for the non-editable cells.

1 You can specify a higher precision output by increasing the output Bits per pixel per
color plane and increasing the number of places specified by Move binary point
right. Notice that the range of the results increases.

Chroma Resampler
To configure the Chroma Resampler to downsample a fully-sampled high-definition
video stream to 4:2:2, follow these steps:

1. Set the parameters listed in Table 3–4 in the Parameter Settings page (Figure 3–4
on page 3–5).

Figure 3–3. Updated General Parameter Settings for the Color Space Converter

Table 3–4. Parameters for the Chroma Resampler (Part 1 of 2)

Parameter Value

Image width 1,920

Image height 1,080

Bits per pixel per color plane 8

Color plane configuration Sequence
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 3: Parameter Settings 3–5
Chroma Resampler
For more information about the options on the Chroma Resampler Parameter
Settings page, refer to Table A–3 on page A–3.

Input Format (Note 1) 4:4:4

Output Format (Note 1) 4:2:2

Algorithm Filtered

Note to Table 3–4:

(1) The input and output formats must be different. A warning is issued when the same values are selected for both.

Figure 3–4. Parameter Settings for the Chroma Resampler

Table 3–4. Parameters for the Chroma Resampler (Part 2 of 2)

Parameter Value
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

3–6 Chapter 3: Parameter Settings
Gamma Corrector
Gamma Corrector
To configure your Gamma Corrector to correct a monochrome video stream of any
supported resolution, set the image data format listed in Table 3–5 in the Parameter
Settings page (Figure 3–5).

1 The actual gamma corrected intensity values are programmed at run time
using the Avalon-MM slave interface.

For more information about the options on the Gamma Corrector Parameter Settings
page, refer to Table A–4 on page A–3.

Table 3–5. Parameters for the Gamma Corrector

Parameter Value

Bits per pixel per color plane 8

Number of color planes 1

Color planes in sequence On

Figure 3–5. Parameter Settings for the Gamma Corrector
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 3: Parameter Settings 3–7
2D FIR Filter
2D FIR Filter
A typical application of the 2D FIR Filter is to apply sharpening to a standard
definition television picture converted to R’G’B’. To configure the 2D FIR to perform
this sharpening operation, follow these steps:

1. Set the parameters listed in Table 3–6 in the General tab of the Parameter Settings
page (Figure 3–6).

Table 3–6. Parameters for the General tab of the 2D FIR Filter Parameter Settings Page

Parameter Value

Maximum image width 720 (Note 1)

Number of color planes in sequence 3

Input Data Type 8 bits per pixel per color plane, unsigned, guard bands off (Note 2)

Output Data Type 8 bits per pixel per color plane, unsigned, guard bands off (Note 3)

Note to Table 3–6:

(1) 720 pixels is the width of PAL video, a common standard-definition television format.
(2) When the input data guard bands is off, the entire 8-bit input range is used for video data. That is, the minimum value is 0 and the maximum

value is 255.
(3) When the output data guard bands is off, the entire output range is allowed for video data.

Figure 3–6. General Parameter Settings for the 2D FIR Filter
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

3–8 Chapter 3: Parameter Settings
2D FIR Filter
For more information about the options on the General tab of the 2D FIR Filter
Parameter Settings page, refer to Table A–5 on page A–3.

2. Click Next to display the Coefficients tab of the Parameter Settings page
(Figure 3–7).

3. Set the parameters listed in Table 3–7.

Figure 3–7. Coefficients Parameter Settings for the 2D FIR Filter

Table 3–7. Parameters for the Coefficients tab of the 2D FIR Filter Parameter Settings Page

Parameter Value

Filter Size 3×3 (Note 1)

Run-time controlled Off

Coefficient set Simple Sharpening (Note 1)

Enable symmetric mode. On

Note to Table 3–6:

(1) Notice that the size of the coefficient grid changes to match the filter size when this option is changed.
(2) Notice that the values in the coefficient grid change when you select a different coefficient set. The kernel is represented by a grid matrix where

each coefficient is represented by two boxes. The white box contains the desired value, and the purple box shows the actual value for the
current coefficient precision

(3) Notice that when symmetric mode is turned on, a limited number of matrix cells are editable and many of the values are automatically inferred.
For example in Figure 3–7, values need only be edited in the three white cells. These values are automatically updated symmetrically in the
remaining cells to complete the 3×3 matrix. A corresponding optimization reduces the number of multiplications that must be performed in
the hardware.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 3: Parameter Settings 3–9
2D FIR Filter
4. Select the existing coefficient set by dragging the cursor across the matrix and use
Ctrl+C to copy the entire matrix.

5. Change the selected coefficient set to Custom, select the top left cell and use
Ctrl+V to paste the copied values into the matrix.

6. Edit the desired coefficients so that the sharpening is less strong as follows:

a. Specify the central desired coefficient to be: 1.5

b. Specify the top left desired coefficient to be: -0.0625

c. Specify the top central desired coefficient to be: -0.0625

7. Set the Coefficient Precision parameters listed in Table 3–8.

Notice how the actual coefficients change. Turning Signed on, allows negative
values; increasing Integer bits, increases the magnitude range; and increasing
Fraction bits, increases the precision. The actual coefficients should now closely
match the desired coefficients. You may need to increase the number of bits
available to avoid small numbers rounding to zero.

For more information about the options on the Coefficients tab of the 2D FIR Filter
Parameter Settings page, refer to Table A–6 on page A–4.

8. Click Back to re-display the General tab of the Parameter Settings page.

Notice that after changing the coefficients, the ranges shown under Result to
Output Data Type Conversion Procedure have changed.

9. Change the precision parameters on the General tab as listed in Table 3–9.

Figure 3–8 on page 3–10 shows the updated Result to Output Data Type
Conversion Procedure section of the General tab.

Table 3–8. Parameters for Coefficient Precision in the 2D FIR Filter General Tab

Parameter Value

Signed On

Integer bits 1

Fraction Bits 4

Table 3–9. Updated Parameters for the 2D FIR Filter General Tab

Parameter Value

Move binary point right 1

Remove fraction bits by Round values - Half up

Convert from signed to unsigned by Saturating to minimum value at stage 4
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

3–10 Chapter 3: Parameter Settings
2D Median Filter
Notice that the scaled integer results no longer have a fractional part. Notice that
the scaled, integer, sign handled results no longer include negative values but the
result range is greater than the output data type range. The results are constrained
to this range by saturating to the minimum and maximum values of the output
data range (or output guard bands, when specified).

1 You can specify a higher precision output by increasing the output Bits per pixel per
color plane and increasing the number of places specified by Move binary point
right. Notice that the range of the results increases. The result now has no fraction bits
causing the Remove fraction bits control to be disabled.

2D Median Filter
To configure your 2D Median Filter for 5×5 filtering of an example high resolution
monochrome image format, set the parameters listed in Table 3–10 in the Parameter
Settings page (Figure 3–9 on page 3–11).

For more information about the options on the 2D Median Filter Parameter Settings
page, refer to Table A–7 on page A–5.

Figure 3–8. Updated General Parameter Settings for the 2D FIR Filter

Table 3–10. Parameters for the 2D Median Filter

Parameter Value

Image width 1,024

Image height 768

Bits per pixel per color plane 12

Number of color planes in sequence 1

Filter size 5×5
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 3: Parameter Settings 3–11
Alpha Blending Mixer
Alpha Blending Mixer
A typical application of the Alpha Blending Mixer is to layer an on-screen display and
a picture-in-picture window over the top of a standard definition television picture.

To configure your Alpha Blending Mixer to perform this function, use the Parameter
Settings page (Figure 3–10 on page 3–12) to specify the parameters listed in
Table 3–11.

Figure 3–9. Parameter Settings for the 2D Median Filter

Table 3–11. Parameters for the Alpha Blending Mixer

Parameter Value

Maximum layer width 720 (Note 1)

Maximum layer height 576 (Note 1)

Bits per pixel per color plane 8

Number of color planes in sequence 3

Number of color planes in parallel 3

Number of layers being mixed 3

Alpha blending On

Alpha bits per pixel 4 (Note 2)

Note to Table 3–11:

(1) This maximum layer width and height is the resolution of PAL video (a common standard television format). The
resolutions used for each layer are specified at run time using the Avalon-MM interface.

(2) Notice that Alpha bits per pixel is available when you turn Alpha blending on. Setting this option to 4 allows the
on-screen display to render semi-transparent graphics over the main display and the picture-in-picture window.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

3–12 Chapter 3: Parameter Settings
Scaler
For more information about the options on the Alpha Blending Mixer Parameter
Settings page, refer to Table A–8 on page A–5.

Scaler
The Scaler MegaCore function resizes video streams and applies arbitrary coefficients.
For example, to resize a video stream of resolution 640×480 to 1024×768 while at the
same time applying a brightening effect, follow these steps:

1. Set the parameters listed in Table 3–12 in the Resolution tab of the Parameter
Settings page (Figure 3–11 on page 3–13).

Figure 3–10. Parameter Settings for the Alpha Blending Mixer

Table 3–12. Parameters for the Scaler Resolution Tab (Part 1 of 2)

Parameter Value

Run-time control of image size Off

Input image width 640

Input image height 480

Output image width 1,024

Output image height 768

Bits per pixel per color plane 8
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 3: Parameter Settings 3–13
Scaler
For more information about the options on the Resolution tab of the Scaler
Parameter Settings page, refer to Table A–9 on page A–6.

2. Click Next to display the Algorithm and Precision tab of the Parameter Settings
page (Figure 3–12 on page 3–14).

Number of color planes 3

Color plane transmission format Sequence

Figure 3–11. Resolution Parameter Settings for the Scaler

Table 3–12. Parameters for the Scaler Resolution Tab (Part 2 of 2)

Parameter Value
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

3–14 Chapter 3: Parameter Settings
Scaler
3. Review the settings in the Algorithm and Precision page.

The scaling algorithm should default to Polyphase. Leave all parameters on this
page at their default values for this example.

Notice that with signed coefficients, one integer bit, and seven fraction bits, the
total word length of each coefficient is nine bits and that nine bits are preserved
between vertical and horizontal filtering. This means that with four vertical and
four horizontal taps, the scaler uses a total of eight 9×9 DSP blocks.

For more information about the options on the Algorithm and Precision tab of the
Scaler Parameter Settings page, refer to Table A–10 on page A–6.

4. Click Next to display the Coefficients tab of the Parameter Settings page
(Figure 3–13).

Figure 3–12. Algorithm and Precision Parameter Settings for the Scaler
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 3: Parameter Settings 3–15
Scaler
5. Set the parameters listed in Table 3–13.

Figure 3–13. Coefficients Parameter Settings for the Scaler

Table 3–13. Parameters for the Scaler Coefficients Tab

Parameter Value

Load coefficient data at runtime Off

Share horizontal / vertical coefficients On (Note 1)

Note to Table 3–13:

(1) When this option is on, the coefficients are the same for vertical and horizontal data.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

3–16 Chapter 3: Parameter Settings
Scaler
6. Click Preview coefficients under Horizontal Coefficient Data on the Coefficients
page to view the quantized Lanczos 2 coefficients (Figure 3–14).

7. Use Shift+click and Ctrl+c to select all the Lanczos 2 coefficients and copy them to
the clipboard.

8. Paste the coefficients into a suitable program such as Microsoft Excel or the
MATLAB Array Editor and edit the data as follows:

a. Delete the first column. This column indicates the phase and is not part of the
required data.

b. Multiply the remaining coefficient data by 1.1, convert it to integer type, and
then export the data values to a comma-separated value (.csv) file.

The 1.1 scaling factor increases the brightness of the resized image.

1 Each row of coefficients must sum to the same value. Refer to “Choosing
and Loading Coefficients” on page 5–17.

9. Select a Custom Filter function, click Browse, and select the .csv file that you
created in step 8.

1 These custom coefficient are applied to both the vertical and horizontal data
because you selected Share horizontal / vertical coefficients in step 5.

10. Click Preview coefficients to confirm that the data has been read correctly
(Figure 3–15 on page 3–17).

Figure 3–14. Scaler Default Lanczos 2 Coefficients
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 3: Parameter Settings 3–17
Clipper
For more information about the options on the Coefficients tab of the Scaler
Parameter Settings page, refer to Table A–11 on page A–7.

Clipper
The Clipper MegaCore function can be parameterized to crop the upper-left 640×480
pixels of a 1024×768 video stream. If the resolution changes (to a value in the range
640×480 to 1024×768), the Clipper can adapt to the change and keep sending the same
cropped rectangle without any further reconfiguration. To set up such a Clipper,
follow these steps:

1. Set the parameters listed in Table 3–14 the Parameter Settings page (Figure 3–16
on page 3–18).

Figure 3–15. Scaler Custom Coefficients

Table 3–14. Parameters for the Clipper

Parameter Value

Maximum width 1,024

Maximum height 768

Bits per pixel per color plane 8

Number of color planes in sequence 3

Number of color planes in parallel 1

Include Avalon-MM interface: Off Off

Clipping method Rectangle

Left Offset 0

Width 640

Top Offset 0

Height 480
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

3–18 Chapter 3: Parameter Settings
Deinterlacer
For more information about the options on the Clipper Parameter Settings page, refer
to Table A–12 on page A–8.

Deinterlacer
To configure your Deinterlacer function to convert NTSC video input to progressive
output at 30 frames per second using the weave deinterlacing algorithm, follow these
steps:

1. Set the parameters listed in Table 3–15 in the Parameter Settings page (Figure 3–17
on page 3–20).

:

Figure 3–16. Parameter Settings for the Clipper

Table 3–15. Parameters for the Deinterlacer (Part 1 of 2)

Parameter Value

Maximum image width 720

Maximum image height 486
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 3: Parameter Settings 3–19
Deinterlacer
The memory required at the specified hexadecimal base address is displayed
under the options for Avalon Memory-Mapped Interfaces. NTSC video transmits
60 interlaced fields per second, and therefore 30 frames per second. Selecting the
output frame rate to be the same as the input frame rate ensures that the output
will be at 30 frames per second.

The weave and motion-adaptive algorithms work by stitching/blending together
lines from two fields, a current field and the field preceding the current field. An
output frame rate of F1 synchronized means that each current field is an F1 field.
The weave algorithm stitches together F1 fields with the F0 fields that precede
rather than follow them. Similarly, the motion-adaptive algorithm uses the F0
fields that precede the current F1 field to build an output frame.

1 A F0 field contains the top line, any other field is a F1 field.

Bits per pixel per color plane 8

Number of color planes in sequence 2

Number of color planes in parallel 1

Default initial field F0

Deinterlacing method: Weave (Note 1)

Frame buffering mode Double buffering (Note 1), (Note 3), (Note 4), (Note 5)

Output frame rate As input frame rate (F1 synchronized)

Passthrough mode (propagate progressive frames unchanged) Off

Motion bleed Off (Note 2)

Runtime control of the motion-adaptive blending Off (Note 2), (Note 6)

Runtime control for locked frame rate conversion Off (Note 4), (Note 6)

Use separate clocks for the Avalon-MM master interfaces Off

Avalon-MM master ports width 128 (Note 3)

Read-only master(s) interface FIFO depth 64

Read-only master(s) interface burst target 32

Write-only master(s) interface FIFO depth 64

Write-only master(s) interface burst target 32

Base address of frame buffers 0x00001000 (Note 3)

Number of packets buffered per field 1 (Note 5)

Maximum packet length 10 (Note 5)

Notes to Table 3–15:

(1) Either double or triple-buffering mode must be selected before you can select the weave or motion-adaptive deinterlacing methods.
(2) These options are available only when you select Motion Adaptive as the deinterlacing method.
(3) The options to specify the Avalon-MM master ports width and the base address for the frame buffers are available only when you select double

or triple-buffering.
(4) The option to synchronize input and output frame rates is only available when double-buffering mode is selected.
(5) The options to control the buffering of non-image data packets are available when you select double or triple-buffering.
(6) You cannot enable both run-time control interfaces at the same time.

Table 3–15. Parameters for the Deinterlacer (Part 2 of 2)

Parameter Value
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

3–20 Chapter 3: Parameter Settings
Frame Buffer
For more information about the options on the Deinterlacer Parameter Settings page.,
refer to Table A–13 on page A–9.

Frame Buffer
To parameterize your Frame Buffer function to allow for triple-buffering of a 480×720
R’G’B’ video stream transmitted in parallel:

1. Set the parameters listed in Table 3–16 in the Parameter Settings page (Figure 3–18
on page 3–21).

Figure 3–17. Parameter Settings for the Deinterlacer

Table 3–16. Parameters for the Frame Buffer (Part 1 of 2)

Parameter Value

Maximum image width 480

Maximum image height 270

Bits per pixel per color plane 8

Number of color planes in sequence 1
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 3: Parameter Settings 3–21
Frame Buffer
Number of color planes in parallel 3

Frame dropping: On On

Frame repetition On

Runtime control for the writer thread Off

Runtime control for the reader thread Off

Use separate clocks for the Avalon-MM master interfaces Off

External memory port width 256

Write-only master interface FIFO depth 64

Write-only master interface burst target 32

Read-only master interface FIFO depth 64

Read-only master interface burst target 32

Base address of frame buffers 0x10000000

Number of packets buffered per frame 1

Maximum packet length 10

Table 3–16. Parameters for the Frame Buffer (Part 2 of 2)

Parameter Value

Figure 3–18. Parameter Settings for the Frame Buffer
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

3–22 Chapter 3: Parameter Settings
Line Buffer Compiler
The number of frame buffers required and the size in kilobytes is displayed under
the options for Avalon Memory-Mapped Interfaces.

For more information about the options on the Frame Buffer Parameter Settings page,
refer to Table A–14 on page A–10.

Line Buffer Compiler
To parameterize your Line Buffer Compiler function for a set of four line buffers each
capable of holding 320 24-bit words, specify the parameters listed in Table 3–17 in the
Parameter Settings page (Figure 3–19).

1 The Line Buffer Compiler is not available in the SOPC Builder design flow.

For more information about the options on the Line Buffer Compiler Parameter
Settings page, refer to Table A–15 on page A–11.

Table 3–17. Parameters for the Line Buffer Compiler

Parameter Value

Line length 320

Line width 24

Number of lines 4

Figure 3–19. Parameter Settings for the Line Buffer Compiler
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 3: Parameter Settings 3–23
Clocked Video Input
Clocked Video Input
To parameterize your Clocked Video Input function for converting a high definition
(HD) 1080i60 video stream (such as BT656 video from a serial digital interface,
perform the following steps:

1. Select SDI 1080i60 from the list of preset conversions in the Parameter Settings
page (Figure 3–20) and click Load values into controls to initialize the other
parameters in the MegaWizard interface.

2. Set the additional parameters listed in Table 3–18 in the Parameter Settings page.

Figure 3–20. Parameter Settings for the Clocked Video Input

Table 3–18. Parameters for the Clocked Video Input (Part 1 of 2)

Parameter Value

Bits per pixel per color plane 10

Number of color planes 2

Color plane transmission format Parallel

Field order Field 0 first
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

3–24 Chapter 3: Parameter Settings
Clocked Video Output
For more information about the options on the Clocked Video Input Parameter
Settings page, refer to Table A–16 on page A–12.

Clocked Video Output
To parameterize your Clocked Video Output function for creating a DVI 1080p video
stream:

1. Select DVI 1080p60 from the list of preset conversions in the Parameter Settings
page (Figure 3–21 on page 3–25) and click Load values into controls to initialize
the other parameters in the MegaWizard interface.

2. Set the additional parameters listed in Table 3–19 in the Parameter Settings page.

Avalon-ST Video Initial/Default Control Packet Interlaced

Image Width, Progressive/Field 0 1,920

Image Width, Field 1 1,920

Image Height, Progressive/Field 0 540

Image Height, Field 1 540

Sync Signals Embedded in video

Allow color planes in sequence input: Off Off

Pixel FIFO size 1,920

Video in and out use the same clock Off

Use control port Off

Table 3–18. Parameters for the Clocked Video Input (Part 2 of 2)

Parameter Value

Table 3–19. Parameters for the Clocked Video Output (Part 1 of 2)

Parameter Value

Image width / Active pixels: 1,920 1,920

Image height / Active lines 1,080

Bits per pixel per color plane 8

Number of color planes: 3 3

Color plane transmission format Parallel

Allow output of color planes in sequence Off

Interlaced video: Off Off

Sync Signals On separate wires

Active picture line 0

Horizontal sync 60

Horizontal front porch 20

Horizontal back porch 192

Vertical sync 5

Vertical front porch 4

Vertical back porch 36

Pixel FIFO size 1,920
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 3: Parameter Settings 3–25
Clocked Video Output
For more information about the options on the Clocked Video Output Parameter
Settings page, refer to Table A–17 on page A–13.

FIFO Level at which to start output 0

Video in and out use the same clock Off

Use control port Off (Note 1)

Runtime configurable video modes 1 (Note 1)

Note to Table 3–19:

(1) The option to specify the number of run-time configurable video modes is available only when Use Control Port
is on.

Table 3–19. Parameters for the Clocked Video Output (Part 2 of 2)

Parameter Value

Figure 3–21. Parameter Settings for the Clocked Video Output
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

3–26 Chapter 3: Parameter Settings
Color Plane Sequencer
Color Plane Sequencer
This section includes two examples for parameterizing the Color Plane Sequencer
MegaCore function.

The first example uses a Color Plane Sequencer to combine two Avalon-ST Video
streams (an R’G’B’ color pattern as three color planes in sequence and another pattern
X’Y’Z’ as three color planes in parallel) as a single stream. The Z’ and B’ color planes
are discarded and non-video packets are accepted from either input port.

For this example, set the parameters listed in Table 3–20 in the Parameter Settings
page (Figure 3–22).

Figure 3–22. Parameter Settings for the Color Plane Sequencer (Combining Streams Example)

Table 3–20. Parameters for the Color Plane Sequencer (Combining Streams Example) (Part 1 of 2)

Parameter Value

Bits per pixel per color plane 8

Two pixels per port Off

din0 Color planes in parallel 1

Color planes in sequence 3
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 3: Parameter Settings 3–27
Color Plane Sequencer
The second example uses a Color Plane Sequencer to split an Avalon-ST video
containing 4:2:2 subsampled data (Y’CbCr) into separate luminance (Y’) and
chrominance (Cb,Cr) streams (Figure 3–23 on page 3–28).

For this example, set the parameters listed in Table 3–21 in the Parameter Settings
page.

Bits (7–0), Symbol (t+0) R

Bits (7–0), Symbol (t+1) G

Bits (7–0), Symbol (t+2) B

din1 Port enabled On

Color planes in parallel 3

Color planes in sequence 1

Bits (23–16), Symbol (t+0) X

Bits (15–8), Symbol (t+0) Y

Bits (7–0), Symbol (t+0) Z

dout0 Source non-image packets from port din0 and din1

Halve control packet width Off

Color planes in parallel 2

Color planes in sequence 2

Bits (15–8), Symbol (t+0) R

Bits (15–8), Symbol (t+1) X

Bits (7–0), Symbol (t+0) Y

Bits (7–0), Symbol (t+1) G

dout1 Port enabled Off

Table 3–21. Parameters for the Color Plane Sequencer (Splitting Streams Example) (Part 1 of 2)

Parameter Value

Bits per pixel per color plane 8

Two pixels per port On (Note 1)

din0 Color planes in parallel 1

Color planes in sequence 4

Bits (7–0), Symbol (t+0) Cb

Bits (7–0), Symbol (t+1) Y

Bits (7–0), Symbol (t+2) Cr

Bits (7–0), Symbol (t+3) Y

din1 Port enabled Off

dout0 Source non-image packets from port din0

Halve control packet width On (Note 2)

Color planes in parallel 1

Color planes in sequence 2

Table 3–20. Parameters for the Color Plane Sequencer (Combining Streams Example) (Part 2 of 2)

Parameter Value
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

3–28 Chapter 3: Parameter Settings
Color Plane Sequencer
Bits (7–0), Symbol (t+0) Cb

Bits (7–0), Symbol (t+1) Cr

dout1 Port enabled On

Source non-image packets from port din0

Halve control packet width Off

Color planes in parallel 1

Color planes in sequence 2

Bits (7–0), Symbol (t+0) Y

Bits (7–0), Symbol (t+1) Y

Notes to Table 3–21:

(1) Two pixels per port needs to be On because two pixels worth of data is required to treat Cb and Cr separately.
Alternatively, you can turn this parameter Off and use channel names C, Y instead of Cb, Y, Cr, Y.

(2) Halve control packet width needs to be On because this stream contains two subsampled channels. For other
MegaCore functions to be able to treat these channels as two fully sampled channels in sequence, the control
packet width must be halved.

Table 3–21. Parameters for the Color Plane Sequencer (Splitting Streams Example) (Part 2 of 2)

Parameter Value

Figure 3–23. Parameter Settings for the Color Plane Sequencer (Splitting Streams Example)
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 3: Parameter Settings 3–29
Test Pattern Generator
For more information about the options on the Color Plane Sequencer Parameter
Settings page, refer to Table A–18 on page A–14.

Test Pattern Generator
The Test Pattern Generator MegaCore function generates a set of color bars for use as
a test pattern.

Figure 3–11 shows the MegaWizard interface for the Test Pattern Generator.

For example, to generate still video fields in a format emulating a NTSC video input,
set the parameters listed in Table 3–22 in the Parameter Settings page.

Figure 3–24. Resolution Parameter Settings for the Test Pattern Generator

Table 3–22. Parameters for the Test Pattern Generator

Parameter Value

Run-time control of image size Off

Maximum image width 720

Maximum image height 486
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

3–30 Chapter 3: Parameter Settings
Test Pattern Generator
For more information about the options on the Resolution tab of the Test Pattern
Generator Parameter Settings page, refer to Table A–19 on page A–15.

Bits per pixel per color plane 10

Color space YCbCr

Output format 4:2:2

Color plane configuration: Sequence

Interlacing Interlaced output (F0 synchronized) (Note 1)

Pattern Color bars

Uniform values Off (Note 2)

Note to Table 3–22:

(1) For this example, you can select either F0 synchronized, or F1 synchronized for the interlacing method.
(2) The options to specify uniform color values are only available when a Uniform pattern is selected.

Table 3–22. Parameters for the Test Pattern Generator

Parameter Value
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

© March 2009 Altera Corporation
4. Interfaces
Interface Types
The MegaCore® functions in the Video and Image Processing Suite use standard
interfaces for data input and output, control input, and random access to external
memory. These standard interfaces ensure that video systems can be quickly
assembled by connecting MegaCores functions together, and facilitate the use of
Altera system level design tools such as SOPC Builder.

The following types of interface are used:

■ Avalon Streaming (Avalon-ST) interfaces using the Avalon Streaming Video
protocol (Avalon-ST Video). The video protocol is used to transmit packets of
video data and packets of control information in and out of the Video and Image
Processing Suite MegaCore functions. This is the main method provided for
connecting the MegaCore functions together to form image processing datapaths.

■ Avalon Memory-Mapped (Avalon-MM) slave interfaces. These interfaces provide
a means to change the image processing function being performed at run time.

■ Avalon-MM master interfaces. These interfaces are used where the MegaCore
functions require external memory.

f Refer to the Avalon Interface Specifications for more information about these interface
types.

These three interface types cover all of the data input and output requirements for
eleven of the fourteen MegaCore functions in the Video and Image Processing Suite.
The exceptions are the Line Buffer Compiler, Clocked Video Input, and Clocked Video
Output MegaCore functions which use a lower level interface. For information about
the interfaces these MegaCore functions use, refer to the functional description of the
“Line Buffer Compiler” on page 5–28, “Clocked Video Input” on page 5–30, and
“Clocked Video Output” on page 5–35.

Avalon-ST Video Protocol
The Avalon-ST Video protocol is a packet-oriented way to send video and control data
over Avalon-ST connections. It defines two types of packets and allows for the
definition of further packet types by users and by Altera.

The first type of packet contains a frame of video data that has been serialized into a
stream of symbols. The second type of packet defines control information that applies
to the subsequent video packet. An Avalon-ST connection carries a mix of packet
types, and is required to match every video data packet with a preceding control
packet.

When unrecognized packet types are sent, Avalon-ST Video requires that these
packets are propagated unchanged and in the same order as they were received. This
allows extended packet types to be freely mixed with the two basic packets types
defined here.
Video and Image Processing Suite User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

4–2 Chapter 4: Interfaces
Avalon-ST Video Protocol
The Avalon-ST Video protocol uses a subset of the signals defined by the Avalon
Interface Specifications. Flow-controlled data transfers are made using the ready, valid,
and data signal types and the boundaries between packets are marked using the
startofpacket and endofpacket signal types.

The first value in each packet contains a 4-bit packet-type identifier. Table 4–1 lists the
packet types. This value arrives in parallel with the startofpacket signal going high.
Figure 4–2 on page 4–4 illustrates the transfer of a video data packet.

Video Data Packets
There are many types of video data, differing in for example, resolution, interlacing,
color spaces, and bit depths. There are also many ways to transmit the same video
data, but there is no best way because different applications place differing priorities
on factors such as cost, performance, and external memory bandwidth.

Avalon-ST Video data packets can be parameterized in a flexible way, allowing you to
select the most appropriate format for a given application. The format of a video data
packet is dictated by two sets of parameters. Each data packet contains either a field
or a frame of video, depending on how these parameters are set.

The first set of parameters are provided when a video system is being constructed and
cannot vary at run time. These static parameters define the shape of the Avalon-ST
interfaces. Table 4–2 lists the static parameters and gives some examples of how they
can be used.

Control packets provide the second set of parameters at run time (for MegaCore
functions that support run-time reconfiguration) or when constructing the system.
These dynamic parameters describe the format of the video frames traveling on the
stream.

Table 4–1. Avalon-ST Video Packet Types

Type Identifier Description

0 Video data

1–8 User packet types

9–14 Reserved for future Altera use

15 Control packet

Table 4–2. Examples of Static Avalon-ST Video Packet Parameters

Parameters

DescriptionBits per Color Sample Color Pattern

8 Three color planes, R’, G’, and B’ are transmitted in alternating sequence and each
R’, G’, or B’ sample is represented using 8 bits of data.

10 Three color planes are transmitted in parallel, leading to higher throughput than
when transmitted in sequence, usually at higher cost. Each R’, G’, or B’ sample is
represented using 10 bits of data, so that, in total, 30 bits of data are transmitted
in parallel.

10 4:2:2 video in the Y’CbCr color space, where there are twice as many Y’ samples
as Cb or Cr samples. One Y’ sample and one of either a Cb or a Cr sample is
transmitted in parallel. Each sample is represented using 10 bits of data. This is an
example of PAL television transmitted according to the BT.656 standard.

R G B

B

G

R

Cb Cr

Y Y
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 4: Interfaces 4–3
Avalon-ST Video Protocol
Table 4–3 lists the dynamic parameters and gives some examples of how they can be
used. When these parameters are sent in a control packet, they apply to the next video
data packet to arrive. When they are specified at compile-time, they apply to the first
video data packet received after a reset. The table headings Frame Width and Frame
Height are used for simplicity, but if the Interlacing flag is set such that the video is
interlaced, these values actually define the field width and field height.

Examples
Consider a video sequence comprising progressive frames of 640×480 pixels in full
R’G’B’ color. Each frame contains 480 lines, each of which contains 640 pixels. Each
pixel has three color values associated with it, red, green and blue. Let Rx,y Gx,y and
Bx,y be the red, green and blue components of the pixel at coordinates (x,y) with the
origin at the top left of the frame, 0 ≤ x < 640 and 0 ≤ y < 480.

Figure 4–1 shows part of the top left corner of a frame with color samples labelled in
this way. The three different color values for each pixel are shown as three
superimposed planes.

Table 4–3. Examples of Dynamic Avalon-ST Video Packet Parameters

Parameters

DescriptionFrame Width Frame Height Interlacing

640 480 Progressive 640×480 frames that are not interlaced.

1920 540 Field 0,
Synch1

The following data is an interlaced field that is 1920 pixels wide and contains
540 lines, that is its frames are 1920×1080. The first field to arrive is f0
(containing lines 0, 2, 4, ...). The field after that is f1 (containing lines 1, 3, 5,
...). Subsequent fields alternate between f0 and f1. The fields are synchronized
on f1, that is a frame is formed by deinterlacing an f0 field with the following
f1 field.

720 288 Field 1
Synch1

The following data is an interlaced field that is 720 pixels wide and 288 pixels
high, that is its frames are 720×576. The first field to arrive is f1, and the
deinterlacing is synchronized on f1. This means that a deinterlacer receiving
this stream must already have buffered the previous f0, or drop this f1 to be
able to deinterlace correctly.

Figure 4–1. Part of a R’G’B’ Frame

B1,0B0,0 B2,0 B3,0

B0,1 B1,1 B2,1

B0,2 B1,2 B2,2

B0,3

G1,0G0,0 G2,0

G0,1 G1,1

G0,2

R1,0R0,0 B1,0B0,0 B2,0 B3,0

B0,1 B1,1 B2,1

B0,2 B1,2 B2,2

B0,3

B1,0B0,0 B2,0 B3,0

B0,1 B1,1 B2,1

B0,2 B1,2 B2,2

B0,3

G1,0G0,0 G2,0

G0,1 G1,1

G0,2

G1,0G0,0 G2,0

G0,1 G1,1

G0,2

R1,0R0,0 R1,0R0,0
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

4–4 Chapter 4: Interfaces
Avalon-ST Video Protocol
The number of binary bits that represents each color sample varies between different
video systems. In the following examples, assume that the video data has eight bits
per pixel per color plane. This means that all of the Rx,y Gx,y and Bx,y values for all x
and y are eight bit values. The total number of bits used to represent each pixel is
therefore 24.

Avalon-ST Video can describe different ways to transfer the same video data using
different values of the color pattern parameter. For example, the R’G’B’ video data
described above could be transferred in parallel for maximum throughput or in an
alternating sequence for reduced cost.

Data Transfer in Parallel
Figure 4–2 shows a timing diagram illustrating how the first few pixels of a frame in
the video format from the preceding example might be processed by a MegaCore
function which handles R’G’B’ in parallel.

Figure 4–2. Timing Diagram Showing R’G’B’ Transferred in Parallel

clock

din_ready

din_startofpacket

din_valid

din_data

23:16

15:8

7:0

dout_ready

dout_valid

dout_endofpacket

dout_data

23:16

15:8

7:0

1. 2. 3. 4. 5. 6. 7.

B0,0

G0,0

R0,0

B1,0 B2,0

G2,0

R1,0 B2,0

G1,0

B0,0

G0,0

R0,0

Bx,y

Gx,y

Rx,y

n.

X

X

0

din_endofpacket

dout_startofpacket

X

X

0

Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 4: Interfaces 4–5
Avalon-ST Video Protocol
The example has one Avalon-ST port named din and one Avalon-ST port named
dout. Data flows into the MegaCore function through din, is processed and flows
out of the MegaCore function through dout.

There are five signals types (ready, valid, data, startofpacket, and endofpacket)
associated with each port. The din_ready signal is an output from the MegaCore
function and indicates when the input port is ready to receive data. The din_valid
and din_data signals are both inputs. The source connected to the input port sets
din_valid to logic '1' when din_data has useful information that should be
sampled. din_startofpacket is an input signal that is raised to indicate the start of
a packet, with din_endofpacket signaling the end of a packet.

The five output port signals have equivalent but opposite semantics.

The sequence of events shown in Figure 4–2 is:

1. Initially, din_ready is logic '0', indicating that the MegaCore function is not ready
to receive data. Many of the Video and Image Processing Suite MegaCore
functions are not ready for a few clock cycles in between rows of image data or in
between video frames. For further details of each MegaCore function, refer to the
“Functional Descriptions” on page 5–1.

2. The MegaCore function sets din_ready to logic '1', indicating that the input port
is ready to receive data one clock cycle later. The number of clock cycles of delay
which should be applied to a ready signal is referred to as ready latency in the
Avalon Interface Specifications. All of the Avalon-ST interfaces used by the Video
and Image Processing Suite have a ready latency of one clock cycle.

3. The source feeding the input port sets din_valid to logic '1' indicating that it is
sending data on the data port and sets din_startofpacket to logic '1'
indicating that the data is the first value of a new packet. The data itself is 0,
indicating that the packet is video data.

4. The source feeding the input port holds din_valid at logic '1' and drops
din_startofpacket indicating that it is now sending the body of the packet. It
puts all three color values of the top left pixel of the frame on to din_data.

5. No data is transmitted for a cycle even though din_ready was logic '1' during the
previous clock cycle and therefore the input port is still asserting that it is ready for
data. This could be because the source has no data to transfer. For example, if the
source is a FIFO, it could have become empty.

6. Data transmission resumes on the input port: din_valid transitions to logic '1'
and the second pixel is transferred on din_data. Simultaneously, the MegaCore
function begins transferring data on the output port. The example MegaCore
function has an internal latency of three clock cycles so the first output is
transferred three cycles after being received. This output is the type identifier for a
video packet being passed along the datapath. For guidelines about the latencies
of each Video and Image Processing MegaCore function, refer to the “Functional
Descriptions” on page 5–1.

7. The third pixel is input and the first processed pixel is output.

n. For the final sample of a frame, the source sets din_endofpacket to logic '1',
din_valid to '1', and puts the bottom-right pixel of the frame on to din_data.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

4–6 Chapter 4: Interfaces
Avalon-ST Video Protocol
In this example, both streams of pixel data have the Avalon-ST Video static
parameters shown in Table 4–4.

Data Transfer in Sequence
Figure 4–3 shows a timing diagram illustrating how a number of pixels from the
middle of a frame in the video format described on page 4–3 could be processed by
another MegaCore function, this time handling R'G'B' in sequence.

This example is similar to Figure 4–2 on page 4–4 except that it is configured to accept
R'G'B' data in sequence rather than parallel. The signals shown in the timing diagram
are therefore the same but with the exception that the two data ports are only 8 bits
wide.

The sequence of events shown in Figure 4–3 is:

1. Initially, din_ready is logic '1'. The source driving the input port sets din_valid
to logic '1' and puts the red color value Rm,n on the din_data port.

2. The source holds din_valid at logic '1' and the green color value Gm,n is input.

3. The corresponding blue color value Bm,n is input.

Table 4–4. Parameters for Example of Data Transferred in Parallel

Parameter Value

Bits per Color Sample 8

Color Pattern B

G

R

Figure 4–3. Timing Diagram Showing R’G’B’ Transferred in Sequence

Note to Figure 4–3:

(1) The startofpacket and endofpacket signals are not shown but are always low during the sequence shown in this figure.

clock

din_ready

din_valid

din_data 7:0 R0,0Rm,n RG0,0Gm,n B0,0Bm,n B1,0Bm+1,n

1. 2. 3. 4. 5. 6. 7.

dout_ready

dout_valid

dout_data 7:0 R

8. 9.

G1,0Gm+1,n

G0,0Gm,n B0,0Bm,n

m+1,n

m,n
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 4: Interfaces 4–7
Avalon-ST Video Protocol
4. The MegaCore function sets dout_valid to logic '1' and outputs the red color
value of the first processed color sample on the dout_data port. Simultaneously
the sink connected to the output port sets dout_ready to logic '0'. The Avalon
Interface Specifications state that sinks may set ready to logic '0' at any time, for
example because the sink is a FIFO and it has become full.

5. The MegaCore function sets dout_valid to logic '0' and stops putting data on the
dout_data port because the sink is not ready for data. The MegaCore function
also sets din_ready to logic '0' because there is no way to output data and the
MegaCore function must stop the source from sending more data before all
internal buffer space is used up. The sink holds din_valid at logic '1' and
transmits one more color sample Gm+1,n. This is legal because the ready latency of
the interface means that the change in the MegaCore function's readiness does not
take effect for one clock cycle.

6. Both the input and output interfaces transfer no data: the MegaCore function is
stalled waiting for the sink.

7. The sink sets dout_ready to logic '1'. This could be because space has been
cleared in a FIFO.

8. The MegaCore function sets dout_valid to logic '1' and resumes transmitting
data. Now that the flow of data is again unimpeded, it sets din_ready to logic '1'.

9. The source responds to din_ready by setting din_valid to logic '1' and
resuming data transfer.

In this example, both streams of pixel data have the Avalon-ST Video static
parameters shown in Table 4–5.

Control Data Packets
Embedding control data packets in a stream of video data allows a video processing
pipeline to reconfigure itself to new data as that data arrives. It simplifies or even
eliminates the synchronization logic required to monitor the progress of changes
through the datapath.

The basic Avalon-ST Video control packet contains a small but useful amount of
information that applies to many application areas. The definitions of packet types
listed in Table 4–1 on page 4–2 allow for other packet types to be created for targeting
specific applications. It is required that every video data packet is preceded by a
control data packet. To work with the smallest size of data port permitted by the
Video and Image Processing Suite, these parameters are transmitted in 4-bit words.
Four bits are used regardless of the size of video data being transmitted on a port so
no conversion is necessary when the bit width changes along a processing pipeline.

1 User packets can use the entire bit width of the interface. However, care must be taken
to handle truncation. For example, if a Color Space Converter changes from 10 bits to
8 bits, any 10-bit user packets are truncated.

Table 4–5. Parameters for Example of Data Transferred in Sequence

Parameter Value

Bits per Color Sample 8

Color Pattern R G B
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

4–8 Chapter 4: Interfaces
Avalon-ST Video Protocol
Table 4–3 on page 4–3 lists examples of the parameters that are set by Avalon-ST
Video control packets.

Each control packet contains the following 4-bit words in order:

type, width[15..12], width[11..8], width[7..4], width[3..0],
height[15, 12], height[11..8], height[7..4], height[3..0],
interlacing.

The type for a control packet is always 15. The width and height parameters are split
across four words, and transmitted as unsigned integers with the most-significant bits
first. The interlacing field is coded to indicate progressive data or which field is being
sent and how fields should be used to reconstruct frames.

The most significant two bits of the interlacing word describe whether the data is
either progressive, interlaced f0 (contains lines 0, 2, 4, ...), or interlaced f1 (contains
lines 1, 3, 5, ...). 00 means progressive, 10 means interlaced f0, and 11 means interlaced
f1.

The second two bits describe the synchronization of interlaced data. Synchronizing on
f0 means that a frame should be constructed by deinterlacing an f1 followed by an f0.
Similarly, synchronizing on f1 means that deinterlacing uses f0 then f1. The encoding
for this is 00 for synchronize on f0, 01 for synchronize on f1, and 11 for “don’t care”.

1 The Video and Image Processing Suite MegaCore functions are designed to propagate
any unexpected data in the control packets, so that any future extensions are passed
on without modification.

Table 4–6 lists some example control packets.

Table 4–6. Examples of Avalon-ST Video Control Packets

Type Width Height Interlacing Description

15 0000, 0010, 1000, 0000 0000, 0001, 1110, 0000 0000 The following frames are progressive with
resolution of 640×480 pixels.

15 0000, 0010, 1000, 0000 0000, 0000, 1111, 0000 1000 The following fields are 640 pixels wide and 240
pixels high. The next field is f0, and frames of size
640×480 are constructed by deinterlacing f1 with
the following f0.

15 0000, 0111, 1000, 0000 0000, 0010, 0001, 1100 1100 The following fields are 1920 pixels wide and 540
pixels high. The next field is f1, and deinterlacing
f0 followed by f1 will produce frames of size
1920×1080.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 4: Interfaces 4–9
Avalon-ST Video Protocol
Figure 4–4 shows the transfer of a control packet for a field of 720×480i video (with
field height 240). It is transferred over an interface configured for 10-bit data with 2
color planes in parallel. Each word of the control packet is transferred in the lowest
four bits of a color plane, starting with bits 3:0, then 13:10.

Packet Propagation
The Avalon-ST Video protocol is designed to be optimized for the transfer of video
data while still providing a flexible way to transfer control data and other
information. To make the protocol flexible and extensible, the Video and Image
Processing MegaCore functions obey the following rules about propagating
non-video packets:

■ Packets are propagated until the endofpacket signal is received, regardless of their
expected length.

■ When the bits per color sample change from the input to the output side of a block,
the non-video packets are truncated or padded. Otherwise, the full bit width is
transferred.

■ When the color pattern changes from the input to the output side of a block, the
symbol order is preserved and redundant data might need to be inserted. For
example:

2
1 -> 012
0

Figure 4–4. Example of Control Packet Transfer

clock

din_valid

din_startofpacket

CbCr din_data(13:10) 0x2

din_endofpacket

Y din_data(3:0)

0x0 0x0 0x0

0x00x0 0xD0xF 0x0 0xF 10xx

720(0x02D0) 240(0x00F0) image dataif0
binary
f0 - 10xx
f1 - 11xx
p - 00xx
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

4–10 Chapter 4: Interfaces
Avalon-ST Video Protocol
Avalon-ST Video Specification
The Avalon-ST Video Specification comprises the following parts:

■ “Avalon-ST Video Parameters” on page 4–10 describes the parameters Avalon-ST
Video uses to describe a serialized stream of pixel data.

■ “Type of Avalon-ST Interfaces Used” on page 4–11 details the particular type of
Avalon-ST interface the protocol uses and shows how that interface type depends
upon the parameters of the data transferred.

■ “Avalon-ST Video Rules” on page 4–11 formally defines the rules governing how
sequences of video images are serialized for transmission.

Avalon-ST Video Parameters
Table 4–7 lists the parameters used by Avalon-ST Video.

A set of values for these parameters can be used to describe any type of video data
stream that can be transmitted according to the protocol. The example parameter
values given in Table 4–7 describe a stream of progressive Y’CbCr 4:2:0 (horizontally
and vertically subsampled) video in 320×240 resolution with 8 bits per color plane
transmitted in sequence.

Table 4–7. Avalon-ST Video Parameters

Parameter Name Description Example

Static Parameters:

Bits per Color Sample Maximum number of binary bits used to represent each color sample. 8

Color Pattern A matrix defining a repeating pattern of color samples to be transmitted. The height
of the matrix indicates the number of samples transmitted in parallel, the width
determines how many cycles of data are transmitted before the pattern repeats. In the
common case, each element of the matrix contains the name of a color plane from
which a sample should be taken. The exception is for vertically subsampled color
planes. These are indicated by writing the names of two color planes in a single
element, one above the other. Samples from the upper color plane are transmitted on
even rows and samples from the lower plane are transmitted on odd rows.

Dynamic Parameters:

Frame Width Width in pixels for the frames of the video stream. Must be a positive integer. 320

Frame Height Height in pixels for the frames/fields in the video stream. Note that in the case of
interlaced video streams, the height of frames after deinterlacing is double the value
given here. Must be a positive integer.

240

Interlacing A value of “Progressive” specifies that it is a progressive video stream. Interlaced
streams are specified in two parts:

■ The field number (Field 0 or Field 1) indicates whether the next field is f0 or f1.

■ The field synchronization (Synch 0, Synch 1, or Don’t care) indicates how to
perform deinterlacing. Synch 0 means that deinterlacing is performed using f1 and
it's following f0 to construct a frame. Likewise, Synch 1 uses f0 and its following
f1. Don’t care assumes that fields arrive in the correct order to be deinterlaced
without dropping any fields.

Progressive

Cb
CrY Y
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 4: Interfaces 4–11
Avalon-ST Video Protocol
Type of Avalon-ST Interfaces Used
The Avalon Interface Specifications define parameters which can be used to specify any
type of Avalon-ST interface. Table 4–8 lists the values of these parameters that are
defined for the Avalon-ST interfaces used by the Video and Image Processing Suite
MegaCore functions. All parameters not explicitly listed in the table have undefined
values.

The Avalon Interface Specifications define many signal types many of which are
optional. Table 4–9 lists the signals used by the Avalon-ST interfaces for the Video and
Image Processing Suite MegaCore functions. Any signal type not explicitly listed in
the table is not included.

Avalon-ST Video Rules
This section specifies the Avalon-ST Video rules. These rules, combined with a set of
video protocol parameters, define how MegaCore functions that are compatible with
the protocol send and receive video data. A working definition of a video clip is given
and the relationship between the Avalon-ST Video parameters and the type of video
clip transmitted is described. A procedure is then shown for reconstructing a video
clip from any Avalon-ST Video stream, given a set of parameter values. This
procedure is the specification of the protocol rules for Avalon-ST Video.

A flexible definition of a video clip is required because there are many different types
of video that can be transferred using Avalon-ST Video. A video clip is defined as an
ordered sequence of frames. Each frame consists of either one field (progressive
video) or two fields numbered 0 and 1 (interlaced video). Field 0 is the field that
includes the top line of the frame. Each field contains a set of color planes. For
example, R, G, and B color planes in full color R’G’B’ video.

Table 4–8. Avalon-ST Interface Parameters

Parameter Name Value

BITS_PER_SYMBOL Variable. Always equal to the Bits per Color Sample parameter value of the
stream of pixel data being transferred.

SYMBOLS_PER_BEAT Variable. Always equal to the number of color samples being transferred in
parallel. This is equivalent to the number of rows in the color pattern
parameter value of the stream of pixel data being transferred.

READY_LATENCY 1

Table 4–9. Avalon-ST Interface Signal Types

Signal Width Direction

ready 1 Sink to Source

valid 1 Source to Sink

data bits_per_symbol × symbols_per_beat Source to Sink

startofpacket 1 Source to Sink

endofpacket 1 Source to Sink
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

4–12 Chapter 4: Interfaces
Avalon-ST Video Protocol
Because Avalon-ST Video supports various kinds of subsampled video data, the color
planes of a field can be of differing sizes. For example, a 720×576 pixel frame of
Y’CbCr 4:2:2 progressive video contains one field having three color planes, Y, Cb,
and Cr. Because the video is 4:2:2 subsampled, only the Y plane is 720×576 samples in
size and each of the Cb and Cr planes have 360×576 samples.

The Avalon-ST Video parameters define the type of video clip represented by a
stream. The Interlaced/Progressive parameter defines whether the video clip is
interlaced or progressive. The number of bits used for each sample is defined by the
Bits per Color Sample parameter. The names, widths, and heights of each color plane
of each field are derived from the Frame Width, Frame Height, and Color Pattern
parameters as follows. For each color C, represented in the color pattern matrix:

where IC is the number of times C appears in the color pattern, and R is an integer
that is equal to the frame width divided by the maximum value of IC for all color
planes.

 if C is not vertically subsampled

 otherwise

For example, consider a stream of pixel data with the parameters shown in Table 4–10.

Three color planes are represented in the color pattern, Y, Cb, and Cr. Consequently,
the video clip transmitted has the same three color planes. Y occurs twice in the
pattern, Cb and Cr occur once each:

IY = 2;

ICb = ICr = 1

The value of R can be calculated using the occurrence of each plane and the Frame
Width parameter:

Using IY, ICb, ICr, and R, you can calculate the width of each color plane:

WidthY = IY × R = 2 × 160 = 320

WidthCb = ICb × R = 1 × 160 = 160

WidthCr = 1Cr × R = 1 × 160 = 160

You can also calculate the height of each of the three color planes. The stream is
progressive, so the number of fields per frame is 1.

Table 4–10. Parameters for Video Clip Calculation Example

Parameter Value

Frame Width 320

Frame Height 240

Interlaced/Progressive Progressive

Bits per Color Sample 8

Color Pattern

WidthC IC R×=

HeightC FramepHeight=

HeightC
FramepHeight

2
---------------------------------------=

Cb
CrY Y

R FramepWidth
max IY ICb ICr, ,()
-- 320

2
--------- 160= = =
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 4: Interfaces 4–13
Avalon-ST Video Protocol
Plane Y is shown as not being vertically subsampled in the color pattern:

The two color difference planes, Cb and Cr, appear as a vertically subsampled pair in
the color pattern:

The stream described by the parameter values in this example therefore describes a
video clip containing three color planes named Y, Cb, and Cr, where the Y plane is
320×240 pixels, and the Cb and Cr planes are both 160×120 pixels, a quarter the size of
the Y plane. This is consistent with 4:2:0 format video.

Video clips can be reconstructed by repeatedly applying the same process to construct
one frame at a time. The process can be considered in two stages:

1. Input data is read and split it into a set of ordered sequences CS, of samples for
each color, C using the information held in the Color Pattern:

for (0 ≤ y < Frame Height)
for (0 ≤ x < R)

for (0 ≤ i < width of Color Pattern)
D ← next word of data

for (0 ≤ j < height of Color Pattern)
E ← Color Pattern(i, j)
if E is vertically subsampled then

C ← top(E) if y is even, bottom(E)
else

C ← plane(E)
end if
append D(j) to CS

end for
end for

end for
end for

2. A video frame is then constructed using the sequences of color samples CS:

Frame ← create a new empty frame
for (0 ≤ f < Number of Fields)
Field ← create a new empty field in Frame
for each color C, represented in Color Pattern

Color Plane ← new plane of size WidthC × HeightC
for j in 0 to HeightC

for i in 0 to WidthC
Color Plane (i, j) ← next element of CS

end for
end for

end for
end for

In this code, Color Pattern [i, j] refers to the element of the color pattern matrix found at
the intersection of column i and row j, where column zero is the far left column and
row zero is the top row. This element E can be vertically subsampled, in which case
top(E) selects the color plane written in the top half of the element and bottom(E)
selects the color plane written below it. If the element is not vertically subsampled,
then plane(E) refers to the color plane in the element.

D(j) refers to symbol j in data word D read from an Avalon-ST interface. According to
the Avalon Interface Specifications, symbol 0 occupies the most significant bits in the
data word, symbol 1 is next and so on.

HeightY 240=

HeightCb
FramepHeight

2
--------------------------------------- 240

2
--------- 120= = =
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

4–14 Chapter 4: Interfaces
Avalon-MM Slave Interfaces
Avalon-MM Slave Interfaces
The Video and Image Processing Suite MegaCore functions that permit run-time
control of some aspects of their behavior, use a common type of Avalon-MM slave
interface for this purpose.

Each slave interface provides access to a set of control registers which must be set by
external hardware. You should assume that these registers power up in an undefined
state. The set of available control registers and the width in binary bits of each register
varies with each control interface.

For a full description of the control registers, refer to “Run-Time Control Register
Maps” on page A–16.

The first two registers of every control interface perform the following two functions
(the others vary with each control interface):

■ Register 0 is the Go register. Bit zero of this register is the Go bit, all other bits are
unused. A few cycles after the MegaCore function comes out of reset, it writes a
zero in the Go bit (remember that all registers in Avalon-MM control slaves power
up in an undefined state).

The MegaCore function does not process any data until the Go bit is set by external
logic connected to the control port. This allows run-time control data to be
programmed before the processing begins. A few cycles after Go is set, the
MegaCore function begins processing data. If the Go bit is unset while the data is
being processed, then it stops processing data again at the end of the current video
frame, and waits until the Go bit is set again by external logic.

■ Register 1 is the Status register. Bit zero of this register is the Status bit, all
other bits are unused. The MegaCore function sets the Status bit to 1 when it is
running, and zero otherwise. External logic attached to the control port should not
attempt to write to the Status register.

The following pseudo-code illustrates the design of MegaCore functions that
double-buffer their control (that is, all MegaCore functions except the Gamma
Corrector and some Scaler parameterizations):

go = 0;

while (true)

{

read_non_image_data_packets();

status = 0;

while (go != 1)

wait;

read_control(); // Copies control to internal registers

status = 1;

send_image_data_header();

process_frame();

}

Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 4: Interfaces 4–15
Avalon-MM Slave Interfaces
The MegaCore function reads packets from the input stream and processes them until
the image data header (0) of an image data packet has been received. There is a small
amount of buffering at the input of each Video and Image Processing Suite MegaCore
function and you should expect that most functions read a few samples past the
image data header if data is available. These samples are stored and are processed as
usual when the status bit is set back to 1.

You can use the Go and Status registers in combination to synchronize changes in
control data to the start and end of frames. For example, suppose you want to build a
system with a Gamma Corrector MegaCore function where the gamma look-up table
is updated between each video frame.

You can build logic (or program a Nios II processor) to control the gamma corrector as
follows:

1. Set the Go bit to zero. This causes the MegaCore function to stop processing at the
end of the current frame.

2. Poll the Status bit until the MegaCore function sets it to zero. This occurs at the
end of the current frame, after the MegaCore function has stopped processing
data.

3. Update the gamma look-up table.

4. Set the Go bit to one. This causes the MegaCore function to start processing the
next frame.

5. Poll the Status bit until the MegaCore function sets it to one. This occurs when
the MegaCore function has started processing the next frame (and therefore
setting the Go bit to zero causes it to stop processing at the end of the next frame).

6. Repeat steps 1 to 5 until all frames are processed.

This procedure ensures that the update is performed exactly once per frame and that
the MegaCore function is not processing data while the update is performed. When
using MegaCore functions which double-buffer control data, such as the Alpha
Blending Mixer and Scaler, a more simple process may be sufficient:

1. Set the Go bit to zero. This causes the MegaCore function to stop if it gets to the
end of a frame while the update is in progress.

2. Update the control data.

3. Set the Go bit to one.

The next time a new frame is started after the Go bit is set to one, the new control
data is loaded into the MegaCore function.

The reading on non-video packets is performed by handling any packet until one
arrives with type 0. This means that when the Go bit is checked, the non-video type
has been taken out of the stream but the video is retained.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

4–16 Chapter 4: Interfaces
Avalon-MM Master Interfaces
Specification of the Type of Avalon-MM Slave Interfaces Used
The Avalon Interface Specifications define many signal types, many of which are
optional.

Table 4–11 lists the signals used by the Avalon-MM slave interfaces in the Video and
Image Processing Suite. Any signal type that is not explicitly listed in the table is not
used.

1 Clock and reset signal types are not included. The Video and Image Processing Suite
does not support Avalon-MM interfaces in multiple clock domains. Instead, all of the
Video and Image Processing Suite MegaCore functions have one clock input and one
reset input. The Avalon-MM slave interfaces must operate synchronously to this
clock.

The Avalon Interface Specifications define a set of transfer properties which may or may
not be exhibited by any Avalon-MM interface. Together with the list of supported
signals, these properties fully define an interface type.

The control interfaces of the Video and Image Processing Suite MegaCore functions
exhibit the following transfer properties:

■ Zero wait states on write operations

■ Two wait states on read operations“Run-Time Control Register Maps” on
page A–16“Run-Time Control Register Maps” on page A–16Table 4–11

Avalon-MM Master Interfaces
The Video and Image Processing Suite MegaCore functions use a common type of
Avalon-MM master interface for access to external memory. These master interfaces
should be connected to external memory resources via arbitration logic such as that
provided by the system interconnect fabric.

Specification of the Type of Avalon-MM Master Interfaces Used
The Avalon Interface Specifications define many signal types, many of which are
optional.

Table 4–12 on page 4–17 lists the signals used by the Avalon-MM master interfaces in
the Video and Image Processing Suite. Any signal type not explicitly listed in the table
is not used.

Table 4–11. Avalon-MM Slave Interface Signal Types

Signal Width Direction

chipselect 1 Input

address Variable Input

readdata Variable Output

write 1 Input

writedata Variable Input
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 4: Interfaces 4–17
Buffering of Non-Image Data Packets in Memory
1 The clock and reset signal types are optional. The Avalon-MM master interfaces can
operate on a different clock from the MegaCore function and its other interfaces by
selecting the relevant option in the MegaWizard interface when and if it is available.

Some of the signals in Table 4–12 are read-only and not required by a master interface
which only performs write transactions.

Some other signals are write-only and not required by a master interface which only
performs read transactions. To simplify the Avalon-MM master interfaces and
improve efficiency, read-only ports are not present in write-only masters, and
write-only ports are not present in read-only masters.

Read-write ports are present in all Avalon-MM master interfaces. Refer to the
description of each MegaCore function for information about whether the master
interface is read-only, write-only or read-write.

The Avalon Interface Specifications define a set of transfer properties which may or may
not be exhibited by any Avalon-MM interface. Together with the list of supported
signals, these properties fully define an interface type.

The external memory access interfaces of the Video and Image Processing Suite
MegaCore functions exhibit the following transfer property:

■ Pipeline with variable latency

Buffering of Non-Image Data Packets in Memory
The Frame Buffer and the Deinterlacer (when buffering is enabled) route the video
stream through an external memory. Avalon-ST Video control packets and user
packets must be buffered and delayed along with the frame or field they relate to and
extra memory space has to be allocated. You must specify the maximum number of
packets per field and the maximum size of each packet to cover this requirement.

The maximum size of a packet is given as a number of symbols, header included. For
instance, the size of an Avalon-ST Video control packet is 10. This size does not
depend on the number of channels transmitted in parallel. Packets larger than this
maximum limit may be truncated as extra data is discarded.

Table 4–12. Avalon-MM Master Interface Signal Types

Signal Width Direction Usage

clock 1 Input Read-Write (optional)

readdata variable Input Read-only

readdatavalid 1 Input Read-only

reset 1 Input Read-Write (optional)

waitrequest 1 Input Read-write

address 32 Output Read-write

burstcount variable Output Read-write

read 1 Output Read-only

write 1 Output Write-only

writedata variable Output Write-only
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

4–18 Chapter 4: Interfaces
Buffering of Non-Image Data Packets in Memory
The maximum number of packets is the number of packets that can be stored with
each field or frame. Older packets are discarded first in case of overflow. When frame
dropping is enabled, the packets associated with a field that has been dropped are
automatically transferred to the next field and count towards this limit.

1 Altera recommends that you keep the default values for Number of packets buffered
per frame = 1 and Maximum packet length = 10, unless you intend to extend the
Avalon-ST Video protocol with custom packets. Using the default parameterization,
the relevant MegaCore functions may overwrite old control packets with newer ones.
This does not matter because the last control packet always takes precedence.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

© March 2009 Altera Corporation
5. Functional Descriptions
Each Video and Image Processing MegaCore function is implemented to generate
hardware that performs its operations on multiple color planes (typically three).

Color Space Converter
The Color Space Converter MegaCore function provides a flexible and efficient means
to convert image data from one color space to another.

A color space is a method for precisely specifying the display of color using a
three-dimensional coordinate system. Different color spaces are best for different
devices, such as R'G'B' (red-green-blue) for computer monitors or Y'CbCr
(luminance-chrominance) for digital television.

Color space conversion is often necessary when transferring data between devices
that use different color space models. For example, to transfer a television image to a
computer monitor, you may need to convert the image from the Y'CbCr color space to
the R'G'B' color space. Conversely, transferring an image from a computer display to a
television may require a transformation from the R'G'B' color space to Y'CbCr.

Different conversions may be required for standard definition television (SDTV) and
high definition television (HDTV). You may also want to convert to or from the Y'IQ
(luminance-color) color model for National Television System Committee (NTSC)
systems or the Y'UV (luminance-bandwidth-chrominance) color model for Phase
Alternation Line (PAL) systems.

Input and Output Data Types
The Color Space Converter MegaCore function inputs and outputs support signed or
unsigned data and 4 to 20 bits per pixel per color plane. Minimum and maximum
guard bands are also supported. The guard bands specify ranges of values that
should never be received by, or transmitted from the MegaCore function. Using
output guard bands allows the output to be constrained, such that it does not enter
the guard bands.

Color Space Conversion
Conversions between color spaces are achieved by providing an array of nine
coefficients and three summands that relate the color spaces. These can be set at
compile time, or at run time using the Avalon-MM slave interface.

Given a set of nine coefficients [A0, A1, A2, B0, B1, B2, C0, C1, C2] and a set of three
summands [S0, S1, S2], the output values on channels 0, 1, and 2 (denoted dout_0,
dout_1, and dout_2) are calculated as follows:

dout_0 = (A0 × din_0) + (B0 × din_1) + (C0 × din_2) + S0
dout_1 = (A1 × din_0) + (B1 × din_1) + (C1 × din_2) + S1
dout_2 = (A2 × din_0) + (B2 × din_1) + (C2 × din_2) + S2

where din_0, din_1, and din_2 are inputs read from channels 0, 1, and 2
respectively.
Video and Image Processing Suite User Guide

5–2 Chapter 5: Functional Descriptions
Color Space Converter
User-specified custom constants and the following predefined conversions are
supported:

■ Computer B’G’R’ to CbCrY’: SDTV

■ CbCrY’: SDTV to Computer B’G’R’

■ Computer B’G’R’ to CbCrY’: HDTV

■ CbCrY’: HDTV to Computer B’G’R’

■ Studio B’G’R’ to CbCrY’: SDTV

■ CbCrY’: SDTV to Studio B’G’R’

■ Studio B’G’R’ to CbCrY’: HDTV

■ CbCrY’: HDTV to Studio B’G’R’

■ IQY' to Computer B'G'R'

■ Computer B'G'R' to IQY'

■ UVY' to Computer B'G'R'

■ Computer B'G'R' to UVY'

The values are assigned in the order indicated by the conversion name. For example,
if you select Computer B’G’R’ to CbCrY’: SDTV, din_0 = B’, din_1 = G’, din_2 = R’,
dout_0 = Cb’, dout_1 = Cr, and dout_2 = Y’.

If the channels are in sequence, din_0 is first, then din_1, and din_2. If the channels are
in parallel, din_0 occupies the least significant bits of the word, din_1 the middle bits
and din_2 the most significant bits. For example, if there are 8 bits per sample and one
of the predefined conversions is being used to input B’G’R’, din_0 carries B’ in bits
0–7, din_1 carries G’ in bits 8–15, and din_2 carries R’ in bits 16–23.

1 Predefined conversions only support unsigned input and output data. If signed input
or output data is selected, the predefined conversion produces incorrect results. When
using a predefined conversion, the precision of the constants must still be defined.
Predefined conversions are based on the input bits per pixel per color plane. If using
different input and output bits per pixel per color plane, the results should be scaled
by the correct number of binary places to compensate.

Constant Precision
The Color Space Converter MegaCore function requires fixed point types to be
defined for the constant coefficients and constant summands. The user entered
constants (in the white cells of the matrix in the MegaWizard interface) are rounded to
fit in the chosen fixed point type (these are shown in the purple cells of the matrix).

Calculation Precision
The Color Space Converter MegaCore function does not lose calculation precision
during the conversion. The calculation and result data types are derived from the
range of the input data type, the fixed point types of the constants, and the values of
the constants. If scaling is selected, the result data type is scaled up appropriately such
that precision is not lost.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–3
Color Space Converter
Result of Output Data Type Conversion
After the calculation, the fixed point type of the results must be converted to the
integer data type of the output. This is performed in four stages, in the following
order:

1. Result Scaling. You can choose to scale up the results, increasing their range. This
is useful to quickly increase the color depth of the output. The available options
are a shift of the binary point right –16 to +16 places. This is implemented as a
simple shift operation so it does not require multipliers.

2. Removal of Fractional Bits. If any fractional bits exist, you can choose to remove
them. There are three methods:

■ Truncate to integer. Fractional bits are removed from the data. This is
equivalent to rounding towards negative infinity.

■ Round - Half up. Round up to the nearest integer. If the fractional bits equal
0.5, rounding is towards positive infinity.

■ Round - Half even. Round to the nearest integer. If the fractional bits equal 0.5,
rounding is towards the nearest even integer.

3. Conversion from Signed to Unsigned. If any negative numbers can exist in the
results and the output type is unsigned, you can choose how they are converted.
There are two methods:

■ Saturate to the minimum output value (constraining to range).

■ Replace negative numbers with their absolute positive value.

4. Constrain to Range. If any of the results are beyond the range specified by the
output data type (output guard bands, or if unspecified the minimum and
maximum values allowed by the output bits per pixel), logic that saturates the
results to the minimum and maximum output values is automatically added.

The Color Space Converter MegaCore function can process streams of pixel data of
the types shown in Table 5–1.

Table 5–1. Color Space Converter Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Read from control packets at run time.

Frame Height Read from control packets at run time.

Interlaced/Progressive Either.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern For color planes in sequence:

For color planes in parallel:

Notes to Table 5–1:

(1) For channels in parallel, the top of the color pattern matrix represents the MSB of data and the bottom represents
the LSB. For details, refer to “Avalon-ST Video Specification” on page 4–10.

210

0

1

2

© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–4 Chapter 5: Functional Descriptions
Chroma Resampler
Chroma Resampler
The Chroma Resampler MegaCore function allows you to change between 4:4:4, 4:2:2
and 4:2:0 sampling rates where:

■ 4:4:4 specifies full resolution in planes 1, 2, and 3

■ 4:2:2 specifies full resolution in plane 1; half width resolution in planes 2 and 3

■ 4:2:0 specifies full resolution in plane 1; half width and height resolution in planes
2 and 3

All modes of the Chroma Resampler assume the chrominance (chroma) and
luminance (luma) samples are co-sited (that is, their values are sampled at the same
time). The horizontal resampling process supports nearest-neighbor and filtered
algorithms. The vertical resampling process only supports the nearest-neighbor
algorithm.

The Chroma Resampler MegaCore function can be configured to change image size at
run time using control packets.

Horizontal Resampling (4:2:2)
Figure 5–1 shows the location of samples in a co-sited 4:2:2 image.

Conversion from sampling rate 4:4:4 to 4:2:2 and back are scaling operations on the
chroma channels. This means that these operations are affected by some of the same
issues as the Scaler MegaCore function. However, because the scaling ratio is fixed as
2× up or 2× down, the Chroma Resampler MegaCore function is highly optimized for
these cases.

The Chroma Resampler MegaCore Function only supports the co-sited form of
horizontal resampling. This is the form used for 4:2:2 data in ITU Recommendation
BT.601, MPEG-2, and other standards.

f For more information about the ITU standard, refer to Recommendation
ITU-R BT.601, Encoding Parameters of Digital Television for Studios, 1992,
International Telecommunications Union, Geneva.

4:4:4 to 4:2:2
The nearest-neighbor algorithm is the simplest way to down-scale the chroma
channels. It works by simply discarding the Cb and Cr samples that occur on even
columns (assuming the first column is numbered 1). This algorithm is very fast and
cheap but, due to aliasing effects, it does not produce the best image quality.

Figure 5–1. Resampling 4.4.4 to a 4.2.2 Image

1 2 3 4

1

2

Sample No 5 6 7 8

++ ++ ++ ++

3

4

= Y’

+ = Cb

+ = Cr

++ = CbCr

++ = Y’CbCr

++ ++
++ ++
++ ++

++ ++
++ ++
++ ++
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–5
Chroma Resampler
To get the best results when down-scaling, you can apply a filter to remove
high-frequency data and thus avoid possible aliasing. The filtered algorithm for
horizontal subsampling uses a 9-tap filter with a fixed set of coefficients.

The coefficients are based on a Lanczos-2 function (Refer to “Choosing and Loading
Coefficients” on page 5–17) as used by the Scaler MegaCore function, and their
quantized form is known as the Turkowski Decimator.

f For more information about the Turkowski Decimator, refer to Ken
Turkowski. Graphics Gems, chapter Filters for common resampling tasks, pages
147–165. Academic Press Professional, Inc., San Diego, CA, USA, 1990.

Because the coefficients are fixed and approximate to powers of two, they can be
implemented by bit-shifts and additions. This algorithm efficiently eliminates aliasing
in the chroma channels, and uses no memory or multipliers. However, it does use
more logic area than the nearest-neighbor algorithm.

4:2:2 to 4:4:4
The nearest-neighbor algorithm is the simplest way to up-scale the chroma channels.
It works by simply duplicating each incoming Cb and Cr sample to fill in the missing
data. This algorithm is very fast and cheap but it tends to produce sharp jagged edges
in the chroma channels.

The filtered algorithm uses the same method as the Scaler MegaCore function would
use for upscaling, that is a four-tap filter with Lanczos-2 coefficients. This filter is used
with a phase offset of 0 for the odd output columns (those with existing data) and an
offset of one-half for the even columns (those without direct input data). A filter with
phase offset 0 has no effect, so it is implemented as a pass-through. A filter with phase
offset of one-half interpolates the missing values and has fixed coefficients that are
implemented by bit-shifts and additions.

This algorithm does a reasonable job at upsampling and uses no memory or
multipliers. It uses more logic elements than the nearest-neighbor algorithm and is
not the highest quality available.

The best image quality for upsampling is obtained by using the filtered algorithm
with luma-adaptive mode enabled. This mode looks at the luma channel during
interpolation and uses this to detect edges. Edges in the luma channel are used to
make appropriate phase-shifts in the interpolation coefficients for the chroma
channels.

Figure 5–2 on page 5–6 shows 4:2:2 data at an edge transition. Without taking any
account of the luma, the interpolation to produce chroma values for sample 4 would
weight samples 3 and 5 equally. From the luma, you can see that sample 4 falls on an
the low side of an edge, so sample 5 is more significant than sample 3.

The luma-adaptive mode looks for such situations and chooses how to adjust the
interpolation filter. From phase 0, it can shift to -1/4, 0, or 1/4; from phase 1/2, it can
shift to 1/4, 1/2, or 3/4. This makes the interpolated chroma samples line up better
with edges in the luma channel and is particularly noticeable for bold synthetic edges
such as text.

The luma-adaptive mode uses no memory or multipliers, but requires more logic
elements than the straightforward filtered algorithm.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–6 Chapter 5: Functional Descriptions
Chroma Resampler
Vertical Resampling (4:2:0)
The Chroma Resampler MegaCore function does not distinguish interlaced data with
its vertical resampling mode. It only supports the co-sited form of vertical resampling
shown in Figure 5–3.

For both upsampling and downsampling, the vertical resampling algorithm is fixed at
nearest-neighbor.

Vertical resampling does not use any multipliers. For upsampling, it uses four line
buffers, each buffer being half the width of the image. For downsampling it uses one
line buffer which is half the width of the image.

1 All input data samples must be in unsigned format. If the number of bits per pixel per
color plane is N, this means that each sample consists of N bits of data which are
interpreted as an unsigned binary number in the range [0, 2N – 1]. All output data
samples are also in the same unsigned format.

For more information about how non-video packets are transferred, refer to “Packet
Propagation” on page 4–9.

Figure 5–2. 4:2:2 Data at an Edge Transition

1 2 3 4 Sample No5 6 7

++ ++ ++ ++

= Y’

+ = Cb

+ = Cr

++ = CbCr

++ = Y’CbCr

Y’ Intensity

CbCr Color
Value ++ ++

++ ++

Figure 5–3. Resampling 4.4.4 to a 4.2.0 Image

1 2 3 4

1

2

Sample No 5 6 7 8

++ ++ ++ ++

3

4

= Y’

+ = Cb

+ = Cr

++ = CbCr

++ = Y’CbCr
++ ++++ ++
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–7
Gamma Corrector
The Chroma Resampler MegaCore function can process streams of pixel data of the
types shown in Table 5–2.

Gamma Corrector
The Gamma Corrector MegaCore function provides a look-up table (LUT) accessed
through an Avalon-MM slave port. The gamma values can be entered in the LUT by
external hardware using this interface.

For information about using Avalon-MM slave interfaces for run-time control in the
Video and Image Processing Suite, refer to “Avalon-MM Slave Interfaces” on
page 4–14. For details of the control register maps, refer to Table A–21 on page A–17,
Table A–22 on page A–17, and Table A–23 on page A–17. For information about the
Avalon-MM interface signals, refer to Table A–38 on page A–28.

When dealing with image data with N bits per pixel per color plane, the address space
of the Avalon-MM slave port spans 2N + 2 registers where each register is N bits wide.

Registers 2 to 2N + 1 are the look-up values for the gamma correction function. Image
data with a value x will be mapped to whatever value is in the LUT at address x + 2.

The Gamma Corrector MegaCore function can process streams of pixel data of the
types shown in Table 5–3.

Table 5–2. Chroma Resampler Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Maximum frame width is specified in the MegaWizard interface, the actual value is read from
control packets.

Frame Height Maximum frame height is specified in the MegaWizard interface, the actual value is read from
control packets.

Interlaced/Progressive Progressive.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern For 4:4:4 sequential data: For 4:2:2 sequential data:

For 4:2:0 sequential data: For 4:2:2 parallel data:

For 4:4:4 parallel data: For 4:2:0 parallel data:

CrCb Y CrCb YY

Cb
CrY Y Y Y

Cb Cr

Y

Cb

Cr CrCb

Y

Y

Table 5–3. Gamma Corrector Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Read from control packets at run time.

Frame Height Read from control packets at run time.

Interlaced/Progressive Either.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern One, two or three channels in sequence or parallel. For example, if three channels in
sequence is selected where a, b and g can be any color plane:

γβα
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–8 Chapter 5: Functional Descriptions
2D FIR Filter
2D FIR Filter
The 2D FIR Filter performs 2D convolution, using matrices of 3×3, 5×5, and 7×7
coefficients.

The MegaCore function retains full precision throughout the calculation, while
making efficient use of FPGA resources. With suitable coefficients, the MegaCore
function can perform several operations including, but not limited to sharpening,
smoothing and edge detection.

An output pixel is calculated from the multiplication of input pixels in a filter size
grid (kernel) by their corresponding coefficient in the filter.

These values are summed together. Prior to output, this result is scaled, has its
fractional bits removed, is converted to the desired output data type, and is
constrained to a specified range. The position of the output pixel corresponds to the
mid-point of the kernel. If the kernel runs over the edge of an image, then zeros are
used for the out of range pixels.

The 2D FIR Filter allows its input, output and coefficient data types to be fully
defined. Constraints are 4 to 20 bits per pixel per color plane for input and output, and
up to 35 bits for coefficients.

The 2D FIR Filter supports symmetric coefficients. This reduces the number of
multipliers, resulting in smaller hardware. Coefficients can be set at compile time, or
changed at run time using an Avalon-MM slave interface.

Calculation Precision
The 2D FIR Filter does not lose calculation precision during the FIR calculation. The
calculation and result data types are derived from the range of input values (as
specified by the input data type, or input guard bands if provided), the coefficient
fixed point type and the coefficient values. If scaling is selected, then the result data
type is scaled up appropriately such that precision is not lost.

Coefficient Precision
The 2D FIR Filter requires a fixed point type to be defined for the coefficients. The
user-entered coefficients (shown as white boxes in the MegaWizard interface) are
rounded to fit in the chosen coefficient fixed point type (shown as purple boxes in the
MegaWizard interface).

Result to Output Data Type Conversion
After the calculation, the fixed point type of the results must be converted to the
integer data type of the output.

This is performed in four stages, in the following order:

1. Result Scaling. You can choose to scale up the results, increasing their range. This
is useful to quickly increase the color depth of the output. The available options
are a shift of the binary point right –16 to +16 places. This is implemented as a
simple shift operation so it does not require multipliers.

2. Removal of Fractional Bits. If any fractional bits exist, you can choose to remove
them.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–9
2D Median Filter
There are three methods:

■ Truncate to integer. Fractional bits are removed from the data. This is
equivalent to rounding towards negative infinity.

■ Round - Half up. Round up to the nearest integer. If the fractional bits equal
0.5, rounding is towards positive infinity.

■ Round - Half even. Round to the nearest integer. If the fractional bits equal 0.5,
rounding is towards the nearest even integer.

3. Conversion from Signed to Unsigned. If any negative numbers can exist in the
results and the output type is unsigned, you can choose how they are converted.
There are two methods:

■ Saturate to the minimum output value (constraining to range).

■ Replace negative numbers with their absolute positive value.

4. Constrain to Range. If any of the results are beyond the range specified by the
output data type (output guard bands, or if unspecified the minimum and
maximum values allowed by the output bits per pixel), logic to saturate the results
to the minimum and maximum output values is automatically added.

The 2D FIR Filter MegaCore function can process streams of pixel data of the types
shown in Table 5–4.

2D Median Filter
The 2D Median Filter MegaCore function provides a means to perform 2D median
filtering operations using matrices of 3×3, 5×5, or 7×7 kernels.

Each output pixel is the median of the input pixels found in a 3x3, 5x5, or 7×7 kernel
centered on the corresponding input pixel. Where this kernel runs over the edge of
the input image, zeros are filled in.

Larger kernel sizes require many more comparisons to perform the median filtering
function and therefore require correspondingly large increases in the number of logic
elements used. Larger sizes have a stronger effect, removing more noise but also
potentially removing more detail.

1 All input data samples must be in unsigned format. If the number of bits per pixel per
color plane is N, this means that each sample consists of N bits of data which are
interpreted as an unsigned binary number in the range [0, 2N – 1]. All output data
samples produced by the 2D Median Filter MegaCore function are also in the same
unsigned format.

Table 5–4. 2D FIR Filter Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width As selected in the MegaWizard interface.

Frame Height As selected in the MegaWizard interface.

Interlaced/Progressive Progressive.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern One, two or three channels in sequence. For example, if three channels in sequence
is selected, where a, b and g can be any color plane:

γβα
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–10 Chapter 5: Functional Descriptions
Alpha Blending Mixer
The 2D Median Filter MegaCore function can process streams of pixel data of the
types shown in Table 5–5.

Alpha Blending Mixer
The Alpha Blending Mixer MegaCore function provides an efficient means to mix
together up to 12 image layers. The function provides support for both
picture-in-picture mixing and image blending with per pixel alpha support.

The location and size of each layer can be changed dynamically while the MegaCore
function is running, and individual layers can be switched on and off. This run-time
control is partly provided by an Avalon-MM slave port with registers for the location,
and on or off status of each foreground layer. The dimensions of each layer are then
specified by Avalon-ST Video control packets.

1 It is expected that each foreground layer fits in the boundaries of the background
layer.

Control data is read in two steps at the start of each frame and is buffered inside the
MegaCore function so that the control data can be updated during the frame
processing without unexpected side effects.

The first step occurs after all the non-image data packets of the background layer have
been processed and transmitted, and the core has received the header of an image
data packet of type 0 for the background. At this stage, the on/off status of each layer
is read. A layer can be disabled (0), active and displayed (1) or consumed but not
displayed (2).

Non-image data packets of each active foreground layer, displayed or consumed, are
processed in a sequential order, layer 1 first. Non-image data packets from the
background layer are integrally transmitted whereas non-image data packets from
the foreground layers are treated differently depending on their type. Control
packets, of type 15, are processed by the core to extract the width and height of each
layer and are discarded on the fly. Other packets, of type 1 to type 14, are propagated
unchanged.

The second step corresponds to the usual behavior of other Video and Image
Processing MegaCore functions that have an Avalon-MM slave interface.

After the non-image data packets from the background layer and the foreground
layers have been processed and/or propagated, the MegaCore function waits for the
Go bit to be set to 1 before reading the top left position of each layer.

Table 5–5. 2D Median Filter Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width As selected in the MegaWizard interface.

Frame Height As selected in the MegaWizard interface.

Interlaced/Progressive Progressive.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern One, two or three channels in sequence. For example, if three channels in sequence
is selected where a, b and g can be any color plane:

γβα
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–11
Alpha Blending Mixer
Consequently, the behavior of the Alpha Blending Mixer differs slightly from the
other Video and Image Processing MegaCore functions.

This behavior is illustrated by the following pseudo-code:

go = 0;
while (true)
{

status = 0;
read_non_image_data_packet_from background_layer();
read_control_first_pass(); // Check layer status

(disable/displayed/consumed)
for_each_layer layer_id
{

// process non-image data packets for displayed or consumed
layers

if (layer_id is not disabled)
{

handle_non_image_packet_from_foreground_layer(layer_id);
}

}
while (go != 1)

wait;
status = 1;
read_control_second_pass(); // Copies top-left coordinates to

internal registers
send_image_data_header();
process_frame();

}

When Alpha blending is on, the Avalon-ST input ports for the alpha channels expect
a video stream compliant with the Avalon-ST Video protocol. Alpha frames contain a
single color plane and are transmitted in video data packets. The first value in each
packet, transmitted while the startofpacket signal is high, contains the packet
type identifier 0. This holds true even when the width of the alpha channels data ports
is less than 4-bits wide. The last alpha value for the bottom-right pixel is transmitted
while the endofpacket signal is high.

It is not necessary to send control packets to the ports of the alpha channels. The
width and height of each alpha layer are assumed to match with the dimensions of the
corresponding foreground layer although the Alpha Blending Mixer MegaCore
function recovers gracefully in the case of a mismatch. All non-image data packets
(control packets included) are ignored and discarded just before the processing of a
frame starts.

For information about using Avalon-MM slave interfaces for run-time control in the
Video and Image Processing Suite, refer to “Avalon-MM Slave Interfaces” on
page 4–14. For details of the register map for the Alpha Blending Mixer MegaCore
function, refer to Table A–25 on page A–18.

The maximum number of image layers mixed cannot be changed dynamically and
must be set in the MegaWizard interface for the Alpha Blending Mixer. The valid
range of alpha coefficients is 0 to 1, where 1 represents full translucence, and 0
represents fully opaque.

For n-bit alpha values (RGBAn) coefficients range from 0 to 2n–1. The model
interprets (2n–1) as 1, and all other values as (Alpha value)/2n. For example, 8-bit
alpha value 255 => 1, 254 => 254/256, 253 => 253/256 and so on.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–12 Chapter 5: Functional Descriptions
Scaler
1 All input data samples must be in unsigned format. If the number of bits per pixel per
color plane is N, then each sample consists of N bits of data which are interpreted as
an unsigned binary number in the range [0, 2N – 1]. All output data samples produced
by the Alpha Blending Mixer MegaCore function are also in the same unsigned
format.

The Alpha Blending Mixer MegaCore function can process streams of pixel data of
the types shown in Table 5–6.

Scaler
The Scaler MegaCore function provides a means to resize video streams. It supports
nearest neighbor, bilinear, bicubic, and polyphase scaling algorithms.

The Scaler MegaCore function can be configured to change the input resolution using
control packets. It can also be configured to change the output resolution and/or filter
coefficients at run time using an Avalon-MM Slave interface.

For information about using Avalon-MM slave interfaces for run-time control in the
Video and Image Processing Suite, refer to “Avalon-MM Slave Interfaces” on
page 4–14. For details of the register map for the Scaler MegaCore function, refer to
Table A–26 on page A–19.

In the formal definitions of the scaling algorithms, the width and height of the input
image are denoted win and hin respectively. The width and height of the output image
are denoted wout and hout. F is the function which returns an intensity value for a
given point on the input image and O is the function which returns an intensity value
on the output image.

Nearest Neighbor Algorithm
The nearest-neighbor algorithm used by the scaler is the lowest quality method, and
uses the fewest resources. Jagged edges may be visible in the output image as no
blending takes place. However, this algorithm requires no DSP blocks, and uses fewer
logic elements than the other methods.

Table 5–6. Alpha Blending Mixer Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Run time controlled. (Maximum value specified in the MegaWizard interface.)

Frame Height Run time controlled. (Maximum value specified in the MegaWizard interface.)

Interlaced/Progressive Progressive. Interlaced data is accepted but the offset from the top edge for each
foreground layer has to be adapted in consequence.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface (specified separately
for image data and alpha blending).

Color Pattern (din & dout) One, two or three channels in sequence or in parallel as selected in the
MegaWizard interface. For example, if three channels in sequence is selected
where a, b and g can be any color plane:

Color Pattern (alpha_in) A single color plane representing the alpha value for each pixel:

γβα

A

Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–13
Scaler
Scaling down requires no on-chip memory; scaling up requires one line buffer of the
same size as one line from the clipped input image, taking account of the number of
color planes being processed. For example, up scaling an image which is 100 pixels
wide and uses 8-bit data with 3 colors in sequence but is clipped at 80 pixels wide,
needs 8 × 3 × 80 = 1920 bits of memory. Similarly, if the 3 color planes are in parallel,
the memory requirement is still 1920 bits.

For each output pixel, the nearest-neighbor method picks the value of the nearest
input pixel to the correct input position. Formally, to find a value for an output pixel
located at (i, j), the nearest-neighbor method picks the value of the nearest input pixel
to ((i+0.5) win/wout, (j+0.5) hin/hout).

The 0.5 values in this equation come from considering the coordinates of an image
array to be on the lines of a 2D grid, but the pixels to be equally spaced between the
grid lines that is, at half values.

This equation gives an answer relative to the mid-point of the input pixel and 0.5
should be subtracted to translate from pixel positions to grid positions. However, this
0.5 would then be added again so that later truncation performs rounding to the
nearest integer. Therefore no change is needed. The calculation performed by the
scaler is equivalent to the following integer calculation:

O(i, j) = F((2 × win × i + win)/(2 × wout), (2 × hin × j + hin)/(2 × hout))

Bilinear Algorithm
The bilinear algorithm used by the scaler is higher quality and more expensive than
the nearest-neighbor algorithm. The jaggedness of the nearest-neighbor method is
smoothed out, but at the expense of losing some sharpness on edges.

Resource Usage
The bilinear algorithm uses four multipliers per channel in parallel. The size of each
multiplier is either the sum of the horizontal and vertical fraction bits plus two, or the
input data bit width, whichever is greater. For example, with four horizontal fraction
bits, three vertical fraction bits, and eight-bit input data, the multipliers are nine-bit.

With the same configuration but 10-bit input data, the multipliers are 10-bit. Two line
buffers are used. As in nearest-neighbor mode, each of line buffers is the size of a
clipped line from the input image. The logic area used is more than that used by the
nearest-neighbor method.

Algorithmic Description
This section describes how the algorithmic operations of the bilinear scaler can be
modeled using a frame-based method. This does not reflect the implementation, but
allows the calculations to be presented concisely. To find a value for an output pixel
located at (i, j), we first calculate the corresponding location on the input:

ini = (i × win)/wout

inj = (j × hin)/hout
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–14 Chapter 5: Functional Descriptions
Scaler
The integer solutions,(⎣ini⎦, ⎣inj⎦) to these equations provide the location of the top-left
corner of the four input pixels to be summed. The differences between ini, inj and
(⎣ini⎦, ⎣inj⎦) are a measure of the error in how far the top-left input pixel is from the
real-valued position that we want to read from. Call these errors erri and errj. The
precision of each error variable is determined by the number of fraction bits chosen by
the user, Bfh and Bfv, respectively.

Their values can be calculated as:

where % is the modulus operator and max(a, b) is a function that returns the
maximum of two values.

The sum is then weighted proportionally to these errors. Note that because the values
are measured from the top-left pixel, the weights for this pixel are one minus the
error.

That is, in fixed-point precision: and

The sum is then:

Polyphase and Bicubic Algorithms
The polyphase and bicubic algorithms offer the best image quality, but use more
resources than the other modes of the scaler. They allow up scaling to be performed in
such a way as to preserve sharp edges, but without losing the smooth interpolation
effect on graduated areas.

For down scaling, a long polyphase filter can be used to reduce aliasing effects.

The bicubic and polyphase algorithms use different mathematics to derive their filter
coefficients, but the implementation of the bicubic algorithm is just the polyphase
algorithm with four vertical and four horizontal taps. In the following discussion, all
comments relating to the polyphase algorithm are applicable to the bicubic algorithm
assuming 4×4 taps.

Figure 5–4 on page 5–15 shows the flow of data through an instance of the scaler in
polyphase mode.

Data from multiple lines of the input image are assembled into line buffers–one for
each vertical tap. These data are then fed into parallel multipliers, before summation
and possible loss of precision. The results are gathered into registers–one for each
horizontal tap. These are again multiplied and summed before precision loss down to
the output data bit width.

1 The progress of data through the taps (line buffer and register delays) and the
coefficient values used in the multiplication are controlled by logic that is not present
in the diagram. This logic is described in “Algorithmic Description” on page 5–16.

erri
i win×()%wout() 2

Bfh×
max win wout,()

---=

errj
j hin×()%hout() 2

Bfv×
max hin hout,()

---=

2
Bfh erri– 2

Bfv errj–

O i j,() 2
Bfv Bfh+

× F ini inj,() 2
Bfh erri–() 2

Bfv errj–()××= + F ini 1 inj,+() erri 2
Bfv errj–()××

+ F ini inj, 1+() 2
Bfh erri–() errj×× + F ini 1 inj 1+,+() erri errj××
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–15
Scaler
Resource Usage
Consider an instance of the polyphase scaler with Nv vertical taps and Nh horizontal
taps. Bdata is the bit width of the data samples.

Bv is the bit width of the vertical coefficients and is derived from the user parameters
for the vertical coefficients. It is equal to the sum of integer bits and fraction bits for
the vertical coefficients, plus one if coefficients are signed.

Bh is defined similarly for horizontal coefficients. Pv and Ph are the user-defined
number of vertical and horizontal phases for each coefficient set.

Cv is the number of vertical coefficient banks and Ch the number of horizontal
coefficient banks.

The total number of multipliers is Nv + Nh per channel in parallel. The width of each
vertical multiplier is max(Bdata,Bv). The width of each horizontal multiplier is the
maximum of the horizontal coefficient width, Bh, and the bit width of the horizontal
kernel, Bkh.

The bit width of the horizontal kernel determines the precision of the results of
vertical filtering and is user-configurable. Refer to the Number of bits to preserve
between vertical and horizontal filtering parameter in Table A–10 on page A–6.

Figure 5–4. Polyphase Mode Scaler Block Diagram

Cv0

Bit Narrowing

Register Delay

Bit Narrowing

Line Buffer
Delay

Line Buffer
Delay

Register Delay

Ch0

Cv1 CvNv

Ch1 ChNh
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–16 Chapter 5: Functional Descriptions
Scaler
The memory requirement is Nv line-buffers plus vertical and horizontal coefficient
banks. As in the nearest-neighbor and bilinear methods, each line buffer is the same
size as one line from the clipped input image.

The vertical coefficient banks are stored in memory that is Bv bits wide and Pv×Nv×Cv
words deep. The horizontal coefficient banks are stored in memory that is Bh×Nh bits
wide and Ph×Ch words deep. For each coefficient type, the Quartus II software maps
these appropriately to physical on-chip RAM or logic elements as constrained by the
width and depth requirements.

1 If the horizontal and vertical coefficients are identical, they are stored in the
horizontal memory (as defined above). If you turn on Share horizontal /vertical
coefficients in the MegaWizard interface this setting is forced even when the
coefficients are loaded at run time.

Using multiple coefficient banks allows double-buffering, fast swapping, or direct
writing to the Scaler’s coefficient memories. The coefficient bank to be read during
video data processing and the bank to be written by the Avalon-MM interface are
specified separately at runtime (Refer to the control register map in Table A–26 on
page A–19). This means that you can accomplish double-buffering by performing the
following steps:

1. Select two memory banks at compile time.

2. At start-up run time, select a bank to write into (for example 0) and write the
coefficients.

3. Set the chosen bank (0) to be the read bank for the Scaler, and start processing.

4. For subsequent changes, write to the unused bank (1) and swap the read/write
banks between frames.

Choosing to have more memory banks allows for each bank to contain coefficients for
a specific scaling ratio and for coefficient changes to be accomplished very quickly by
changing the read bank. Alternatively, for memory-sensitive applications, a single
bank can be used and coefficient writes would have an immediate effect on data
processing.

Algorithmic Description
This section describes how the algorithmic operations of the polyphase scaler can be
modelled using a frame-based method. This description shows how the filter kernel is
applied and how coefficients are loaded, but is not intended to indicate how the
hardware of the scaler is designed.

The filtering part of the polyphase scaler works by passing a windowed sinc function
over the input data. For up scaling, this function performs interpolation. For down
scaling, it acts as a low-pass filter to remove high-frequency data that would cause
aliasing in the smaller output image.

During the filtering process, the mid-point of the sinc function should be at the
mid-point of the pixel to output. This is achieved be applying a phase shift to the
filtering function.

If a polyphase filter has Nv vertical taps and Nh horizontal taps, the filter is a Nv × Nh
square filter.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–17
Scaler
Counting the coordinate space of the filter from the top-left corner, (0, 0), the
mid-point of the filter lies at ((Nv –1)/2, (Nh -1)/2). As in the bilinear case, to produce
an output pixel at (i, j), the mid-point of the kernel is placed at (⎣ini⎦, ⎣inj⎦) where ini
and inj are calculated using the algorithmic description equations on page 5–13. The
difference between the real and integer solutions to these equations determines the
position of the filter function used during scaling.

The filter function is positioned over the real solution by adjusting the function’s
phase:

The results of the vertical filtering are then found by taking the set of coefficients from
phasej and applying them to each column in the square filter. Each of these Nh results
is then divided down to fit in the number of bits chosen for the horizontal kernel. The
horizontal kernel is applied to the coefficients from phasei, to produce a single value.
This value is then divided down to the output bit width before being written out as a
result.

Choosing and Loading Coefficients
The filter coefficients used by the polyphase mode of the scaler may be specified at
compile time or at run time. At compile time, the coefficients can be either selected
from a set of Lanczos-windowed sinc functions, or loaded from a comma-separated
variable (CSV) file.

At run time they are specified by writing to the Avalon-MM slave control port
(Table A–26 on page A–19).

When the coefficients are read at run time, they are checked once per frame and
double-buffered so that they can be updated as the MegaCore function processes
active data without causing corruption.

Figure 5–5 on page 5–18 shows how a 2-lobe Lanczos-windowed sinc function
(usually referred to as Lanczos 2) would be sampled for a 4-tap vertical filter.

1 The two lobes refer to the number of times the function changes direction on each side
of the central maxima, including the maxima itself.

The class of Lanczos N functions is defined as:

As can be seen in the figure, phase 0 centres the function over tap 1 on the x-axis. By
the equation above, this is the central tap of the filter. Further phases move the
mid-point of the function in 1/Pv increments towards tap 2. The filtering coefficients
applied in a 4-tap scaler for a particular phase are samples of where the function with
that phase crosses 0, 1, 2, 3 on the x-axis. The preset filtering functions are always
spread over the number of taps given. For example, Lanczos 2 is defined over the
range –2 to +2, but with 8 taps the coefficients are shifted and spread to cover 0 to 7.

phasei
i win×()%wout() Ph×

max win wout,()
---=

phasej
j hin×()%hout() Pv×

max hin hout,()
--=

LanczosN x()

1

0

πx()sin
πx

------------------- πx N⁄()sin
πx N⁄

⎩
⎨
⎧

=

x 0=

x 0 x N<∧≠
x N≥
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–18 Chapter 5: Functional Descriptions
Scaler
Compile-time custom coefficients are loaded from a CSV file. One CSV file is specified
for vertical coefficients and one for horizontal coefficients. For N taps and P phases,
the file must contain N × P values. The values must be listed as N taps in order for
phase 0, N taps for phase 1, up to the Nth tap of the Pth phase. Values do not need to
be presented with each phase on a separate line.

The values must be pre-quantized in the range implied by the number of integer,
fraction and sign bits specified in the MegaWizard interface, and have their fraction
part multiplied out. The sum of any two coefficients in the same phase must also be in
the declared range. For example, if there is 1 integer bit, 7 fraction bits, and a sign bit,
each value and the sum of any two values should be in the range [–256, 255]
representing the range [-2, 1.9921875].

In summary, you can generate a set of coefficients for an N-tap, P-phase instance of
the Scaler as follows:

1. Define a function, f(x) over the domain [0, N – 1] under the assumption that
(N – 1)/2 is the mid-point of the filter.

2. For each tap t ∈ {0, 1, . . . ,N – 1} and for each phase p ∈ {0, 1/P, . . . , (P – 1/P)},
sample f(t – p).

3. Quantize each sample. Ideally, the sum of the quantized values for all phases
should be equal.

4. Either store these in a CSV file and copy them into the MegaWizard interface, or
load them at run time using the control interface.

Coefficients for the bicubic algorithm are calculated using Catmull-Rom splines to
interpolate between values in tap 1 and tap 2.

f For detailed information about the mathematics used for Catmull-Rom splines refer
to E Catmull and R Rom. A class of local interpolating splines. Computer Aided Geometric
Design, pages 317–326, 1974.

Figure 5–5. Lanczos 2 Function at Various Phases

0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

phase(0)
phase(P

v
/2)

phase(P
v
−1)
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–19
Scaler
The bicubic method does not use the preceding steps, but instead obtains weights for
each of the four taps to sample a cubic function that runs between tap 1 and tap 2 at a
position equal to the phase variable described previously. Consequently, the bicubic
coefficients are good for up scaling, but not for down scaling.

If the coefficients are symmetric and provided at compile time, then only half the
number of phases are stored. For N taps and P phases, an array, C[P][N], of quantized
coefficients is symmetric if:

for all p Œ [1, P – 1] and for all t Œ [0, N – 1], C[p][t] = C[P – p][N – 1 – t]

That is, phase 1 is phase P – 1 with the taps in reverse order, phase 2 is phase P – 2
reversed and so on. The predefined Lanczos and bicubic coefficient sets satisfy this
property. Selecting Symmetric for a coefficients set on the Coefficients page in the
MegaWizard interface, forces the coefficients to be symmetric.

Recommended Parameters
In polyphase mode, you must choose parameters for the Scaler Megacore function
carefully to get the best image quality.

Incorrect parameters can cause a decrease in image quality even as the resource usage
increases. The parameters which have the largest effect are the number of taps and the
filter function chosen to provide the coefficients. The number of phases and number
of bits of precision used are less important to the image quality.

Table 5–7 summarizes some recommended values for parameters when using the
Scaler in polyphase mode.

The Scaler MegaCore function can process streams of pixel data of the types shown in
Table 5–8.

Table 5–7. Recommended Parameters for the Scaler Megacore Function

Scaling Problem Taps Phases Precision Coefficients

Scaling up with any input/output resolution 4 16 Signed, 1 integer bit, 7 fraction bits Lanczos-2, or
Bicubic

Scaling down from M pixels to N pixels 16 Signed, 1 integer bit, 7 fraction bits Lanczos-2

Scaling down from M pixels to N pixels
(lower quality)

16 Signed, 1 integer bit, 7 fraction bits Lanczos-1

M 4×
N

M 2×
N

Table 5–8. Scaler Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Maximum frame width is specified in the MegaWizard interface, the actual value is read from
control packets.

Frame Height Maximum frame height is specified in the MegaWizard interface, the actual value is read from
control packets.

Interlaced/Progressive Progressive.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern One, two or three channels in sequence or in parallel as selected in the MegaWizard
interface. For example, if three channels in sequence is selected where a, b and g can
be any color plane:

γβα
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–20 Chapter 5: Functional Descriptions
Clipper
Clipper
The Clipper MegaCore function provides a means to select an active area from a video
stream and discard the remainder.

The active region can be specified by either providing the offsets from each border, or
by providing a point to be the top-left corner of the active region along with the
region's width and height.

The Clipper can deal with changing input resolutions by reading Avalon-ST Video
control packets. An optional Avalon-MM interface allows the clipping settings to be
changed at runtime.

The Clipper MegaCore function can process streams of pixel data of the types shown
in Table 5–9.

Deinterlacer
The Deinterlacer MegaCore function converts interlaced video to progressive video
using bob, weave, or motion-adaptive methods. In addition, the Deinterlacer can
provide double or triple-buffering in external RAM. Buffering is required by the
motion-adaptive and weave methods and can be selected if desired when using a bob
method.

You can configure the Deinterlacer to produce one output frame for each input field
or to produce one output frame for each input frame (a pair of two fields). For
example, if the input video stream is NTSC video with 60 interlaced fields per second,
the former configuration outputs 60 frames per second but the latter outputs 30
frames per second.

When you select a frame buffering mode, the Deinterlacer output is calculated in
terms of the current field and possibly some preceding fields. For example, the bob
algorithm uses the current field, whereas the weave algorithm uses both the current
field and the one which was received immediately before it. When producing one
output frame for every input field, each field in the input frame takes a turn at being
the current field.

Table 5–9. Clipper Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Maximum frame width is specified in the MegaWizard interface, the actual value is read from
control packets.

Frame Height Maximum frame height is specified in the MegaWizard interface, the actual value is read from
control packets.

Interlaced/Progressive Either.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern One, two or three channels in sequence or in parallel as selected in the MegaWizard
interface. For example, if three channels in sequence is selected where a, b and g can
be any color plane:

γβα
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–21
Deinterlacer
However, if one output frame is generated for each pair of interlaced fields then the
current field moves two fields through the input stream for each output frame. This
means that the current field is either always a F0 field (defined as a field which
contains the top line of the frame) or always a F1 field. The Deinterlacer MegaCore
function allows the choice of F0 or F1 to be made at compile time.

Deinterlacing Methods
The Deinterlacer MegaCore function supports four deinterlacing methods:

■ Bob with scanline duplication

■ Bob with scanline interpolation

■ Weave

■ Motion-adaptive

Bob with Scanline Duplication
The bob with scanline duplication algorithm is the simplest and cheapest in terms of
logic. Output frames are produced by simply repeating every line in the current field
twice. Because only the current field is used, if the output frame rate is selected to be
the same as the input frame rate then half of the input fields are discarded.

Bob with Scanline Interpolation
The bob with scanline interpolation algorithm has a slightly higher logic cost than bob
with scanline duplication but offers significantly better quality.

Output frames are produced by filling in the missing lines from the current field with
the linear interpolation of the lines above and below them. At the top of an F1 field or
the bottom of an F0 field there is only one line available so it is just duplicated.
Because only the current field is used, if the output frame rate is selected to be the
same as the input frame rate then half of the input fields are discarded.

Weave
Weave deinterlacing creates an output frame by filling all of the missing lines in the
current field with lines from the previous field. This option gives good results for still
parts of an image but unpleasant artefacts in moving parts.

The weave algorithm requires external memory, so either double or triple-buffering
must be selected. This makes it significantly more expensive in logic elements and
external RAM bandwidth than either of the bob algorithms, if external buffering is not
otherwise required.

The results of the weave algorithm can sometimes be perfect, in the instance where
pairs of interlaced fields have been created from original progressive frames. Weave
simply stitches the frames back together and the results are the same as the original,
as long as output frame rate equal to input frame rate is selected and the correct pairs
of fields are put together. Usually progressive sources split each frame into a pair
consisting of an F0 field followed by an F1 field, so selecting F1 to be the current field
often yields the best results.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–22 Chapter 5: Functional Descriptions
Deinterlacer
Motion-Adaptive
The Deinterlacer MegaCore function provides a simple motion-adaptive algorithm.
This is the most sophisticated of the algorithms provided but also the most expensive,
both in terms of logic area and external memory bandwidth requirement.

This algorithm avoids the weaknesses of bob and weave algorithms by using a form
of bob deinterlacing for moving areas of the image and weave style deinterlacing for
still areas. To achieve this, the algorithm fills in the rows that are missing in the
current field by calculating a function of other pixels in the current field and the three
preceding fields as shown in the following sequence:

1. Pixels are collected from the current field and the three preceding it (the X denotes
the location of the desired output pixel) as shown in Figure 5–6.

2. These pixels are assembled into two 3×3 groups of pixels and the minimum
absolute difference of the two groups as shown in Figure 5–7.

3. The minimum absolute difference value is normalized into the same range as the
input pixel data. If the Motion bleed algorithm is selected, the motion value is
compared with a recorded motion value for the same location in the previous
frame. If it is greater, the new value is kept, but if the new value is less than the
stored value, the motion value used is the mean of the two values. This reduces
unpleasant flickering artefacts but increases the memory usage and memory
bandwidth requirements.

4. Two pixels are selected for interpolation by examining the 3×3 group of pixels
from the more recent two fields for edges. If a diagonal edge is detected, the two
pixels from the current field that lie on the diagonal are selected, otherwise the
pixels directly above and below the output pixel are chosen.

5. The output pixel is calculated using a weighted mean of the interpolation pixels
and the equivalent to the output pixel in the previous field as follows:

Figure 5–6. Pixel Collection for the Motion-Adaptive Algorithm

Figure 5–7. Pixel Assembly for the Motion-Adaptive Algorithm

Current Field (C)C - 1C - 2C - 3

X

Previous Frame Current Frame

Motion = MAD

,

+ (1 - M) . Still PixelOutput Pixel = M .
2

Upper Pixel + Lower Pixel
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–23
Deinterlacer
The motion-adaptive algorithm requires the buffering of two frames of data before it
can produce any output. For this reason, the Deinterlacer always consumes the three
first fields it receives at start up and after a change of resolution without producing
any output.

Pass-Through Mode for Progressive Frames
In its default configuration, the Deinterlacer discards progressive frames. This
behavior can be changed if you want a data path compatible with both progressive
and interlaced inputs and where run-time switching between the two types of input is
allowed. When the deinterlacer is configured to let progressive frames pass through,
the deinterlacing algorithm in use (bob, weave or motion-adaptive) propagates
progressive frames unchanged. The double/triple-buffering function is maintained
while propagating progressive frames.

1 Enabling the propagation of progressive frames has an impact on memory usage in all
the parameterizations of the bob algorithm that use buffering. The motion-adaptive
algorithm writes and reads motion values from the memory uninterruptedly, even
when progressive frames are passed on unchanged.

Frame Buffering
The Deinterlacer MegaCore function also allows frame buffering in external RAM to
be configured at compile time. When using either of the two bob algorithm subtypes,
no buffering, double-buffering, or triple-buffering can be selected. The weave and
motion-adaptive algorithms require some external frame buffering, and in those cases
only double-buffering or triple-buffering can be selected.

When no buffering is chosen, input pixels flow into the Deinterlacer through its input
port and, after some delay, calculated output pixels flow out through the output port.
When double-buffering is selected, two frame buffers are used in external RAM.
Input pixels flow through the input port and into one buffer while pixels are read
from the other buffer, processed and output.

When both the input and output sides have finished processing a frame, the buffers
swap roles so that the frame which has just been input can be used by the output. The
frame which has just been used to create output can then be overwritten with fresh
input.

The motion-adaptive algorithm uses four fields to build a progressive output frame
and the output side has to read pixels from two frame buffers rather than one.
Consequently, the motion-adaptive algorithm actually uses three frame buffers in
external RAM when double-buffering is selected. When the input and output sides
have finished processing a frame, the output side exchanges its buffer containing the
oldest frame, frame n-2, with the frame just received at the input side, frame n, but it
keeps frame n-1 for one extra iteration because it is used along with frame n to
produce the next output.

When triple-buffering is in use, three frame buffers are usually used in external RAM.
Four frame buffers are used when the motion-adaptive algorithm is selected for the
reasons described in the previous paragraph. At any time, one buffer is in use by the
input and one (two for the motion adaptive case) is (are) in use by the output in the
same way as the double-buffering case. The last frame buffer is spare.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–24 Chapter 5: Functional Descriptions
Deinterlacer
This configuration allows the input and output sides to swap asynchronously. When
the input has finished, it swaps with the spare frame if the spare frame contains data
which has already been used by the output frame. Otherwise the frame which has just
been written is dropped and a fresh frame is written over the dropped frame.

When the output has finished, it also swaps with the spare frame and continues
provided that the spare frame contains fresh data from the input side, otherwise it
does not swap and just repeats the last frame.

Triple-buffering therefore allows simple frame rate conversion. For example, suppose
the Deinterlacer’s input is connected to a HDTV video stream in 1080i60 format and
its output is connected to a 1080p50 monitor. The input has 60 interlaced fields per
second, but the output tries to pull 50 progressive frames per second.

If you configure the Deinterlacer to output one frame for each input field, it produces
60 frames of output per second. If triple-buffering is enabled, then on average one
frame in six is dropped so that 50 frames per second are produced. If the chosen
configuration is one frame output for every pair of fields input, the Deinterlacer
produces 30 frames per second output and triple-buffering leads to two out of every
three frames being repeated on average.

When double or triple-buffering is selected the Deinterlacer has two or more
Avalon-MM master ports. These must be connected to an external memory with
enough space for all of the frame buffers required. The amount of space varies
depending on the type of buffering and algorithm selected. An estimate of the
required memory is shown in the Deinterlacer MegaWizard interface.

If the external memory in your system runs at a different clock rate to the Deinterlacer
MegaCore function, you can turn on an option to use a separate clock for the
Avalon-MM master interfaces and use the memory clock to drive these interfaces.

Frame Rate Conversion
When triple-buffering is selected, the decision to drop and repeat frames is based on
the status of the spare buffer. Because the input and output sides are not tightly
synchronized, the behavior of the Deinterlacer is not completely deterministic and
can be affected by the burstiness of the data in the video system. This may cause
undesirable glitches or jerky motion in the video output. By using a double-buffer and
controlling the dropping/repeating behavior, the input and output can be kept
synchronized. For example, if the input has 60 interlaced fields per second, but the
output requires 50 progressive frames per second (fps), setting the input frame rate to
30 fps and the output frame rate at 50 fps guarantees that exactly one frame in six is
dropped.

To control the dropping/repeating behavior and to synchronize the input and output
sides, you must select double-buffering mode and turn on Runtime control for
locked frame rate conversion in the Parameter Settings page of the MegaWizard
interface. The input and output rates can be selected and changed at run time.
Table A–30 on page A–22 describes the control register map.

The rate conversion algorithm is fully compatible with a progressive input stream
when the progressive passthrough mode is enabled but it cannot be enabled
simultaneously with the run-time override of the motion-adaptive algorithm.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–25
Deinterlacer
Behavior When Unexpected Fields are Received
So far, the behavior of the Deinterlacer has been described assuming an uninterrupted
sequence of pairs of interlaced fields (F0, F1, F0, …). Some video streams might not
follow this rule and the Deinterlacer adapts its behavior in such cases.

The dimensions and type of a field (progressive, interlaced F0, or interlaced F1) are
identified using information contained in Avalon-ST Video control packets. When a
field is received without control packets, its type is defined by the type of the previous
field. A field following a progressive field is assumed to be a progressive field and a
field following an interlaced F0 or F1 field is respectively assumed to be an interlaced
F1 or F0 field. If the first field received after reset is not preceded by a control packet, it
is assumed to be an interlaced field and the default initial field (F0 or F1) specified in
the MegaWizard interface is used.

When the weave or the motion-adaptive algorithms are used, a regular sequence of
pairs of fields is expected. Subsequent F0 fields received after an initial F0 field or
subsequent F1 fields received after an initial F1 field are immediately discarded.

When the bob algorithm is used and synchronization is done on a specific field (input
frame rate = output frame rate), the field that is constantly unused is always
discarded. The other field is used to build a progressive frame, unless it is dropped by
the triple-buffering algorithm.

When the bob algorithm is used and synchronization is done on both fields (input
field rate = output frame rate), the behavior is dependent on whether buffering is
used. If double or triple-buffering is used, the bob algorithm behaves like the weave
and motion-adaptive algorithms and a strict sequence of F0 and F1 fields is expected.
If two or more fields of the same type are received successively, the extra fields are
dropped. When buffering is not used, the bob algorithm always builds an output
frame for each interlaced input field received regardless of its type.

If pass- through mode for progressive frames has not been selected, the Deinterlacer
immediately discards progressive fields in all its parameterizations.

Handling of Avalon-ST Video Control Packets
When buffering is used, the Deinterlacer MegaCore function stores non-image data
packets in memory as described in “Buffering of Non-Image Data Packets in
Memory” on page 4–17.

Control packets and user packets are never repeated and they are not dropped as long
as memory space is sufficient. In all parameterizations, including those that do not
use buffering in external memory, the Deinterlacer MegaCore function does not
discard nor modify the control packets associated with the incoming interlaced fields.
However, an additional control packet containing the correct frame height and the
proper interface flag for progressive fields is inserted just before the frame so that the
image data packet is interpreted correctly by following MegaCore functions.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–26 Chapter 5: Functional Descriptions
Frame Buffer
The Deinterlacer MegaCore function can process streams of pixel data of the types
shown in Table 5–10.

Frame Buffer
The Frame Buffer MegaCore function buffers video frames in external RAM. When
frame dropping and frame repeating are not allowed, the Frame Buffer provides a
double-buffering function that can be useful to solve throughput issues in the data
path. When frame dropping and/or frame repeating are allowed, the Frame Buffer
provides a triple-buffering function and can be used to perform simple frame rate
conversion.

The Frame Buffer is built with two basic blocks: a writer which stores input pixels in
memory and a reader which retrieves video frames from the memory and outputs
them.

Figure 5–8 shows a simple block diagram of the Frame Buffer Megacore function.

When double-buffering is in use, two frame buffers are used in external RAM. At any
time, one buffer is used by the writer component to store input pixels, while the
second buffer is locked by the reader component that reads the output pixels from the
memory.

Table 5–10. Deinterlacer Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Run time controlled. (Maximum value specified in the MegaWizard interface.)

Frame Height Run time controlled. (Maximum value specified in the MegaWizard interface.)

Interlaced/Progressive Interlaced input, Progressive output.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern One, two or three channels in sequence or in parallel as selected in the MegaWizard
interface. For example, if three channels in sequence is selected where a, b and g can
be any color plane:

γβα

Figure 5–8. Frame Buffer Block Diagram

Memory
Writer

Memory
ReaderAvalon-ST Input

(din)
Avalon-ST Output
(dout)

DDR2

Arbitration Logic

Avalon-MM Master
(read_master)

Avalon-MM Master
(write_master)
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–27
Frame Buffer
When both the writer and the reader components have finished processing a frame,
the buffers are exchanged. The frame that has just been input can then be read back
from the memory and sent to the output, while the buffer that has just been used to
create the output can be overwritten with fresh input.

A double-buffer is typically used when the frame rate is the same both at the input
and at the output sides but the pixel rate is highly irregular at one or both sides.

A double-buffer is often used when a frame has to be received or sent in a short
period of time compared with the overall frame rate. For example, after the Clipper
MegaCore function or before one of the foreground layers of the Alpha Blending
Mixer MegaCore function.

When triple-buffering is in use, three frame buffers are used in external RAM. As was
the case in double-buffering, the reader and the writer components are always locking
one buffer to respectively store input pixels to memory and read output pixels from
memory. The third frame buffer is a spare buffer that allows the input and the output
sides to swap buffers asynchronously. The spare buffer is considered clean if it
contains a fresh frame that has not been output, or dirty if it contains an old frame that
has already been sent by the reader component.

When the writer has finished storing a frame in memory, it swaps its buffer with the
spare buffer if the spare buffer is dirty. The buffer locked by the writer component
becomes the new spare buffer and is clean because it contains a fresh frame. If the
spare buffer is already clean when the writer has finished writing the current input
frame and if dropping frames is allowed, then the writer drops the frame that has just
been received and overwrites its buffer with the next incoming frame. If dropping
frames is not allowed, the writer component stalls until the reader component has
finished its frame and replaced the spare buffer with a dirty buffer.

Similarly, when the reader has finished reading and has output a frame from
memory, it swaps its buffer with the spare buffer if the spare buffer is clean. The buffer
locked by the reader component becomes the new spare buffer and is dirty because it
contains an old frame that has been sent previously. If the spare buffer is already dirty
when the reader has finished the current output frame and if repeating frames are
allowed, the reader immediately repeats the frame that has just been sent.

If repeating frames are not allowed, the reader component stalls until the writer
component has finished its frame and replaced the spare buffer with a “clean” buffer.

Triple-buffering therefore allows simple frame rate conversion to be performed when
the input and the output are pushing and pulling frames at different rates.

Handling of Avalon-ST Video Control Packets
The Frame Buffer MegaCore function stores non-image data packets in memory as
described in “Buffering of Non-Image Data Packets in Memory” on page 4–17.
Control packets and user packets are never repeated and they are not dropped as long
as the memory space is sufficient.

When a frame is dropped by the writer, the non-image data packets that preceded it
are kept and sent with the next frame that is not dropped. When a frame is repeated
by the reader, it is repeated without the packets that preceded it.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–28 Chapter 5: Functional Descriptions
Line Buffer Compiler
The Frame Buffer MegaCore function propagates Avalon-ST Video control packets
without reading them and relies exclusively on the startofpacket and
endofpacket signals to delimit the frame boundaries. The Frame Buffer can
consequently handle mislabelled frames seamlessly, but this comes with a small cost.
The Frame Buffer cannot predict when the endofpacket signal is received, and if the
dimensions of a field do not match the maximum width and height specified at
compile time in the MegaWizard interface, some extra unused data may be written in
memory to conclude a transaction (at most one line of data).

The Frame Buffer does not differentiate between interlaced and progressive fields.
When interlaced fields are received, the Frame Buffer buffers, drops or repeats fields
independently, and support for the interlaced video stream is consequently
incomplete.

The Frame Buffer MegaCore function can process streams of pixel data of the type
shown in Table 5–11.

Line Buffer Compiler
FPGA memory is a valuable resource for many video and imaging applications,
particularly when developing systems that require high-definition resolutions and
high-order-accuracy algorithms.

The Line Buffer Compiler provides an efficient means to map line buffers to Altera
on-chip memories.

An example of the logic structure produced by the Line Buffer Compiler is shown in
Figure 5–9.

Table 5–11. Frame Buffer Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Run time controlled. Maximum value selected in the MegaWizard interface.

Frame Height Run time controlled. Maximum value selected in the MegaWizard interface.

Interlaced/Progressive Progressive, although interlaced data can be accepted in some cases.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern Any combination of one, two or three channels in each of sequence or parallel. For
example, if three channels in sequence is selected where a, b and g can be any color
plane:

γβα

Figure 5–9. Example of the Line Buffer Compiler Logic

Line Buffer 0

Line Buffer 1

Line Buffer 2

din 7:0 dout 7:0

dout 15:8

dout 23:16

clock

enable

reset
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–29
Line Buffer Compiler
In this example, there are three line buffers, each of which is eight bits wide. It is
possible to use the Line Buffer Compiler MegaCore function to create similar
structures with up to sixteen line buffers, each up to 64 bits in width.

When enable is asserted, data flows into the module through the din port and
passes through each of the line buffers in sequence.

The output of all of the line buffers is concatenated together into a bus of size
(number of line buffers) × (line buffer width) bits which can be read at any time.

Unlike the other MegaCore functions in the Video and Image Processing Suite, the
Line Buffer Compiler does not provide an Avalon-ST Video protocol based data
interface.

Figure 5–10 shows a timing diagram illustrating how a Line Buffer Compiler
MegaCore function such as the one shown in Figure 5–9 would process data if the
length of each line was set to 720 pixels.

The sequence of events (at 1, 2, 3, 722, 723 1442, 2162 and 2163 cycles) is shown in
Figure 5–10 is as follows:

1. reset is deasserted synchronous to clock and the MegaCore function
becomes ready for use. The contents of all of the line buffers is undefined, as
is the state of the output, dout.

2. enable is driven high and the value 9 is driven onto the input bus din. This
value is captured and stored in the first location of the first line buffer.

3. enable stays high and the value 7 is driven onto the input bus. All of the
data in all of the line buffers (currently just the 9) moves along one place and
7 moves into the first location of the first line buffer.

722. 720 enabled clock cycles after the value 9 was captured on the input bus din,
the value 9 is driven on to the output of the first line buffer. This is connected
to the bottom eight bits of dout. The number 37 is driven on to the input.

Figure 5–10. Timing diagram Illustrating a Line Buffer Compiler in Use

clock

reset

enable

din

dout

23:16

15:8

7:0 9

37 389 7 25

7 37

9

80

9

37

25

9

37

25

1 2 3 722 723 1442 2162 2163
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–30 Chapter 5: Functional Descriptions
Clocked Video Input
723. The second input value, a 7, reaches the end of the first line buffer and is
visible in the bottom eight bits of dout. The value 9 is now in the first
location in the second line buffer.

1442. 1440 enabled clock cycles after the value 9 was captured on the input it
reaches the end of the second line buffer and is output on the middle eight
bits of dout. 37 has reached the end of the first line buffer and is driven on to
the low eight bits. The value 25 is driven on to the input.

2162. 2160 enabled clock cycles after the value 9 was captured it reaches the end of
the last line buffer and is driven on to the top eight bits of dout. The middle
and bottom sets of eight bits of dout show the data words captured 720 and
1440 enabled clock cycles after it, respectively.

2163. When enable is deasserted, any input value on din is not captured and the
contents of the line buffers remains unchanged. It is still possible to read the
same output values from dout.

Clocked Video Input
The Clocked Video Input MegaCore function converts from clocked video formats
(such as BT656 and DVI) to Avalon-ST Video.

The Clocked Video Input strips the incoming clocked video of horizontal and vertical
blanking, leaving only active picture data, and using this data with the horizontal and
vertical sync information creates the necessary Avalon-ST Video control and active
picture packets. No conversion is done to the active picture data, the color plane
information remains the same as in the clocked video format.

The Clocked Video Input converts clocked video to the flow controlled Avalon-ST
Video protocol. It also provides clock crossing capabilities to allow video formats
running at different frequencies to enter the system.

In addition, the Clocked Video Input provides a number of status registers that
provide feedback on the format of video entering the system (resolution, and
interlaced or progressive mode) and a status interrupt that can be used to determine
when the video format changes or is disconnected.

Video Formats
The Clocked Video Input MegaCore function accepts the following clocked video
formats:

■ Video with sync information embedded in the data (in BT656 format)

■ Video with separate sync (H sync, Vsync) signals

Embedded Sync Format
BT656 uses time reference signal (TRS) codes in the video data to mark the places
where sync information is inserted in the data.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–31
Clocked Video Input
These codes are made up of values that are not present in the video portion of the data
and take the format shown in Figure 5–11.

A BT656 interface can use 8 bits or 10 bits of multiplexed Y’CbCr data. To convert
from the 10-bit to the 8-bit version, remove the two LSBs.

The XYZ word contains the sync information and the relevant bits of it's format are
shown in Table 5–12.

For the embedded sync format, the vid_datavalid signal is used to indicate a valid
BT656 sample as shown in Figure 5–12. The Clocked Video Input MegaCore function
only reads the vid_data signal when vid_datavalid is 1.

Separate Sync Format
The separate sync format uses separate signals to indicate the blanking, sync, and
field information. For this format, the vid_datavalid signal behaves slightly
differently from in embedded sync format.

Figure 5–11. Time Reference Signal Format

Table 5–12. XYZ Word Format

10-bit 8-bit Description

Unused [5:0] [3:0] These bits are not inspected by the Clocked Video Input MegaCore
function.

H (sync) 6 4 When 1, the video is in a horizontal blanking period.

V (sync) 7 5 When 1, the video is in a vertical blanking period.

F (field) 8 6 When 1, the video is interlaced and in field 1. When 0, the video is
either progressive or interlaced and in field 0.

Unused 9 7 These bits are not inspected by the Clocked Video Input MegaCore
function.

Figure 5–12. vid_datavalid Timing

3FF XYZ00

TRS (10bit)

D0 D1vid_data

vid_datavalid
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–32 Chapter 5: Functional Descriptions
Clocked Video Input
The Clocked Video Input MegaCore function only reads vid_data when
vid_datavalid is high (as in the embedded sync format) but it treats each read
sample as active picture data.

Table 5–13 describes the signals and Figure 5–13 shows the timing.

Video Locked Signal
The vid_locked signal indicates that the clocked video stream is active. When the
signal has a value of 1, the Clocked Video Input MegaCore function takes the input
clocked video signals as valid and reads and processes them as normal.

When the signal has a value of 0 (if for example the video cable is disconnected or the
video interface is not receiving a signal) the Clocked Video Input MegaCore function
takes the input clocked video signals as invalid and does not process them.

If the vid_locked signal goes invalid while a frame of video is being processed, the
Clocked Video Input MegaCore function ends the frame of video early.

Control Port
If you turn on Use control port in the MegaWizard interface for the Clocked Video
Input, its Avalon-ST Video output can be controlled using the Avalon-MM slave
control port.

Initially, the MegaCore function is disabled and does not output any data. However,
it still detects the format of the clocked video input and raises interrupts.

Table 5–13. Clocked Video Input Signals for Separate Sync Format Video

Signal Name Description

vid_datavalid When asserted the video is in an active picture period (not horizontal or
vertical blanking).

vid_h_sync When 1, the video is in a horizontal sync period.

vid_v_sync When 1, the video is in a vertical sync period.

vid_f When 1, the video is interlaced and in field 1. When 0, the video is either
progressive or interlaced and in field 0.

Figure 5–13. Separate Sync Signals Timing

vid_datavalid

D0 DNvid_data D1 Dn+2Dn+1

vid_v_sync

vid_h_sync

vid_f
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–33
Clocked Video Input
The sequence for starting the output of the MegaCore function is as follows:

1. Write a 1 to Control register bit 0.

2. Read Status register bit 0. When this is a 1, the MegaCore function outputs data.
This occurs on the next start of frame or field that matches the setting of the Field
order in the MegaWizard interface.

The sequence for stopping the output of the MegaCore function is as follows:

1. Write a 0 to Control register bit 0.

2. Read Status register bit 0. When this is a 0, the MegaCore function has stopped
data output. This occurs on the next end of frame or field that matches the setting
of the Field order in the MegaWizard interface.

The starting and stopping of the MegaCore function is synchronized to a frame or
field boundary.

Table 5–14 shows the output of the MegaCore function with the different Field order
settings.

Format Detection
The Clocked Video Input MegaCore function detects the format of the incoming
clocked video and uses it to create the Avalon-ST Video control packet. It also
provides this information in a set of registers.

The MegaCore function can detect the following different aspects of the incoming
video stream:

■ Active picture width (in samples)—The MegaCore function counts the number of
samples per line in the active picture period. The MegaCore function requires one
full line of video before it can determine the width.

■ Active picture height (in lines)—The MegaCore function counts the number of
lines per frame or field in the active picture period. The MegaCore function
requires one full frame or field of video before it can determine the height.

■ Interlaced/Progressive—The MegaCore function detects whether the incoming
video is interlaced or progressive. If it is interlaced, the MegaCore function stores
separate width and height values for both fields. The MegaCore function requires
two full frames or fields of video before it can determine whether the source is
interlaced or progressive.

Table 5–14. Sync Settings

Video Format Field Order Output

Interlaced F1 first Start, F0, F1, ..., F0, F1, Stop

Interlaced F0 first Start, F1, F0, ..., F1, F0, Stop

Interlaced Any field first Start, F0 or F1, ... F0 or F1, Stop

Progressive F1 first No output

Progressive F0 first Start, F0, F0,, F0, F0, Stop

Progressive Any field first Start, F0, F0,, F0, F0, Stop
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–34 Chapter 5: Functional Descriptions
Clocked Video Input
If the MegaCore function has not yet determined the format of the incoming video, it
uses the values specified in the Avalon-ST Video Initial/Default Control Packet
section of the MegaWizard interface.

After determining an aspect of the incoming videos format, the MegaCore function
enters the value in the respective register, sets the registers valid bit in the Status
register, and triggers the status update interrupt.

Table 5–15 shows the sequence for a 1080i incoming video stream.

Interrupt
The Clocked Video Input MegaCore function outputs a single interrupt line which is
the OR of the following internal interrupts:

■ The status update interrupt—Triggers when the Status register is updated due
to a detection of an aspect of the incoming video stream. The interrupt also
triggers if it detects a loss of the vid_locked signal (if, for example, the video
cable is removed). In this case, all the valid bits in the Status register are set to 0.

■ Stable video interrupt—Triggers when the incoming video has had a consistent
format for two frames.

Both interrupts can be independently enabled using bits [2:1] of the Control register.
Their values can be read using bits [2:1] of the Status register and a write of 1 to
either of those bits clears the respective interrupt.

Overflow
Moving between the domain of clocked video and the flow controlled world of
Avalon-ST Video can cause problems if the flow controlled world does not accept
data at a rate fast enough to satisfy the demands of the incoming clocked video.

The Clocked Video Input MegaCore function contains a FIFO that, when set to a large
enough value, can accommodate any bursts in the flow data, as long as the input rate
of the upstream Avalon-ST Video components is equal to or higher than that of the
incoming clocked video.

Table 5–15. Resolution Detection Sequence for a 1080i Incoming Video Stream

Status F0SampleCount F0LineCount F1SampleCount F1LineCount Description

0000000000 0 0 0 0 Start of incoming video.

0000001010 1,920 0 0 0 F0 - after one line of active
picture (interrupt triggers).

0000011010 1,920 1,080 0 0 F0 - after one field of active
picture (interrupt triggers).

0000111010 1,920 1,080 1,920 0 F1 - after one line of active
picture (interrupt triggers).

0011111010 1,920 1,080 1,920 1,080 F1 - after one field of active
picture (interrupt triggers).

0111111110 1,920 1,080 1,920 1,080 After 2 full frames of active
picture the stable bit is set
(interrupt triggers).
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–35
Clocked Video Output
If this is not the case, the FIFO overflows. If overflow occurs, the MegaCore function
outputs an early endofpacket signal to complete the current frame. It then waits for
the next start of frame (or field) before re-synchronizing to the incoming clocked
video and beginning to output data again.

The overflow is recorded in bit [9] of the Status register. This bit is sticky, and if an
overflow occurs, stays at 1 until the bit is cleared by writing a 0 to it.

In addition to the overflow bit, the current level of the FIFO can be read from the
UsedW register.

Timing Constraints
To constrain the Clocked Video Output MegaCore function correctly, add the
following file to your Quartus II project:

 <install_dir>\ip\clocked_video_input\lib\alt_vip_cvi.sdc

Clocked Video Output
The Clocked Video Output MegaCore function converts Avalon-ST Video to clocked
video formats (such as BT656 and DVI). It formats Avalon-ST Video into clocked
video by inserting horizontal and vertical blanking and generating horizontal and
vertical sync information using the Avalon-ST Video control and active picture
packets.

No conversion is done to the active picture data, the color plane information remains
the same as in the Avalon-ST Video format.

The Clocked Video Output MegaCore function converts data from the flow controlled
Avalon-ST Video protocol to clocked video. It also provides clock crossing capabilities
to allow video formats running at different frequencies to be output from the system.

In addition, this MegaCore function provides a number of configuration registers that
control the format of video leaving the system (blanking period size, sync length, and
interlaced or progressive mode) and a status interrupt that can be used to determine
when the video format changes.

Video Formats
The Clocked Video Output MegaCore function creates the following clocked video
formats:

■ Video with sync information embedded in the data (in BT656 format)

■ Video with separate sync (h sync, v sync) signals

The Clocked Video Output MegaCore function creates a video frame consisting of
horizontal and vertical blanking (containing syncs) and areas of active picture (taken
from the Avalon-ST Video input).

The format of the video frame is shown in Figure 5–14 on page 5–36 for progressive
and Figure 5–15 on page 5–36 for interlaced.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–36 Chapter 5: Functional Descriptions
Clocked Video Output
Figure 5–14. Progressive Frame Format

Figure 5–15. Interlaced Frame Format

Vertical Blanking

F0 Active Picture
H

or
iz

on
ta

l B
la

nk
in

g

Horizontal Sync

V
er

tic
al

 S
yn

c

Width

H
ei

gh
t

Vertical Blanking

F0 Active Picture

H
or

iz
on

ta
l B

la
nk

in
g

Horizontal Sync

V
er

tic
al

 S
yn

c

F0 Vertical Blanking

F1 Active Picture

Width H
ei

gh
t

Width

H
ei

gh
t

F
ie

ld
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–37
Clocked Video Output
Embedded Sync Format
For the embedded sync format, the MegaCore function inserts the horizontal and
vertical syncs and field into the data stream during the horizontal blanking period
(Table 5–12 on page 5–31).

A sample is output for each clock cycle on the vid_data bus. The vid_datavalid
signal is used to indicate when the vid_data video output is in an active picture
period of the frame.

There are two extra signals that are only used when connecting to the SDI MegaCore
function. They are vid_trs, which is high during the 3FF sample of the TRS, and
vid_ln, which outputs the current SDI line number. These are used by the SDI
MegaCore function to insert line numbers and cyclical redundancy checks (CRC) into
the SDI stream as specified in the 1.5Gbps HD SDI and 3Gbps SDI standards.

Separate Sync Format
For the separate sync format, the MegaCore function outputs horizontal and vertical
syncs and field information via their own signals.

A sample is output for each clock cycle on the vid_data bus. The vid_datavalid
signal is used to indicate when the vid_data video output is in an active picture
period of the frame.

Table 5–16 describes five extra signals for separate sync formats.

Control Port
If you turn on Use control port in the MegaWizard interface for the Clocked Video
Output, it can be controlled using the Avalon-MM slave control port. Initially, the
MegaCore function is disabled and does not output any video. However, it still
accepts data on the Avalon-ST Video interface for as long as it has space in its input
FIFO.

The sequence for starting the output of the MegaCore function is as follows:

1. Write a 1 to Control register bit 0.

2. Read Status register bit 0. When this is a 1, the function outputs video.

The sequence for stopping the output of the MegaCore function is as follows:

1. Write a 0 to Control register bit 0.

2. Read Status register bit 0. When this is a 0, the function has stopped video
output. This occurs at the end of the next frame or field boundary.

Table 5–16. Clocked Video Output Signals for Separate Sync Format Video

Signal Name Description

vid_h_sync 1 during the horizontal sync period.

vid_v_sync 1 during the vertical sync period.

vid_f When interlaced data is output, this is a 1 when F1 is being output and a 0
when F0 is being output. During progressive data it is always 0.

vid_h 1 during the horizontal blanking period.

vid_v 1 during the vertical blanking period.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–38 Chapter 5: Functional Descriptions
Clocked Video Output
The starting and stopping of the MegaCore function is synchronized to a frame or
field boundary.

Video Modes
The video frame is described using the mode registers that are accessed via the
Avalon-MM control port. If you turn off Use control port in the MegaWizard
interface for the Clocked Video Output, then the output video format always has the
format specified in the MegaWizard interface.

The MegaCore function can be configured to support between 1 to 14 different modes
and each mode has a bank of registers that describe the output frame. When the
MegaCore function receives a new control packet on the Avalon-ST Video input, it
searches the mode registers for a mode that is valid and has a field width and height
that matches the width and height in the control packet. The register VidModeMatch
shows the selected mode and the signal vid_mode_match also shows the same
information. When found, it restarts the video output with those format settings. If a
matching mode is not found, the video output format is unchanged and a restart does
not occur.

Figure 5–16 shows how the register values map to the progressive frame format
described in “Video Formats” on page 5–35.

Table 5–17 on page 5–39 shows how Figure 5–16 relates to the register map.

Figure 5–16. Progressive Frame Parameters

active samples
H back
porch

H blank

H
sync

H front
porch

ac
tiv

e
lin

es

active
picture line

F0 active picture

V front
porch
V sync
V back
porch

V
 b

la
nk
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–39
Clocked Video Output
Figure 5–17 on page 5–40 shows how the register values map to the interlaced frame
format described in “Video Formats” on page 5–35.

Table 5–18 shows how Figure 5–17 relates to the register map.

Table 5–17. Progressive Frame Parameter Descriptions

Register Name Parameter Description

ModeXInterlaced N/A Set to 0 for progressive.

ModeXF0SampleCount active samples The width of the active picture region in samples/pixels.

ModeXF0LineCount active lines The height of the active picture region in lines.

ModeXHFrontPorch H front porch (Separate sync mode only.) The front porch of the horizontal sync (the low
period before the sync starts).

ModeXHSyncLength H sync (Separate sync mode only.) The sync length of the horizontal sync (the high
period of the sync).

ModeXHBlanking H blank The horizontal blanking period (non active picture portion of a line).

ModeXVFrontPorch V front porch (Separate sync mode only.) The front porch of the vertical sync (the low period
before the sync starts).

ModeXVSyncLength V sync (Separate sync mode only.) The sync length of the vertical sync (the high period
of the sync).

ModeXVBlanking V blank The vertical blanking period (non active picture portion of a frame).

ModeXAPLine active picture
line

The line number that the active picture starts on. For non SDI output this can be
left at 0.

ModeXValid N/A Set to enable the mode after the configuration is complete.

Table 5–18. Interlaced Frame Parameter Descriptions (Part 1 of 2)

Register Name Parameter Description

ModeXInterlaced N/A Set to 1for interlaced.

ModeXF0SampleCount active samples The width of the active picture region in samples/pixels.

ModeXF0LineCount F0 active lines The height of the active picture region for field F0 in lines.

ModeXF1SampleCount active samples The width of the active picture region in samples/pixels.

ModeXF1LineCount F1 active lines The height of the active picture region for field F1 in lines.

ModeXHFrontPorch H front porch (Separate sync mode only.) The front porch of the horizontal sync (the low
period before the sync starts).

ModeXHSyncLength H sync (Separate sync mode only.) The sync length of the horizontal sync (the high
period of the sync).

ModeXHBlanking H blank The horizontal blanking period (non active picture portion of a line).

ModeXVFrontPorch V front porch (Separate sync mode only.) The front porch of the vertical sync (the low
period before the sync starts) for field F1.

ModeXVSyncLength V sync (Separate sync mode only.) The sync length of the vertical sync (the high
period of the sync) for field F1.

ModeXVBlanking V blank The vertical blanking period (non active picture portion of a frame) for field
F1.

ModeXVFrontPorch F0 V front porch (Separate sync mode only.) The front porch of the vertical sync (the low
period before the sync starts) for field F0.

ModeXVSyncLength F0 V sync (Separate sync mode only.) The sync length of the vertical sync (the high
period of the sync) for field F0.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–40 Chapter 5: Functional Descriptions
Clocked Video Output
ModeXVBlanking F0 V blank The vertical blanking period (non active picture portion of a frame) for field
F0.

ModeXAPLine active picture line The line number that the active picture starts on. For non SDI output this can
be left at 0.

ModeXF0VRising F0 V rising edge
line

The line number that the vertical blanking period for field F0 begins on.

ModeXFRising F rising edge line The line number that field F1 begins on.

ModeXFFalling F falling edge line The line number that field F0 begins on.

ModeXValid N/A Set to enable the mode after the configuration is complete.

Table 5–18. Interlaced Frame Parameter Descriptions (Part 2 of 2)

Register Name Parameter Description

Figure 5–17. Interlaced Frame Parameters

F
0

ac
tiv

e
lin

es
F

1
ac

tiv
e

lin
es

ac
tiv

e
lin

es

active
picture line

F0 V rising
edge line

F rising
edge line

F0 active picture

F1 active picture

V front
porch

V sync

V back
porch

F0 V front
porch

F0 V sync

F0 V back
porch

V
 b

la
nk

F
0

V
 b

la
nk

active samples
H back
porch

H blank

H
sync

H front
porch

F falling
edge line
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–41
Clocked Video Output
The mode registers can only be written to if a mode is marked as invalid. For example,
the following steps reconfigure mode 1:

1. Write a 0 to the Mode1Valid register.

2. Write to the mode 1 configuration registers.

3. Write a 1 to the Mode1Valid register. The mode is now valid and can be selected.

A currently-selected mode can be configured in this way without affecting the video
output of the MegaCore function.

When searching for a matching mode and there are multiple modes that match the
resolution, the lowest mode is selected. For example, Mode 1 is selected over Mode 2
if they both match. To allow Mode 2 to be selected, invalidate Mode 1 by writing a 0 to
its mode valid register. Invalidating a mode does not clear its configuration.

Interrupt
The Clocked Video Output MegaCore function outputs a single interrupt line. The
status update interrupt triggers when the VidModeMatch register is updated due to a
new video mode being selected.

The interrupt can be independently enabled using bit 1 of the Control register. The
interrupt status can be read using bit 1 of the Status register and a write of 1 to this
bit clears the interrupt.

Underflow
Moving between flow controlled Avalon-ST Video and clocked video can cause
problems if the flow controlled video does not provide data at a rate fast enough to
satisfy the demands of the outgoing clocked video.

The Clocked Video Output MegaCore function contains a FIFO that, when set to a
large enough value, can accommodate any “burstiness” in the flow data, as long as
the output rate of the downstream Avalon-ST Video components is equal to or higher
than that of the outgoing clocked video.

If this is not the case, the FIFO underflows. If underflow occurs, the MegaCore
function continues to output video and re-syncs the startofpacket, for the next
image packet, from the Avalon-ST Video interface with the start of the next frame.

The underflow can be detected by looking at bit 2 of the Status register. This bit is
sticky and if an underflow occurs, stays at 1 until the bit is cleared by writing a 1 to it.
In addition to the underflow bit, the current level of the FIFO can be read from the
UsedW register.

Timing Constraints
To constrain the Clocked Video Output MegaCore function correctly, add the
following file to your Quartus II project:

 <install_dir>\ip\clocked_video_output\lib\alt_vip_cvo.sdc.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–42 Chapter 5: Functional Descriptions
Color Plane Sequencer
Color Plane Sequencer
The purpose of the Color Plane Sequencer MegaCore function is to rearrange the color
pattern used to transmit Avalon-ST Video data packets over an Avalon-ST connection
(stream). A color pattern is a matrix that defines a repeating pattern of color samples.

For full details of the Avalon-ST Video protocol, refer to “Avalon-ST Video Protocol”
on page 4–1.

The color pattern of a video data packet can be rearranged in any valid combination
of channels in sequence and parallel. The Color Plane Sequencer can also drop color
planes. Avalon-ST Video packets of types other than video data packets are
forwarded unchanged.

Figure 5–18 shows an example that rearranges the color pattern of a video data packet
which transmits color planes in sequence, to a color pattern that transmits color
planes in parallel.

Combining Color Patterns
The Color Plane Sequencer also allows the combination of two Avalon-ST Video
streams into a single stream. In this mode of operation, two input color patterns (one
for each input stream) are combined and arranged to the output stream color pattern
in a user defined way, so long as it contains a valid combination of channels in
sequence and parallel.

In addition to this combination and arrangement, color planes can also be dropped.
Avalon-ST Video packets other than video data packets can be forwarded to the
single output stream with the following options:

■ Packets from input stream 0 (port din0) and input stream 1 (port din1)
forwarded, input stream 0 packets being transmitted last. (The last control packet
received is the one an Avalon-ST Video compliant MegaCore function uses.)

■ Packets from input stream 0 forwarded, packets from input stream 1 dropped.

■ Packets from input stream 1 forwarded, packets from input stream 0 dropped.

Figure 5–18. Example of Rearranging Color Patterns

Color pattern of a video data
packet on the input stream
3 color plane samples in sequence

Color pattern of a video data
packet on the output stream
3 color plane samples in parallel

R G B

B

G

R

Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–43
Color Plane Sequencer
Figure 5–19 shows an example of combining and rearranging two color patterns.

Splitting/Duplicating
The Color Plane Sequencer also allows the splitting of a single Avalon-ST Video input
stream into two Avalon-ST Video output streams. In this mode of operation, the color
patterns of video data packets on the output streams can be arranged in a user
defined way using any of the color planes of the input color pattern.

The color planes of the input color pattern are available for use on either, both, or
neither of the outputs. This allows for splitting of video data packets, duplication of
video data packets, or a mix of splitting and duplication.

The output color patterns are independent of each other, so the arrangement of one
output stream's color pattern places no limitation on the arrangement of the other
output stream's color pattern.

Avalon-ST Video packets other than video data packets are duplicated to both
outputs.

Figure 5–20 on page 5–44 shows an example of partially splitting and duplicating an
input color pattern.

Figure 5–19. Example of Combining Color Patterns

Color pattern of a video data
packet on input stream 0
3 color plane samples in sequence

Color pattern of a video data
packet on the output stream
2 color plane samples in parallel
and sequence

R G B

B

X

Y

Z

R

G

X

Y

Z Color pattern of a video data
packet on input stream 1
3 color plane samples in parallel Planes unused between the

input and output are dropped
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–44 Chapter 5: Functional Descriptions
Color Plane Sequencer
Subsampled Data
In addition to fully sampled color patterns, the Color Plane Sequencer supports 4:2:2
subsampled data. To facilitate this support, you can configure the Color Plane
Sequencer with two color patterns in sequence, so that subsampled planes can be
specified individually.

When splitting subsampled planes from fully-sampled planes, the Avalon-ST Video
control packet for the subsampled video data packet can have its width value halved,
so that the subsampled planes can be processed by other MegaCore functions as if
fully sampled. This halving can be applied to control packets on port dout0 and port
dout1, or control packets on port dout0 only.

Avalon-ST Video Stream Requirements
The only stream requirement imposed is that when two streams are being combined,
the video data packets must contain the same total number of pixels, and to make a
valid image, the packets must have the same dimensions.

The Color Plane Sequencer MegaCore function can process streams of pixel data of
the types shown in Table 5–19.

Figure 5–20. Example of Splitting and Duplicating Color Patterns

R G B

G B

R

G

Color pattern of a video data
packet on the input stream
3 color plane samples in sequence

Color pattern of a video data
packet on output stream 0
2 color plane samples in parallel

Color pattern of a video data
packet on output stream 1
2 color plane samples in sequence

Table 5–19. Color Plane Sequencer Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Read from control packets at run time.

Frame Height Read from control packets at run time.

Interlaced/Progressive Either.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern The color pattern is selected in the MegaWizard interface.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–45
Test Pattern Generator
Test Pattern Generator
The Test Pattern Generator MegaCore function can be used to produce a video stream
compliant with the Avalon-ST Video protocol that feeds a video system during its
design cycle.

The Test Pattern Generator MegaCore function produces data on request and
consequently permits easier debugging of a video data path without the risks of
overflow or misconfiguration associated with the use of the Clocked Video Input
MegaCore function or of a custom component using a genuine video input.

Generation of Avalon-ST Video Control Packets and Run-Time Control
The Test Pattern Generator MegaCore function outputs a valid Avalon-ST Video
control packet before each image data packet it generates, whether it is a progressive
frame or an interlaced field. When the output is interlaced, the Test Pattern Generator
MegaCore function produces a sequence of pairs of field, starting with F0 if the
output is F1 synchronized of with F1 if the output is F0 synchronized.

When the Avalon Slave run-time controller is enabled, the resolution of the output
can be changed at run-time at a frame boundary, that is, before the first field of a pair
when the output is interlaced. For details of the control register map for the Test
Pattern Generator, refer to Table A–35 on page A–26.

Because the Test Pattern Generator does not accept an input stream, the pseudo-code
in “Avalon-MM Slave Interfaces” on page 4–14 is slightly modified:

go = 0;

while (true)

{

status = 0;

while (go != 1)

wait();

send_control(); //Copies control to internal register

status = 1;

send_control_packet();

send_image_data_header();

output_test_pattern ();

}

Output Data Types
The Test Pattern Generator MegaCore function supports a wide range of resolutions
and color spaces with either a sequential or parallel data interface.

In all combinations of color space and subsampling that are allowed, the stream of
pixel data is of a type consistent with the conventions adopted by the other MegaCore
functions in the Video and Image Processing Suite.

The Test Pattern Generator function can output streams of pixel data of the types
shown in Table 5–20 on page 5–46.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–46 Chapter 5: Functional Descriptions
Test Pattern Generator
Test Pattern
The Test Pattern Generator MegaCore function can generate either a uniform image
using a constant color specified by the user at compile time or a set of predefined
color bars. The color bar pattern (Figure 5–21) is a still image composed with a set of
eight vertical color bars of 75% intensity (white, yellow, cyan, green, magenta, red,
blue, black). The pattern is delimited by a thin black rectangular border.

Table 5–20. Test Pattern Generator Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Width selected in the MegaWizard interface. Can be run-time controlled in which case, the value
specified in the GUI is the maximum allowed value.

Frame Height Height selected in the MegaWizard interface. Can be run-time controlled in which case, the value
specified in the GUI is the maximum allowed value.

Interlaced/Progressive Mode selected in the MegaWizard interface.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color space As selected in the MegaWizard interface. RGB (4:4:4 subsampling only) or YCbCr.

Color Pattern For RGB sequential data: For RGB parallel data:

For 4:4:4 sequential data: For 4:2:2 sequential data:

For 4:2:0 sequential data: For 4:2:2 parallel data:

For 4:4:4 parallel data: For 4:2:0 parallel data:

Notes to Table 5–20:

(1) 4:2:2 and 4:2:0 subsampling are not available for the RGB color space.
(2) Vertical subsampling and interlacing cannot be used when the height of the output is not even. The GUI does not allow such a parameterization

and the behavior of the MegaCore function is undefined if the height is subsequently set to an odd value through the run-time control.
(3) Vertical subsampling and interlacing are incompatible with each other and cannot be selected simultaneously in the GUI.

RGB

B

G

R

CrCb Y CrCb YY

Cb
CrY Y Y Y

Cb Cr

Y

Cb

Cr CrCb

Y

Y

Figure 5–21. Generated Test Pattern
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–47
Stall Behavior
The sequence runs through the eight possible on/off combinations of the three color
components of the RGB color space starting with a 75% amplitude white. Green is on
for the first four bars and off for the last four bars, red cycles on and off every two
bars, and blue cycles on and off every bar.

The actual numerical values are given in Table 5–21 (assuming 8 bits per color
samples). If the output is requested in a different number of bits per color sample
these values are converted by truncation or promotion.

The choice of a specific resolution and subsampling for the output leads to natural
constraints on the test pattern. If the format has a horizontal subsampling period of
two for the Cb and Cr components when the output is in the Y’CbCr color space, the
black borders at the left and right are two pixels wide. Similarly, the top and bottom
borders are two pixels wide when the output is vertically subsampled.

The width and the horizontal subsampling might also have an effect on the width of
each color bar. When the output is horizontally subsampled, the pixel-width of each
color bar is a multiple of two. When the width of the image (excluding the left and
right borders) cannot be exactly divided by eight, then the last black bar is larger than
the others. For example, when producing a 640×480 frame in the Y’CbCr color space
with 4:2:2 subsampling, the left and right black borders are two pixels wide each, the
seven initial color bars are 78 pixels wide ((640–4)/8 truncated down to the nearest
multiple of 2) and the final black color bar is 90 pixels wide (640–7×78–4).

Stall Behavior
The Video and Image Processing Suite MegaCore functions do not continuously
process data. Instead, they use flow controlled Avalon-ST interfaces which allow
them to stall the data while they perform internal calculations.

During control packet processing, the MegaCore functions may stall frequently and
read/write less than once per clock cycle. During data processing, the MegaCore
functions generally process one input/output per clock cycle. There are, however,
some stalling cycles. Typically, these are for internal calculations between rows of
image data and between frames/fields.

Table 5–21. Test Pattern Color Values

R’G’B’ Y’CbCr

White/Grey (180,180,180) (180,128,128)

Yellow (180,180,16) (162,44,142)

Cyan (16,180,180) (131,156,44)

Green (16,180,16) (112,72,58)

Magenta (180,16,180) (84,184,198)

Red (180,16,16) (65,100,212)

Blue (16,16,180) (35,212,114)

Black (16,16,16) (16,128,128)
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–48 Chapter 5: Functional Descriptions
Stall Behavior
When stalled, the MegaCore function signals that it is not ready to receive or produce
data. The time spent in the stalled state varies between MegaCore functions and their
parameterizations. In general, it is a few cycles between rows and a few more between
frames. Details of exceptions to this behavior and details of stalling due to internal
buffering are given for each MegaCore function in the following sections.

When they are not stalled, all the Video and Image Processing Suite MegaCore
functions process one sample on every clock cycle (rate-changing functions process
one sample on the higher-rate side on every clock cycle).

If data is not available at the input when required, all of the MegaCore functions stall,
and thus do not output data. With the exceptions of the Deinterlacer and Frame Buffer
in double or triple-buffering mode, none of the MegaCore functions ever overlap the
processing of consecutive frames. The first sample of frame F + 1 is not input until
after the last sample of frame F has been output.

The following sections give bounds and guidelines describing the stalling and
throughput of the MegaCore functions but do not attempt to specify precise behavior
down to the last clock cycle. When an endofpacket signal is received unexpectedly
(early or late), the MegaCore function recovers from the error and prepares itself for
the next valid packet (control or data). The time taken to do this is described in each of
the following sections.

The exact behavior of the MegaCore functions may vary between releases or if any of
the parameters are changed.

Color Space Converter
In all parameterizations, the Color Space Converter only stalls between frames and
not between rows. It has no internal buffering apart from the registers of its
processing pipeline so there are few clock cycles of latency.

Error Recovery
The Color Space Converter MegaCore function processes video packets until an
endofpacket signal is received; the control packets are not used. For this MegaCore
function, there is no such condition as an early or late endofpacket, any mismatch of
the endofpacket signal and the frame size is propagated unchanged to the next
MegaCore function.

Chroma Resampler
All modes of the Chroma Resampler stall for a few cycles between frames and
between lines.

Latency from input to output varies depending on the operation mode of the Chroma
Resampler MegaCore function. The only modes with latency of more than a few
cycles are 4:2:0 to 4:2:2 and 4:2:0 to 4:4:4. These modes have a latency corresponding to
two lines worth of 4:2:0 data.

Because this is a rate-changing function, the quantities of data input and output are
not equal. The Chroma Resampler MegaCore function always outputs the same
number of lines that it inputs. However the number of samples in each line varies
according to the subsampling pattern used.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–49
Stall Behavior
When not stalled, the Chroma Resampler always processes one sample from the more
fully sampled side on each clock cycle. For example, the subsampled side pauses for
one third of the clock cycles in the 4:2:2 case or half of the clock cycles in the 4:2:0 case.

Error Recovery
On receiving an early endofpacket signal, the Chroma Resampler stalls its input but
continues writing data until it has sent an entire frame. If it does not receive an
endofpacket signal at the end of a frame, the Chroma Resampler discards data until
the end of packet is found.

Gamma Corrector
In all parameterizations, the Gamma Corrector stalls only between frames and not
between rows. It has no internal buffering aside from the registers of its processing
pipeline so there are few clock cycles of latency.

Error Recovery
The Gamma Corrector MegaCore function processes video packets until an
endofpacket signal is received; the control packets are not used. For this MegaCore
function there is no such condition as an early or late endofpacket. Any mismatch of
the endofpacket signal and the frame size is propagated unchanged to the next
MegaCore function.

2D FIR Filter
There is a delay of a little more than N–1 lines between data input and output in the
case of a N×N 2D FIR Filter. This is due to line buffering internal to the MegaCore
function.

Error Recovery
The 2D FIR Filter MegaCore function resolution is not configurable at runtime. This
MegaCore function does not read the control packets passed through it.

An error condition occurs if an endofpacket signal is received too early or too late
for the compile time configured frame size. In either case, the 2D FIR Filter always
creates output video packets of the configured size. If an input video packet has a late
endofpacket signal, then the extra data is discarded. If an input video packet has an
early endofpacket signal, the video frame is padded with an undefined
combination of the last input pixels.

2D Median Filter
There is a delay of a little more than N–1 lines between data input and output in the
case of a N×N 2D Median Filter. This is due to line buffering internal to the MegaCore
function.

Error Recovery
The 2D Median Filter MegaCore function resolution is not configurable at run time.
This MegaCore function does not read the control packets passed through it.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–50 Chapter 5: Functional Descriptions
Stall Behavior
An error condition occurs if an endofpacket signal is received too early or too late
for the compile-time-configured frame size. In either case, the 2D FIR Filter always
creates output video packets of the configured size.

If an input video packet has a late endofpacket signal, then the extra data is
discarded. If an input video packet has an early endofpacket signal, the video
frame is padded with an undefined combination of the last input pixels.

Alpha Blending Mixer
For each non-stalled cycle, the Alpha Blending Mixer reads from the background
input port, and also from the input port associated with each layer which covers the
background pixel just read.

When alpha blending is enabled, data is read from each alpha port once each time that
a whole pixel of data is read from the corresponding input port. There is no internal
line buffering in the Alpha Blending Mixer MegaCore function, so the delay from
input to output is just a few clock cycles caused by pipelining.

Scaler
In the Scaler MegaCore function, the ratio of reads to writes is proportional to the
scaling ratio and occurs on both a per-pixel and a per-line basis. The frequency of
lines where reads and writes occur is proportional to the vertical scaling ratio. For
example, scaling up vertically by a factor of 2 results in the input being stalled every
other line for the length of time it takes to write one line of output; scaling down
vertically by a factor of 2 results in the output being stalled every other line for the
length of time it takes to read one line of input.

In a line that has both input and output active, the ratio of reads and writes is
proportional to the horizontal scaling ratio. For example, scaling from 64×64 to
128×128 causes 128 lines of output, where only 64 of these lines have any reads in
them. For each of these 64 lines, there are two writes to every read.

The internal latency of the Scaler depends on the scaling algorithm and whether any
run time control is enabled. The scaling algorithm impacts stalling as follows:

■ In nearest-neighbor mode, the delay from input to output is just a few clock cycles.

■ In bilinear mode, a complete line of input is read into a buffer before any output is
produced. At the end of a frame there are no reads as this buffer is drained.
Exactly how many writes are possible during this time depends on the scaling
ratio.

■ In bicubic mode, three lines of input are read into line buffers before any output is
ready. As with linear interpolation, there is a scaling ratio dependent time at the
end of a frame where no reads are needed as the buffers are drained.

■ In polyphase mode with Nv vertical taps, Nv – 1 lines of input are read into line
buffers before any output is ready. As with bilinear mode, there is a scaling ratio
dependent time at the end of a frame where no reads are needed as the buffers are
drained.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–51
Stall Behavior
Enabling run-time control of coefficients and/or resolutions affects stalling between
frames:

■ With no run-time control, there is only a few cycles of delay before the behavior
described in the previous list begins.

■ Enabling run-time control of resolutions in nearest-neighbor mode adds about 20
clock cycles of delay between frames. In other modes, it adds a maximum of 60
cycles delay.

■ Enabling run-time control of coefficients adds a constant delay of about 20 cycles
plus the total number of coefficients to be read. For example, 16 taps and 32 phases
in each direction would add a delay of 20 + 2(16 × 32) = 1024 cycles.

Error Recovery
On receiving an early endofpacket signal, the Scaler stalls its input but continues
writing data until it has sent an entire frame. If it does not receive an endofpacket
signal at the end of a frame, the Scaler discards data until the end-of-packet is found.

Clipper
The Clipper MegaCore function stalls for a few cycles between lines and between
frames. Its internal latency is less than 10 cycles. During the processing of a line, it
reads continuously but the Clipper only writes when inside the active picture area as
defined by the clipping window.

Error Recovery
On receiving an early endofpacket signal, the Clipper stalls its input but continues
writing data until it has sent an entire frame. If it does not receive an endofpacket
signal at the end of a frame, the Clipper discards data until the end-of-packet is found.

Deinterlacer
While the bob algorithm (with no buffering) is producing an output frame it
alternates between simultaneously receiving a row on the input port and producing a
row of data on the output port, and just producing a row of data on the output port
without reading any data from the input port.

The delay from input to output is just a few clock cycles. While a field is being
discarded, input is read at the maximum rate and no output is generated.

When the weave algorithm is selected, the MegaCore function stalls for longer than
the usual periods between each output row of the image. Stalls of up to 45 clock cycles
are possible due to the time taken for internal processing in between lines.

When the motion-adaptive algorithm is selected, stalls up to 90 clock cycles are
possible.

When double or triple-buffering is selected, data input and output are decoupled
through the use of external memory. The Megacore function writes non-image data
packets into memory by pre-declaring transfers of fixed size and memory transactions
cannot be interrupted immediately when an endofpacket signal is received.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–52 Chapter 5: Functional Descriptions
Stall Behavior
For each non-image data packet received, the number of words written into memory
always corresponds to the maximum packet size defined in the MegaWizard
interface. Consequently, the Deinterlacer Megacore function does not handle control
packets efficiently when large user-defined packets are used. This does not apply
when reading non-image packets back from the external memory because the size of
each incoming packet is registered after it has been determined.

1 When buffering is used with bob deinterlacing and fields are being discarded they are
discarded at the input rather than being buffered through external RAM and then
discarded. This reduces the external RAM bandwidth requirement of the Deinterlacer
in these modes.

Error Recovery
An error condition occurs if an endofpacket signal is received too early or too late
relative to the field dimensions contained in the last control packet processed. In all its
configurations, the Deinterlacer discards extra data if the endofpacket signal is
received too late.

If an early endofpacket signal is received when the Deinterlacer is configured for
no buffering, the MegaCore function interrupts its processing within one or two lines
sending undefined pixels, before propagating the endofpacket signal.

If an early endofpacket signal is received when the Deinterlacer is configured to
buffer data in external memory, the input side of the MegaCore function stops
processing input pixels. It is then ready to process the next frame after writing
undefined pixels for the remainder of the current line into external RAM. The output
side of the Deinterlacer assumes that incomplete fields have been fully received and
pads the incomplete fields to build a frame, using the undefined content of the
memory.

Frame Buffer
The Frame Buffer Megacore function writes data into memory by pre-declaring
transfers of fixed size. Memory transactions cannot be interrupted immediately and
extra data may be written into memory after an endofpacket signal has been
received.

For each non-image data packet received, the number of words written into memory
always corresponds to the maximum packet size defined in the MegaWizard
interface. The Megacore function does not handle control packets efficiently when
large user-defined packets are used.

When processing an image data packet, the number of words written into memory for
each transaction is matched with the maximum size of a line as defined in the
MegaWizard interface. This might introduce extra latency between frames and a
small memory bandwidth overhead when the input resolution does not match with
the maximum resolution defined in the MegaWizard interface.

The Frame Buffer registers the size of each incoming Avalon-ST Video packet and the
stalls described above do not apply when reading non-image and image data packets
from the external memory.

The Frame Buffer stalls for a few cycles between memory transactions and stalls in
case of bus contention.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Chapter 5: Functional Descriptions 5–53
Latency
Error Recovery
The Frame Buffer Megacore function does not process the control packets passed
through it and there is consequently no error condition such as early or late
endofpacket signal. However, the Frame Buffer does not write outside the memory
allocated for each non-image and image data packets and input is discarded at the
maximum rate in case of overflow.

Color Plane Sequencer
The Color Plane Sequencer MegaCore function stalls for approximately 10 cycles after
processing each line of a video frame. Between frames the MegaCore function stalls
for approximately 30 cycles.

Error Recovery
The Color Plane Sequencer MegaCore function processes video packets per line until
an endofpacket signal is received on din0. (The line width is taken from the
control packets on din0.)

When an endofpacket signal is received on either din0 or din1 the Color Plane
Sequencer ceases output. For the number of cycles left to finish the line, the MegaCore
function continues to drain the inputs that have not indicated end-of-packet.

The MegaCore function drains din0 until it receives an endofpacket signal on this
port (unless it has already indicated end-of-packet), and stalls for up to one line after
this endofpacket signal. The MegaCore function then signals end-of-packet on its
outputs and continue to drain its inputs that have not indicated end-of-packet.

Test Pattern Generator
All modes of the Test Pattern Generator stall for a few cycles after a field, after a
control packet, and between lines. When producing a line of image data, the Test
Pattern Generator outputs one sample on every clock cycle, but it can be stalled
without consequences if other functions down the data path are not ready and exert
backpressure.

Latency
Table 5–22 on page 5–54 shows the approximate latency from the video data input to
the video data output for typical usage modes of each MegaCore function. You can
use this table to predict the approximate latency between the input and the output of
your video processing pipeline.

The latency is described using one or more of the following measures:

■ the number of video frames

■ the number of video fields

■ the number of lines when less than a field of latency

■ a small number of cycles O (cycles)
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

5–54 Chapter 5: Functional Descriptions
Latency
1 The latency associated with the initial buffering phase, when a MegaCore function
first receives video data, is not included. For example, the Deinterlacer MegaCore
function in motion-adaptive mode initially buffers four fields of video in external
memory without outputting data. After the initial buffering phase, the latency from
field input to frame output (assuming the output frame rate is the same as the input
field rate) is one field + O (lines).

Table 5–22. Latency Summary

MegaCore Function Mode Latency (Note 1)

Color Space Converter All modes O (cycles)

Chroma Resampler Input format: 4:2:2

Output format: 4:4:4

O (cycles)

Gamma Corrector All modes O (cycles)

2D FIR Filter Filter size: N × N (N–1) lines +O cycles

2D Median Filter Filter size: N × N (N–1) lines +O cycles

Alpha Blending Mixer All modes O (cycles)

Scaler Scaling algorithm: Polyphase

Number of vertical taps: N

(N–1) lines +O cycles

Clipper All modes O (cycles)

Deinterlacer Method: Bob

Frame buffering: None

O (cycles)

Method: Motion-adaptive or Weave

Frame buffering: Double or triple buffering with rate conversion

Output frame rate: As input frame rate

1 field +O lines

Method: Motion-adaptive or Weave

Frame buffering: Double or triple buffering with rate conversion

Output frame rate: As input field rate

1 frame +O lines

Method: All

Frame buffering: Double or triple buffering with rate conversion

Passthrough mode (propagate progressive frames unchanged): On.

1 frame +O lines

Frame Buffer All modes 1 frame +O lines

Color Plane Sequencer All modes O (cycles)

Clocked Video Input (Note 2) Sync signals: Embedded in video

Video in and out use the same clock: On

8 cycles

Sync signals: On separate wires

Video in and out use the same clock: On

5 cycles

Clocked Video Output
(Note 2)

All modes with Video in and out use the same clock: On 3 cycles (Note 3)

Test Pattern Generator Not Applicable because the Test Pattern Generator is an Avalon-ST
Video source only.

N/A

Notes to Table 5–22:

(1) It is assumed that the MegaCore function is not being stalled by other functions on the data path (the output ready signal is high).
(2) Add 1 cycle if Allow color planes in sequence input is turned on.
(3) Minimum latency case when video input and output rates are synchronized.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

© March 2009 Altera Corporation
A. Reference
Compile Time Parameters
Table A–1 to Table A–15 describe the Video and Image Processing Suite MegaCore
function parameters. You can set these parameters in the MegaWizard interface as
described in “Parameter Settings” on page 3–1.

1 The default parameter values are shown using bold text in the tables.

Color Space Converter
Table A–1 and Table A–2 show the Color Space Converter MegaCore function
parameters.

Table A–1. Color Space Converter Parameter Settings, General Tab (Part 1 of 2)

Parameter Value Description

Color Plane
Configuration

Three color planes in sequence, or
Three color planes in parallel

There must always be three color planes for this function
but you can choose whether the three color planes are
transmitted in sequence or in parallel.

Input Data Type:
Bits per pixel per
color plane

4–20, Default = 8 Choose the number of input bits per pixel (per color
plane).

Input Data Type:
Data type

Unsigned, Signed Specify whether the input is unsigned or signed 2’s
complement.

Input Data Type:
Guard bands

On or Off Turn on to enable a defined input range.

Input Data Type:
Max

-524288–1048575, Default = 255 Specify the input range maximum value.

Input Data Type:
Min

-524288–1048575, Default = 0 Specify the input range minimum value.

Output Data Type:
Bits per pixel per
color plane

4–20, Default = 8 Choose the number of output bits per pixel (per color
plane).

Output Data Type:
Data type

Unsigned, Signed Specify whether the output is unsigned or signed 2’s
complement.

Output Data Type:
Guard bands

On or Off Turn on to enable a defined output range.

Output Data Type:
Max

-524288–1048575, Default = 255 Specify the output range maximum value.

Output Data Type:
Min

-524288–1048575, Default = 0 Specify the output range minimum value.

Move binary point
right

–16 to +16, Default = 0 Specify the number of places to move the binary point.
Video and Image Processing Suite User Guide

A–2 Appendix A: Reference
Compile Time Parameters
Remove fraction
bits by

Round values - Half up,
Round values - Half even,
Truncate values to integer

Choose the method of discarding fraction bits resulting
from the calculation.

Convert from signed
to unsigned by

Saturating to minimum value at stage 4,
Replacing negative with absolute value

Choose the method of signed to unsigned conversion for
the results.

Table A–2. Color Space Converter Parameter Settings, Operands Tab

Parameter Value Description

Color model
conversion

Computer B’G’R’ to CbCrY’: SDTV,
CbCrY’: SDTV to Computer B’G’R’,
Computer B’G’R’ to CbCrY’: HDTV,
CbCrY’: HDTV to Computer B’G’R’,
Studio B’G’R’ to CbCrY’: SDTV,
CbCrY’: SDTV to Studio B’G’R’,
Studio B’G’R’ to CbCrY’: HDTV,
CbCrY’: HDTV to Studio B’G’R’,
IQY' to Computer B'G'R',
Computer B'G'R' to IQY',
UVY' to Computer B'G'R'
Computer B'G'R' to UVY',
Custom

You can select a predefined set of coefficients and summands which
are used for color model conversion at compile time. Alternatively,
you can create your own custom set by modifying the din_0, din_1,
and din_2 coefficients for dout_0, dout_1, and dout_2 separately.

The values are assigned in the order indicated by the conversion
name. For example, if you select Computer B’G’R’ to CbCrY’: SDTV,
then din_0 = B’, din_1 = G’, din_2 = R’, dout_0 = Cb, dout_1 = Cr, and
dout_2 = Y’.

Runtime
controlled

On or Off Turn on to enable run-time control of the conversion values.

Coefficients
and
Summands
A0, B0, C0, S0
A1, B1, C1, S1
A2, B2, C2, S2

12 fixed-point values Each coefficient or summand is represented by a white cell with a
purple cell underneath. The value in the white cell is the desired value,
and is editable. The value in the purple cell is the actual value,
determined by the fixed-point type specified. The purple cells are not
editable. You can create a custom coefficient and summand set by
specifying one fixed-point value for each entry.

Coefficients:
Signed

On or Off Turn on to set the fixed point type used to store the constant
coefficients as having a sign bit.

Coefficients:
Integer bits

8–31, Default = 0 Specifies the number of integer bits for the fixed point type used to
store the constant coefficients.

Summands:
Signed

On or Off Turn on to set the fixed point type used to store the constant
summands as having a sign bit.

Summands:
Integer bits

8–31, Default = 8 Specifies the number of integer bits for the fixed point type used to
store the constant summands.

Coefficient and
summand
fraction bits

8–31, Default = 8 Specifies the number of fraction bits for the fixed point type used to
store the coefficients and summands.

Table A–1. Color Space Converter Parameter Settings, General Tab (Part 2 of 2)

Parameter Value Description
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–3
Compile Time Parameters
 Chroma Resampler
Table A–3 shows the Chroma Resampler MegaCore function parameters.

Gamma Corrector
Table A–4 shows the Gamma Corrector MegaCore function parameters.

2D FIR Filter
Table A–5 and Table A–6 on page A–4 show the 2D FIR Filter MegaCore function
parameters.

Table A–3. Chroma Resampler Parameter Settings

Parameter Value Description

Maximum width 32–2,600, Default = 256 Choose the maximum image width in pixels.

Maximum height 32–2,600, Default = 256 Choose the maximum image height in pixels.

Bits per pixel per
color plane

4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Color plane
configuration

Sequence, Parallel There must always be three color planes for this function but you can
choose whether the three color planes are transmitted in sequence or in
parallel.

Input Format 4:4:4, 4:2:2, 4:2:0 Choose the format/sampling rate format for the input frames. Note that the
input and output formats must be different.

Output Format 4:4:4, 4:2:2, 4:2:0 Choose the format/sampling rate format for the output frames. Note that
the input and output formats must be different.

Horizontal Filtering
Algorithm

Filtered,
Nearest Neighbor

Choose the algorithm to use in the horizontal direction when re-sampling
data to or from 4:4:4.

Luma adaptive On or Off Turn on to enable luma-adaptive mode. This mode looks at the luma
channel during interpolation and uses this to detect edges.

Table A–4. Gamma Corrector Parameter Settings

Parameter Value Description

Bits per pixel
per color plane

4–16, Default = 8 Choose the number of bits per pixel (per color plane).

Number of
color planes

1– 3 The number of color planes that are sent in sequence or parallel over one
data connection.

Color plane
transmission
format

Color planes in sequence,
Color planes in parallel

Specifies whether the specified number of color planes are transmitted in
sequence or in parallel. For example, a value of 3 planes in sequence for
R'G'B' R'G'B' R'G'B'.

Table A–5. 2D FIR Filter Parameter Settings, General Tab (Part 1 of 2)

Parameter Value Description

Maximum image
width

32–2,600, Default = 640 Choose the maximum image width in pixels.

Number of color
planes in sequence

1–3 The number of color planes that are sent in sequence
over one data connection. For example, a value of 3 for
R'G'B' R'G'B' R'G'B'.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–4 Appendix A: Reference
Compile Time Parameters
Input Data Type:
Bits per pixel per
color plane

4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Input Data Type:
Data type:

Unsigned, Signed Choose whether input is unsigned or signed 2's
complement.

Input Data Type:
Guard bands

On or Off Turn on to enable a defined input range.

Input Data Type:
Max

1,048,575 to -524,288, Default = 255 Set input range maximum value. (Note 1)

Input Data Type:
Min

1,048,575 to -524,288, Default = 0 Set input range minimum value. (Note 1)

Output Data Type:
Data type

Unsigned, Signed Choose whether output is unsigned or signed 2's
complement.

Output Data Type:
Guard bands

On or Off Turn on to enable a defined output range.

Output Data Type:
Max

1,048,575 to -524,288, Default = 255 Set output range maximum value. (Note 2)

Output Data Type:
Min

1048575 to -524288, Default = 0 Set output range minimum value. (Note 2)

Move binary point
right

–16 to +16, Default = 0 Specify the number of places to move the binary point.
This can be useful if you require a wider range output on
an existing coefficient set.

Remove fraction
bits by

Round values - Half up,
Round values - Half even,
Truncate values to integer

Choose the method for discarding fractional bits
resulting from the FIR calculation.

Convert from signed
to unsigned by

Saturating to minimum value at stage 4,
Replacing negative with absolute value

Choose the method for signed to unsigned conversion of
the FIR results.

Notes to Table A–5

(1) The maximum and minimum guard bands values specify a range in which the input should always fall. The 2D FIR filter behaves unexpectedly
for values outside this range.

(2) The output is constrained to fall in the specified range of maximum and minimum guard bands values.

Table A–5. 2D FIR Filter Parameter Settings, General Tab (Part 2 of 2)

Parameter Value Description

Table A–6. 2D FIR Filter Parameter Settings, Coefficients Tab (Part 1 of 2)

Parameter Value Description

Filter size 3x3, 5x5, 7x7 Choose the size in pixels of the convolution kernel used in the filtering.

Runtime controlled On or Off Turn on to enable run-time control of the coefficient values.

Coefficient set Simple Smoothing,
Simple Sharpening,
Custom

You can choose a predefined set of simple smoothing or simple sharpening
coefficients which are used for color model convolution at compile time.
Alternatively, you can create your own custom set of coefficients by
modifying the coefficients in the matrix.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–5
Compile Time Parameters
 2D Median Filter
Table A–7 shows the 2D Median Filter MegaCore function parameters.

Alpha Blending Mixer
Table A–8 shows the Alpha Blending Mixer MegaCore function parameters.

Enable symmetric
mode

On or Off When on, only symmetric coefficients are allowed. This option enables an
optimization in the hardware which reduces the number of multiplications
required. In this mode a limited number of matrix cells are editable and many
of the values are automatically inferred. Symmetric mode is enabled for the
predefined coefficient sets but can be disabled when setting custom
coefficients. If you turn off this option while one of the predefined coefficient
sets is selected, its values are used as the defaults for a new custom set.

Coefficients 9, 25, or 49
fixed-point values

Each coefficient is represented by a white box with a purple box underneath.
The value in the white box is the desired coefficient value, and is editable. The
value in the purple box is the actual coefficient value as determined by the
coefficient fixed point type specified. The purple boxes are not editable. You
can create a custom set of coefficients by specifying one fixed-point value for
each entry in the convolution kernel. The matrix size depends on the selected
filter size.

Coefficient Precision:
Signed

On or Off Turn on if you want the fixed-point type that stores the coefficients to have a
sign bit.

Coefficient Precision:
Integer bits

0–35, Default = 0 Specifies the number of integer bits for the fixed-point type used to store the
coefficients.

Coefficient Precision:
Fraction bits

0–35, Default = 6 Specifies the number of fractional bits for the fixed point type used to store
the coefficients.

Table A–6. 2D FIR Filter Parameter Settings, Coefficients Tab (Part 2 of 2)

Parameter Value Description

Table A–7. 2D Median Filter Parameter Settings

Parameter Value Description

Image width 32–2,600, Default = 640 Choose the required image width in pixels.

Image height 32–2,600, Default = 480 Choose the required image height in pixels.

Bits per pixel per
color plane

4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Number of color
planes in sequence

1–3 The number of color planes that are sent in sequence over one data
connection. For example, a value of 3 for R'G'B' R'G'B' R'G'B'.

Filter size 3x3, 5x5, 7x7 Choose the size of kernel in pixels to take the median from.

Table A–8. Alpha Blending Mixer Parameter Settings (Part 1 of 2)

Parameter Value Description

Maximum layer
width

32–2,600, Default = 1,024 Choose the maximum image width for the layer background in pixels. No
layer width can be greater than the background layer width. The
maximum image width is the default width for all layers at start-up.

Maximum layer
height

32–2,600, Default = 768 Choose the maximum image height for the layer background in pixels. No
layer height can be greater than the background layer height. The
maximum image height is the default height for all layers at start-up.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–6 Appendix A: Reference
Compile Time Parameters
Scaler
Table A–9, Table A–10, and Table A–11 on page A–7 show the Scaler MegaCore
function parameters.

Bits per pixel per
color plane

4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Number of color
planes in sequence

1–3 Choose the number of color planes that are sent in sequence over one
data connection. For example, a value of 3 for R'G'B' R'G'B' R'G'B'.

Number of color
planes in parallel

1–3 Choose the number of color planes in parallel.

Number of layers
being mixed

2–12 Choose the number of image layers to overlay. Higher number layers are
mixed on top of lower layer numbers. The background layer is always
layer 0.

Alpha blending On or Off When on, alpha data sink ports are generated for each layer (including the
background layer). This requires a stream of alpha values; one value for
each pixel. When off, no alpha data sink ports are generated, and the
image layers are fully opaque.

Alpha bits per pixel 2, 4, 8 Choose the number of bits used to represent the alpha coefficient.

Table A–8. Alpha Blending Mixer Parameter Settings (Part 2 of 2)

Parameter Value Description

Table A–9. Scaler Parameter Settings, Resolution Tab

Parameter Value Description

Run-time control of
image size

On or Off Turn on to enable run-time control of the image size. When on, the
input and output size parameters control the maximum values.
When off, the Scaler does not respond to changes of resolution in
control packets.

Input image width 32–2,600, Default = 1,024 Choose the required input width in pixels.

Input image height 32–2,600, Default = 768 Choose the required input height in pixels.

Output image width 32–2,600, Default = 640 Choose the required output width in pixels.

Output image height 32–2,600, Default = 480 Choose the required output height in pixels.

Bits per pixel per color
plane

4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Number of color planes 1–3, Default = 3 The number of color planes that are sent over one data
connection. For example, a value of 3 for R'G'B' R'G'B' R'G'B' in
serial.

Color planes transmission
format

Sequence, Parallel The transmission mode used for the specified number of color
planes.

Table A–10. Scaler Parameter Settings, Algorithm and Precision Tab (Part 1 of 2)

Parameter Value Description

Scaling Algorithm Nearest Neighbor,
Bilinear, Bicubic,
Polyphase

Choose the scaling algorithm. For more information about these options,
refer to pages 5–12 to 5–14.

Number of vertical taps 3–16, Default = 4 Specify the number of vertical taps.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–7
Compile Time Parameters

Number of vertical phases 2, 4, 8, 16, 32,
64, 128, 256

Specify the number of vertical phases.

Number of horizontal taps 3–16, Default = 4 Specify the number of horizontal taps.

Number of horizontal
phases

2, 4, 8, 16, 32,
64, 128, 256

Specify the number of horizontal phases.

Vertical Coefficient
Precision: Signed

On or Off Turn on if you want the fixed-point type that stores the vertical coefficients
to have a sign bit.

Vertical Coefficient
Precision: Integer bits:

0–15, Default = 1 Specifies the number of integer bits for the fixed-point type used to store
the vertical coefficients.

Vertical Coefficient
Precision: Fraction bits:

3–15, Default = 7 Specifies the number of fractional bits for the fixed point type used to
store the vertical coefficients.

Number of bits to preserve
between vertical and
horizontal filtering

3–32, Default = 9 Specifies the number of bits to preserve between vertical and horizontal
filtering.

Horizontal Coefficient
Precision: Signed

On or Off Turn on if you want the fixed-point type that stores the horizontal
coefficients to have a sign bit.

Horizontal Coefficient
Precision: Integer bits:

0–15, Default = 1 Specifies the number of integer bits for the fixed-point type used to store
the horizontal coefficients.

Horizontal Coefficient
Precision: Fraction bits:

0–15, Default = 7 Specifies the number of fractional bits for the fixed point type used to
store the horizontal coefficients.

Table A–10. Scaler Parameter Settings, Algorithm and Precision Tab (Part 2 of 2)

Parameter Value Description

Table A–11. Scaler Parameter Settings, Coefficients Tab (Part 1 of 2)

Parameter Value Description

Load coefficient data at
runtime

On or Off Turn on to load the coefficient data at runtime.

Share horizontal / vertical
coefficients

On or Off Turn on to map horizontal and vertical coefficients to the same
memory. When on and Load coefficient data at runtime is also
on, writes to the vertical coefficients are ignored. (The choice of
read bank remains independent for horizontal and vertical
coefficients.)

Vertical Coefficient Data:
Memory banks

1–6, Default = 2 Choose the number of coefficient banks to enable
double-buffering, fast coefficient swapping or direct writes.

Vertical Coefficient Data:
Filter function

Lanczos 1–12, or Custom,
Default = Lanczos 2

You can choose from 12 pre-defined Lanczos functions or use
the coefficients saved in a custom coefficients file.

Vertical Coefficient Data:
Custom coefficient file

used specified When a custom function is selected, you can browse for a
comma-separated value file containing custom coefficients. Use
the Preview coefficients button to view the current coefficients
in a preview window.

Vertical Coefficient Data:
Symmetric

On or Off Turn on to save coefficient memory by using symmetric
coefficients. When on and Load coefficient data at runtime is
also on, coefficient writes beyond phases 2 and 1 are ignored.

Horizontal Coefficient Data:
Memory banks

1–6, Default = 2 Choose the number of coefficient banks to enable
double-buffering, fast coefficient swapping or direct writes.

Horizontal Coefficient Data:
Filter function

Lanczos 1–12, or Custom,
Default = Lanczos 2

You can choose from 12 pre-defined Lanczos functions or use
the coefficients saved in a custom coefficients file.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–8 Appendix A: Reference
Compile Time Parameters
Clipper
Table A–12 shows the Clipper parameters.

Horizontal Coefficient Data:
Custom coefficient file

used specified When a custom function is selected, you can browse for a
comma-separated value file containing custom coefficients. Use
the Preview coefficients button to view the current coefficients
in a preview window.

Horizontal Coefficient Data:
Symmetric

On or Off Turn on to save coefficient memory by using symmetric
coefficients. When on and Load coefficient data at runtime is
also on, coefficient writes beyond phases 2 and 1 are ignored.

Table A–11. Scaler Parameter Settings, Coefficients Tab (Part 2 of 2)

Parameter Value Description

Table A–12. Clipper Parameter Settings

Parameter Value Description

Maximum width 32 to input image width,
Default = 1,024

Specify the maximum width of the clipping rectangle for the input
image.

Maximum height 32 to input image height,
Default = 768

Specify the maximum height of the clipping rectangle for the input
image.

Bits per pixel per
color plane

4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Number of color
planes in sequence

1–3 Choose the number of color planes that are sent in sequence over one
data connection. For example, a value of 3 for R'G'B' R'G'B' R'G'B'.

Number of color
planes in parallel

1–3 Choose the number of color planes in parallel.

Include Avalon-MM
interface

On or Off Turn on if you want to specify clipping offsets using the Avalon-MM
interface.

Clipping method Offsets, Rectangle Choose whether to specify the clipping area as offsets from the edge of
the input area or as a fixed rectangle.

Left offset positive integer, Default =
10

Specify the x coordinate for the left edge of the clipping rectangle. 0 is
the left edge of the input image. (Note 1)

Right offset positive integer, Default =
10

Specify the x coordinate for the right edge of the clipping rectangle. 0
is the right edge of the input image. (Note 1)

Width positive integer, Default =
10

Specify the width of the clipping rectangle.

Top offset positive integer, Default =
10

Specify the y coordinate for the top edge of the clipping rectangle. 0 is
the top edge of the input image. (Note 2)

Bottom offset positive integer, Default =
10

Specify the y coordinate for the bottom edge of the clipping rectangle.
0 is the bottom edge of the input image. (Note 2)

Height positive integer, Default =
10

Specify the height of the clipping rectangle.

Notes to Table A–12:

(1) The left and right offset values must be less than or equal to the input image width.
(2) The top and bottom offset values must be less than or equal to the input image height.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–9
Compile Time Parameters
Deinterlacer
Table A–13 shows the Deinterlacer MegaCore function parameters.

Table A–13. Deinterlacer Parameter Settings (Part 1 of 2)

Parameter Value Description

Maximum image width 32–2,600, Default = 640 Choose the maximum image width in pixels. The maximum
image width is the default width at start-up.

Maximum image height 32–2,600, Default = 480 Choose the maximum image height in pixels. The maximum
image height is the default height at start-up.

Bits per pixel per color
plane

4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Number of color planes
in sequence

1–3 Choose the number of color planes that are sent in sequence over
one data connection. For example, a value of 3 for R'G'B' R'G'B'
R'G'B'.

Number of color planes
in parallel

1–3 Choose the number of color planes in parallel.

Default initial field F0, F1 Choose a default type for the initial field. The default value is not
used if the first field is preceded by an Avalon-ST Control packet.

Deinterlacing Method Bob - Scanline Duplication,
Bob - Scanline Interpolation,
Weave, Motion Adaptive

Refer to “Deinterlacing Methods” on page 5–21. (Note 1)

Frame buffering mode No buffering,
Double buffering,
Triple buffering with rate
conversion

Specifies whether external frame buffers are used. In no buffering
mode, data is piped directly from input to output without using
external memory. This is possible only with the bob method.
Double-buffering routes data via a pair of buffers in external
memory. This is required by the weave and motion-adaptive
methods, and can ease throughput issues for the bob method.
Triple-buffering uses three buffers in external memory and has
the advantage over double-buffering that the Deinterlacer can
drop or repeat frames, to perform simple frame rate conversion.
(Note 1), (Note 3), (Note 4), (Note 5)

Output frame rate As input frame rate
(F0 synchronized),
As input frame rate
(F1 synchronized),
As input field rate

Specifies whether to produce a frame out for every field which is
input, or a frame output for every frame (pair of fields) input.
Each deinterlacing method is defined in terms of its processing of
the current field and some number of preceding fields. In the case
where a frame is produced only for every two input fields, the
current field is either always an F1 field or always an F0 field.

Passthrough mode On or Off Turn on to propagate progressive frames unchanged. When off,
the progressive frames are discarded.

Motion bleed On or Off Turn on to compare the motion value with thecorresponding
motion value for the same location in the previous frame. f it is
greater, the new value is kept, but if the new value is less than the
stored value, the motion value used is the mean of the two values.
This reduces unpleasant flickering artefacts but increases the
memory usage and memory bandwidth requirements. (Note 2)

Runtime control for
locked frame rate
conversion

On or Off Turn on to add an Avalon-MM slave interface that synchronizes
the input and output frame rates. (Note 2), (Note 6)
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–10 Appendix A: Reference
Compile Time Parameters
Frame Buffer
Table A–14 shows the Frame Buffer parameters.

Runtime control of the
motion-adaptive blending

On or Off Turn on to add an Avalon-MM slave interface that controls the
behavior of the motion adaptive algorithm at run time. The
pixel-based motion value computed by the algorithm can be
replaced by a user selected frame-based motion value that varies
between the two extremes of being entirely bob or entirely weave.
(Note 4), (Note 6)

Use separate clocks for
the Avalon-MM master
interfaces

On or Off Turn on to add a separate clock signal for the Avalon-MM master
interfaces so that they can run at a different speed to the
Avalon-ST processing. This decouples the memory speed from
the speed of the data path and is sometimes necessary to reach
performance target.

Avalon-MM master ports
width

16, 32, 64,128, 256 Specifies the width of the Avalon Memory-Mapped (Avalon-MM)
ports used to access external memory when double-buffering or
triple-buffering is used. (Note 3)

Read-only master(s)
interface FIFO depth

16–1,024, Default = 64 Choose the FIFO depth of the read-only Avalon-MM interface.

Read-only master(s)
interface burst target

2–256, Default = 32 Choose the burst target for the read-only Avalon-MM interface.

Write-only master(s)
interface FIFO depth

16–1,024, Default = 64 Choose the FIFO depth of the write-only Avalon-MM interface.

Write-only master(s)
interface burst target

8–256, Default = 32 Choose the burst target for the write-only Avalon-MM interface.

Base address of frame
buffers

Any 32-bit value,
Default = 0x00000000

Hexadecimal address of the frame buffers in external memory
when buffering is used. (Note 3)

Number of packets
buffered per field

1–32 Specify the number of packets that can be buffered with each
field. Older packets are discarded first in case of an overflow.
(Note 5)

Maximum packet length 10–1,024 Choose the maximum packet length as a number of symbols. The
minimum value is 10 because this is the size of an Avalon-ST
control packet (header included). Extra samples are discarded if
packets are larger than allowed. (Note 5)

Notes to Table A–13:

(1) Either double or triple-buffering mode must be selected before you can select the weave or motion-adaptive deinterlacing methods.
(2) These options are available only when you select Motion Adaptive as the deinterlacing method.
(3) The options to specify the Avalon-MM master ports width and the base address for the frame buffers are available only when you select double

or triple-buffering.
(4) The option to synchronize input and output frame rates is only available when double-buffering mode is selected.
(5) The options to control the buffering of non-image data packets are available when you select double or triple-buffering.
(6) You cannot enable both run-time cintrol interfaces at the same time.

Table A–13. Deinterlacer Parameter Settings (Part 2 of 2)

Parameter Value Description

Table A–14. Frame Buffer Parameter Settings (Part 1 of 2)

Parameter Value Description

Maximum image width 32–2,600,
Default = 640

Specify the maximum image width.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–11
Compile Time Parameters
Line Buffer Compiler
Table A–15 shows the Line Buffer Compiler parameters.

Maximum image height 32–2,600,
Default = 480

Specify the maximum image height.

Bits per pixel per color plane 4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Number of color planes in
sequence

1–3 Choose the number of color planes in sequence.

Number of color planes in
parallel

1–3 Choose the number of color planes in parallel.

Frame dropping On or Off Turn on to allow frame dropping.

Frame repetition On or Off Turn on to allow frame repetition.

Runtime control for the writer
thread

On or Off Turn on to enable run-time control for the write interfaces.

Runtime control for the
reader thread

On or Off Turn on to enable run-time control for the read interfaces.

Use separate clocks for the
Avalon-MM master interfaces

On or Off Turn on to add a separate clock signal for the Avalon-MM master
interfaces so that they can run at a different speed to the Avalon-ST
processing. This decouples the memory speed from the speed of
the data path and is sometimes necessary to reach performance
target.

External memory port width 16, 32, 64, 128, 256 Choose the width of the external memory port.

Write-only master interface
FIFO depth

16–1,024,
Default = 64

Choose the FIFO depth of the write-only Avalon-MM interface.

Write-only master interface
burst target

2–256, Default = 32 Choose the burst target for the write-only Avalon-MM interface.

Read-only master interface
FIFO depth

16–1,024,
Default = 64

Choose the FIFO depth of the read-only Avalon-MM interface.

Read-only master interface
burst target

2–256, Default = 32 Choose the burst target for the read-only Avalon-MM interface.

Base address of frame
buffers

Any 32-bit value,
Default = 0x00000000

Hexadecimal address of the frame buffers in external memory.

Number of packets buffered
per frame

1–32 Specify the maximum number of packets that can be buffered with
each frame. Older packets are discarded first in case of an
overflow.

Maximum packet length 10–1,024 Specify the maximum packet length as a number of symbols. The
minimum value is 10 because this is the size of an Avalon-ST
control packet (header included). Extra samples are discarded if
packets are larger than allowed.

Table A–14. Frame Buffer Parameter Settings (Part 2 of 2)

Parameter Value Description

Table A–15. Line Buffer Compiler Parameter Settings (Part 1 of 2)

Parameter Value Description

Line length 1–1,920, Default = 64 The length of each line buffer in bits.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–12 Appendix A: Reference
Compile Time Parameters
Clocked Video Input
Table A–16 shows the Clocked Video Input parameters.

Line width 1–64, Default = 8 The width of each line buffer in bits.

Number of lines 1–16, Default = 3 The number of line buffers required.

Table A–15. Line Buffer Compiler Parameter Settings (Part 2 of 2)

Parameter Value Description

Table A–16. Clocked Video Input Parameter Settings

Parameter Value Description

Preset conversion DVI 1080p60,
SDI 1080p60,
SDI 1080i60,
PAL, NTSC

You can choose from a list of preset conversions or use the other fields in
the dialog box to set up custom parameter values. If you click Load values
into controls the dialog box is initialized with values for the selected preset
conversion.

Bits per pixel per color
plane

4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Number of color planes 1–3, Default = 3 Choose the number of color planes.

Color plane transmission
format

Sequence, Parallel Choose whether the color planes are transmitted in sequence or in
parallel.

Field order Field 0 first,
Field 1 first,
Any field first,

Choose the field to sync to first when starting or stopping the output.

Avalon-ST Video Initial /
Default Control Packet

Progressive,
Interlaced

Choose the format to be used when no format can be automatically
detected.

Image Width,
Progressive / Field 0

32–65,536,
Default = 1,920

Choose the image width to be used when no format can be automatically
detected.

Image Width, Field 1 32–65,536,
Default = 1,920

Choose the image width for interlaced field 1when no format can be
automatically detected.

Image Height,
Progressive / Field 0

32–65,536,
Default = 1,080

Choose the image height to be used when no format can be automatically
detected.

Image Height, Field 1 32–65,536, Default
= 1,080

Choose the image height for interlaced field 1when no format can be
automatically detected.

Pixel FIFO size 32–(memory limit),
Default = 1,920

Choose the required FIFO depth in pixels (limited by the available on-chip
memory).

Video in and out use the
same clock

On or Off Turn on if you want to use the same signal for the input and output video
image stream clocks.

Sync Signals Embedded in video,
On separate wires

Choose whether the synchronization signal is embedded in the video
stream or provided on a separate wire.

Allow color planes in
sequence input

On or Off Choose whether run-time switching is allowed between sequential and
parallel color plane transmission formats. The format is controlled by the
vid_hd_sdn signal.

Use control port On or Off Turn on to use the optional stop/go control port.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–13
Compile Time Parameters
Clocked Video Output
Table A–17 shows the Clocked Video Output parameters.

Table A–17. Clocked Video Output Parameter Settings (Part 1 of 2)

Parameter Value Description

Preset conversion DVI 1080p60,
SDI 1080p60,
SDI 1080i60,
PAL, NTSC

You can choose from a list of preset conversions or use the other fields in
the dialog box to set up custom parameter values. If you click Load values
into controls the dialog box is initialized with values for the selected preset
conversion.

Image width / Active
pixels

32–65,536,
Default = 1,920

Specify the image width by choosing the number of active pixels.

Image height / Active
lines

32–65,536,
Default = 1,080

Specify the image height by choosing the number of active lines.

Bits per pixel per color
plane

4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Number of color planes 1–3, Default = 3 Choose the number of color planes.

Color plane transmission
format

Sequence, Parallel Choose whether the color planes are transmitted in sequence or in parallel.

Allow output of color
planes in sequence

On or Off Choose whether run-time switching is allowed between sequential and
parallel color plane transmission formats. The format is controlled by the
ModeXInterlaced registers.

Interlaced video On or Off Turn on if you want to use interlaced video. If on, you can set the additional
Interlaced and Field 0 Parameters.

Sync signals Embedded in video,
On separate wires

Choose whether the synchronization signal is embedded in the video
stream or provided on a separate wire. If you choose Embedded in video,
you can set the active picture line, horizontal blanking, and vertical
blanking values. If you choose On separate wires, you can set horizontal
and vertical values for sync, front porch, and back porch.

Frame / Field 1:
Active picture line

0–65,536,
Default = 0

Choose the start of active picture line for Frame/Field 1.

Frame / Field 1:
Horizontal blanking

0–65,536,
Default = 0

Choose the size of the horizontal blanking period in pixels for Frame/Field
1.

Frame / Field 1: Vertical
blanking

0–65,536,
Default = 0

Choose the size of the vertical blanking period in pixels for Frame/Field 1.

Frame / Field 1:
Horizontal sync

1–65,536,
Default = 60

Choose the size of the horizontal sync period in pixels for Frame/Field 1.

Frame / Field 1:
Horizontal front porch

1–65,536,
Default = 20

Choose the size of the horizontal front porch period in pixels for
Frame/Field 1.

Frame / Field 1:
Horizontal back porch

1–65,536,
Default = 192

Choose the size of the horizontal back porch period in pixels for
Frame/Field 1.

Frame / Field 1:
Vertical sync

0–65,536,

Default = 5

Choose the number of lines in the vertical sync period for Frame/Field 1.

Frame / Field 1:
Vertical front porch

0–65,536,
Default = 4

Choose the number of lines in the vertical front porch period for
Frame/Field 1.

Frame / Field 1:
Vertical back porch

0–65,536,
Default = 36

Choose the number of lines in the vertical back porch period for
Frame/Field 1.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–14 Appendix A: Reference
Compile Time Parameters
Color Plane Sequencer
Table A–18 shows the Color Plane Sequencer parameters.

Interlaced and Field 0:
F rising edge line

0–65,536,
Default = 0

Choose the line when the rising edge of the field bit occurs for Interlaced
and Field 0.

Interlaced and Field 0:
F falling edge line

0–65,536,
Default = 18

Choose the line when the rising edge of the vertical blanking bit for Field 0
occurs for Interlaced and Field 0.

Interlaced and Field 0:
Vertical blanking rising
edge line

0–65,536,
Default = 0

Choose the line when the vertical blanking rising edge occurs for
Interlaced and Field 0.

Interlaced and Field 0:
Vertical blanking

0–65,536,
Default = 0

Choose the number of lines in the vertical front porch period for Interlaced
and Field 0.

Interlaced and Field 0:
Vertical sync

0–65,536,
Default = 0

Choose the number of lines in the vertical back porch period for Interlaced
and Field 0.

Interlaced and Field 0:
Vertical front porch

0–65,536,
Default = 0

Choose the number of lines in the vertical front porch period for Interlaced
and Field 0.

Interlaced and Field 0:
Vertical back porch

0–65,536,
Default = 0

Choose the number of lines in the vertical back porch period for Interlaced
and Field 0.

Pixel FIFO size 32–(memory limit),
Default = 1,920

Choose the required FIFO depth in pixels (limited by the available on-chip
memory).

FIFO level at which to
start output

0–(memory limit),
Default = 0

Choose the fill level that the FIFO must have reached before the output
video starts.

Video in and out use the
same clock

On or Off Turn on if you want to use the same signal for the input and output video
image stream clocks.

Use control port On or Off Turn on to use the optional Avalon-MM control port.

Runtime configurable
video modes

1–14, Default = 1 Choose the number of runtime configurable video output modes that are
required when you are using the Avalon-MM control port.

Table A–17. Clocked Video Output Parameter Settings (Part 2 of 2)

Parameter Value Description

Table A–18. Color Plane Sequencer Parameter Settings (Part 1 of 2)

Parameter Value Description

Bits per pixel per color plane 4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Two pixels per port On or Off Turn on to enable two pixels on each port.

Color planes in parallel (din0) 1–3 Choose the number of color planes in parallel for input port din0.

Color planes in sequence (din0) 1–4 Choose the number of color planes in sequence for input port din0.

Port enabled (din1) On or Off Turn on to enable input port din0.

Color planes in parallel (din1) 1–3 Choose the number of color planes in parallel for input port din1.

Color planes in sequence (din1) 1–4 Choose the number of color planes in sequence for input port din1.

Port enabled (dout0) On or Off Turn on to enable output port dout0.

Source non-image packets
from port (dout0)

din0, din1, din0
and din1

Choose the source port(s) that are enabled for non-image packets for
output port dout0.

Halve control packet width
(dout0)

On or Off Turn on to halve the Avalon-ST Video control packet width for output
port dout0. (Note 1)

Color planes in parallel (dout0) 1–3 Choose the number of color planes in parallel for output port dout0.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–15
Compile Time Parameters
Test Pattern Generator
Table A–19 shows the Test Pattern Generator parameters.

Color planes in sequence
(dout0)

1–4 Choose the number of color planes in sequence for output port
dout0.

Port enabled (dout1) On or Off Turn on to enable output port dout1.

Source non-image packets
from port (dout1)

din0, din1, din0
and din1

Choose the source port used for non-image packets for output port
dout1.

Halve control packet width
(dout1)

On or Off Turn on to halve the Avalon-ST Video control packet width for output
port dout1. (Note 1)

Color planes in parallel (dout1) 1–3 Choose the number of color planes in parallel for output port dout1.

Color planes in sequence
(dout1)

1–4 Choose the number of color planes in sequence for output port
dout1.

Note to Table A–18:

(1) This option can be useful if you want to split a subsampled color plane from a fully sampled color plane. The subsampled color plane can then
be processed by other functions as if fully sampled.

Table A–18. Color Plane Sequencer Parameter Settings (Part 2 of 2)

Parameter Value Description

Table A–19. Test Pattern Generator Parameter Settings

Parameter Value Description

Run-time control
of image size

On or Off Turn on to enable run-time control of the image size. When on, the output size
parameters control the maximum values.

Maximum image
width

32–2,600,
Default = 640

Choose the required output width in pixels.

Maximum image
height

32–2,600,
Default = 480

Choose the required output height in pixels.

Bits per pixel per
color plane

4–20,
Default = 8

Choose the number of bits per pixel (per color plane).

Color space RGB or YCbCr,
Default = RGB

Choose whether to use an R’G’B’ or Y’CbCr color space.

Output format 4:4:4, 4:2:2, 4:2:0 Choose the format/sampling rate format for the output frames.

Color planes
transmission
format

Sequence, Parallel This function always outputs three color planes but you can choose whether they
are transmitted in sequence or in parallel.

Interlacing Progressive output,
Interlaced output
(F0 synchronized),
Interlaced output
(F1 synchronized)

Specifies whether to produce a progressive or an interlaced output stream.

Pattern Color bars, Uniform
background

Choose the standard color bar or a uniform background. If you choose a uniform
background, you can specify the individual R’G’B or Y’ Cb Cr values depending on
the currently selected color space.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–16 Appendix A: Reference
Run-Time Control Register Maps
Run-Time Control Register Maps
The Color Space Converter, Gamma Corrector, 2D FIR Filter, Alpha Blending Mixer,
Scaler, Clocked Video Input, Clocked Video Output, Frame Buffer, and Test Pattern
Generator MegaCore functions support run-time control for some of their behavior
using a common type of Avalon-MM slave interface. This section describes the control
register maps which can be accessed using these interfaces.

For information about the Control and Status registers which are common to these
interfaces, refer to “Avalon-MM Slave Interfaces” on page 4–14.

Color Space Converter
Table A–20 describes the control register map for the Color Space Converter.

The width of each register in the Color Space Converter control register map is 32 bits.
The coefficient and summand registers use integer, signed 2’s complement numbers.
To convert from fractional values, simply move the binary point right by the number
of fractional bits specified in the user interface.

The control data is read once at the start of each frame and is buffered inside the
MegaCore function, so the registers can be safely updated during the processing of a
frame.

Gamma Corrector
The Gamma Corrector can have up to three Avalon-MM slave interfaces. There is a
separate slave interface for each channel in parallel. Table A–21, Table A–22 and
Table A–23 on page A–17 describe the control register maps for these interfaces.

Table A–20. Color Space Converter Control Register Map

Address Register Name Description

0 Control The zeroth bit of this register is the Go bit, all other bits are unused. Setting this bit to 0
causes the Color Space Converter MegaCore function to stop the next time control
information is read. Refer to “Avalon-MM Slave Interfaces” on page 4–14 for full details.

1 Status The zeroth bit of this register is the Status bit, all other bits are unused. Refer to
“Avalon-MM Slave Interfaces” on page 4–14 for full details.

2 Coefficient A0 For details, refer to “Color Space Conversion” on page 5–1.

3 Coefficient B0

4 Coefficient C0

5 Coefficient A1

6 Coefficient B1

7 Coefficient C1

8 Coefficient A2

9 Coefficient B2

10 Coefficient C2

11 Summand S0

12 Summand S1

13 Summand S2
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–17
Run-Time Control Register Maps
The control registers are read continuously during the operation of the MegaCore
function, so making a change to part of the Gamma look-up table during the
processing of a frame always has immediate effect. To synchronize changes to frame
boundaries, follow the procedure which is described in “Avalon-MM Slave
Interfaces” on page 4–14.

The width of each register in the Gamma Corrector control register map is always
equal to the value of the Bits per pixel per color plane parameter selected in the
MegaWizard interface.

Table A–21. Gamma Corrector Control Register Map: Interface 0

Address Register Name Description

0 Control The zeroth bit of this register is the Go bit, all other bits are unused. Setting this bit
to 0 causes the Gamma Corrector MegaCore function to stop the next time control
information is read. Refer to “Avalon-MM Slave Interfaces” on page 4–14 for full
details.

1 Status The zeroth bit of this register is the Status bit, all other bits are unused. Refer to
“Avalon-MM Slave Interfaces” on page 4–14 for full details.

2 to 2N +1 where N
is the number of
bits per color plane.

Gamma
Look-Up
Table

These registers contain a look-up table that is used to apply gamma correction to
video data. An input intensity value of x is gamma corrected by replacing it with the
contents of the (x+1)th entry in the look-up table. Changing the values of these
registers has an immediate effect on the behavior of the MegaCore function. To
ensure that gamma look-up values do not change during processing of a video
frame, use the Go bit to stop the MegaCore function while the table is changed.

Table A–22. Gamma Corrector Control Register Map: Interface 1

Address Register Name Description

0 Unused This register is not used

1 Unused This register is not used

2 to 2N +1 where N
is the number of
bits per color plane.

Gamma
Look-Up
Table

These registers contain a look-up table that is used to apply gamma correction to
video data. An input intensity value of x is gamma corrected by replacing it with the
contents of the (x+1)th entry in the look-up table. Changing the values of these
registers has an immediate effect on the behavior of the MegaCore function. To
ensure that gamma look-up values do not change during processing of a video
frame, use the Go bit in Interface 0 to stop the MegaCore function while the table is
changed.

Table A–23. Gamma Corrector Control Register Map: Interface 2

Address Register Name Description

0 Unused This register is not used

1 Unused This register is not used

2 to 2N +1 where N
is the number of
bits per color plane.

Gamma
Look-Up
Table

These registers contain a look-up table that is used to apply gamma correction to
video data. An input intensity value of x is gamma corrected by replacing it with the
contents of the (x+1)th entry in the look-up table. Changing the values of these
registers has an immediate effect on the behavior of the MegaCore function. To
ensure that gamma look-up values do not change during processing of a video
frame, use the Go bit in Interface 0 to stop the MegaCore function while the table is
changed.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–18 Appendix A: Reference
Run-Time Control Register Maps
2D FIR Filter
Table A–24 describes the control register map for the 2D FIR Filter.

The width of each register in the 2D FIR Filter control register map is 32 bits. The
coefficient registers use integer, signed 2’s complement numbers. To convert from
fractional values, simply move the binary point right by the number of fractional bits
specified in the user interface.

The control data is read once at the start of each frame and is buffered inside the
MegaCore function, so the registers can be safely updated during the processing of a
frame.

Alpha Blending Mixer
Table A–25 describes the Alpha Blending Mixer control register map.

The width of each register in the Alpha Blending Mixer control register map is 16 bits.
The control data is read once at the start of each frame and is buffered inside the
MegaCore function, so the registers may be safely updated during the processing of a
frame.

Table A–24. 2D FIR Filter Control Register Map

Address Register Name Description

0 Control The zeroth bit of this register is the Go bit, all other bits are unused. Setting this bit to 0
causes the 2D FIR Filter MegaCore function to stop the next time control information is
read. Refer to “Avalon-MM Slave Interfaces” on page 4–14 for full details.

1 Status The zeroth bit of this register is the Status bit, all other bits are unused. Refer to
“Avalon-MM Slave Interfaces” on page 4–14 for full details.

2 Coefficient 0 The coefficient at the top left (origin) of the filter kernel.

3 Coefficient 1 The coefficient at the origin across to the right by one.

4 Coefficient 2 The coefficient at the origin across to the right by two.

n Coefficient n The coefficient at position:

■ Row (where 0 is the top row of the kernel) is the integer value via the truncation of
(n–2) / (filter kernel width)

■ Column (where 0 is the far left row of the kernel) is the remainder of
(n–2) / (filter kernel width)

Table A–25. Alpha Blending Mixer Control Register Map (Part 1 of 2)

Address Register(s) Description

0 Control The zeroth bit of this register is the Go bit, all other bits are unused. Setting this bit to 0 causes
the Alpha Blending Mixer MegaCore function to stop the next time control information is read.
Refer to “Avalon-MM Slave Interfaces” on page 4–14 for full details.

1 Status The zeroth bit of this register is the Status bit, all other bits are unused. Refer to “Avalon-MM
Slave Interfaces” on page 4–14 for full details.

2 Layer 1 X Offset in pixels from the left edge of the background layer to the left edge of layer 1. (Note 1)

3 Layer 1 Y Offset in pixels from the top edge of the background layer to the top edge of layer 1. (Note 1)
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–19
Run-Time Control Register Maps
Scaler
Table A–26 describes the Scaler control register map.

The control data is read once at the start of each frame and is buffered inside the
MegaCore function, so the registers may be safely updated during the processing of a
frame. Note that all Scaler registers are write-only except at address 1.

4 Layer 1
Active

Layer 1 is displayed if this control register is set to 1. Data in the input stream is consumed but
not displayed if this control register is set to 2, Avalon-ST packets of type 2 to 14 are still
propagated as usual. Data from the input stream is not pulled out if this control register is set to
0. (Note 1), (Note 2).

5 Layer 2 X …. (Note 3)

Note to Table A–25:

(1) The value of this register is checked at the start of each frame. If the register is changed during the processing of a video frame, the change
does not take effect until the start of the next frame.

(2) For efficiency reasons, the Video and Image Processing Suite MegaCore functions buffer a few samples from the input stream even if they are
not immediately processed. This implies that the Avalon-ST inputs for foreground layers assert ready high and buffer a few samples even if the
corresponding layer has been deactivated.

(3) The rows in the table are repeated in ascending order for each layer from 1 to the foreground layer.

Table A–25. Alpha Blending Mixer Control Register Map (Part 2 of 2)

Address Register(s) Description

Table A–26. Scaler Control Register Map (Part 1 of 2)

Address Register Description

0 Control The zeroth bit of this register is the Go bit, all other bits are unused.
Setting this bit to 0, causes the Scaler to stop the next time that control
information is read. Refer to “Avalon-MM Slave Interfaces” on page 4–14
for full details.

1 Status The zeroth bit of this register is the Status bit, all other bits are unused.
The Scaler MegaCore function sets this address to 0 between frames. It is
set to 1 while the MegaCore function is processing data and cannot be
stopped. Refer to “Avalon-MM Slave Interfaces” on page 4–14 for full
details.

2 Output Width The width of the output frames in pixels. (Note 1)

3 Output Height The height of the output frames in pixels. (Note 1)

4 Horizontal Coefficient
Bank Write Address

Specifies which memory bank horizontal coefficient writes from the
Avalon-MM interface are made into.

5 Horizontal Coefficient
Bank Read Address

Specifies which memory bank is used for horizontal coefficient reads
during data processing.

6 Vertical Coefficient
Bank Write Address

Specifies which memory bank vertical coefficient writes from the
Avalon-MM interface are made into. (Note 2)

7 Vertical Coefficient
Bank Read Address

Specifies which memory bank is used for vertical coefficient reads during
data processing

8 to 7+Nh Horizontal Tap Data Specifies values for the horizontal coefficients at a particular phase. Write
these values first, then the Horizontal Phase to commit the write.

8+Nh Horizontal Phase Specifies which phase the Horizontal Tap Data applies to.
Writing to this location, commits the writing of tap data. This write must
be made even if the phase value does not change between successive
sets of tap data.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–20 Appendix A: Reference
Run-Time Control Register Maps
Table A–27 shows an example of the sequence of writes to the horizontal coefficient
data for an instance of the Scaler MegaCore function with four taps and eight phases.

9+Nh to
8+Nh+Nh+Nv

Vertical Tap Data Specifies values for the vertical coefficients at a particular phase. Write
these values first, then the Vertical Phase to commit the write.
(Note 2)

9+Nh+Nv Vertical Phase Specifies which phase the Vertical Tap Data applies to. Writing to
this location, commits the writing of tap data. This write must be made
even if the phase value does not change between successive sets of tap
data. (Note 2)

Note to Table A–26:

(1) Value can be from 32 to the maximum specified in the MegaWizard interface.
(2) If Share horizontal/vertical coefficients is selected in the MegaWizard interface, this location is not used.

Table A–26. Scaler Control Register Map (Part 2 of 2)

Address Register Description

Table A–27. Example of Using the Scaler Control Registers

Address Value Purpose

8 0 Setting up Tap 0 for Phase 0.

9 128 Setting up Tap 1 for Phase 0.

10 0 Setting up Tap 2 for Phase 0.

11 0 Setting up Tap 3 for Phase 0.

12 0 Commit the writes to Phase 0.

8 –8 Setting up Tap 0 for Phase 1.

9 124 Setting up Tap 1 for Phase 1.

10 13 Setting up Tap 2 for Phase 1.

11 –1 Setting up Tap 3 for Phase 1.

12 0 Commit the writes to Phase 1.

...

8 –1 Setting up Tap 0 for Phase 7.

9 13 Setting up Tap 1 for Phase 7.

10 124 Setting up Tap 2 for Phase 7.

11 –8 Setting up Tap 3 for Phase 7.

12 0 Commit the writes to Phase 7.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–21
Run-Time Control Register Maps
Clipper
Table A–28 describes the Clipper control register map.

The control data is read once at the start of each frame and is buffered inside the
MegaCore function, so the registers can be safely updated during the processing of a
frame. Note that all Clipper registers are write-only except at address 1.

Deinterlacer
An run-time control interface can be attached to the Deinterlacer that you can use to
override the default behavior of the motion-adaptive algorithm or to synchronize the
input and output frame rates. However, it is not possible to enable both of these
interface simultaneously.

Table A–29 describes the control register map that controls the motion-adaptive
algorithm at run time. The control data is read once and registered before outputting a
frame. It can be safely updated during the processing of a frame.

Table A–28. Clipper Control Register Map

Address Register Description

0 Control The zeroth bit of this register is the Go bit, all other bits are unused. Setting this bit to 0
causes the Clipper MegaCore function to stop the next time control information is read.
Refer to “Avalon-MM Slave Interfaces” on page 4–14 for full details.

1 Status The zeroth bit of this register is the Status bit, all other bits are unused. The Clipper
MegaCore function sets this address to 0 between frames. It is set to 1 while the
MegaCore function is processing data and cannot be stopped. Refer to “Avalon-MM Slave
Interfaces” on page 4–14 for full details.

2 Left Offset The left offset, in pixels, of the clipping window/rectangle. (Note 1)

3 Right Offset
or Width

In clipping window mode, the right offset of the window. In clipping rectangle mode, the
width of the rectangle. (Note 1)

4 Top Offset The top offset, in pixels, of the clipping window/rectangle. (Note 2)

5 Bottom Offset
or Height

In clipping window mode, the bottom offset of the window. In clipping rectangle mode,
the height of the rectangle. (Note 2)

Note to Table A–28:

(1) The left and right offset values must be less than or equal to the input image width.
(2) The top and bottom offset values must be less than or equal to the input image height.

Table A–29. Deinterlacer Control Register Map (Part 1 of 2)

Address Register Description

0 Control The zeroth bit of this register is the Go bit, all other bits are unused. Setting this bit to 0
causes the Deinterlacer MegaCore function to stop before control information is read and
before outputting a frame. While stopped, the Deinterlacer may continue to receive and
drop frames at its input if triple-buffering is enabled. Refer to “Avalon-MM Slave
Interfaces” on page 4–14 for full details.

1 Status The zeroth bit of this register is the Status bit, all other bits are unused. Refer to
“Avalon-MM Slave Interfaces” on page 4–14 for full details.

2 Motion value
override

Write-only register. The zeroth bit of this register should be set to 1 to override the
per-pixel motion value computed by the deinterlacing algorithm with a user specified
value. This register cannot be read.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–22 Appendix A: Reference
Run-Time Control Register Maps
Table A–29 describes the control register map that synchronizes the input and output
frame rates. The control data is read and registered when receiving the image data
header that signals new frame. It can be safely updated during the processing of a
frame.

Frame Buffer
A run-time control can be attached either to the writer component or to the reader
component of the Frame Buffer MegaCore function but not to both. The width of each
register is 16 bits.

Table A–31 describes the Frame Buffer control register map for the writer component.

3 Blending
coefficient

Write-only register. The 16-bit value that overrides the motion value computed by the
deinterlacing algorithm. This value can vary between 0 (weaving) to 65535 (bobbing). The
register cannot be read.

Table A–29. Deinterlacer Control Register Map (Part 2 of 2)

Address Register Description

Table A–30. Deinterlacer Control Register Map

Address Register Description

0 Control The zeroth bit of this register is the Go bit, all other bits are unused. Setting this bit to 0
causes the Deinterlacer MegaCore function to stop before control information is read and
before outputting a frame. Refer to “Avalon-MM Slave Interfaces” on page 4–14 for full
details.

1 Status The zeroth bit of this register is the Status bit, all other bits are unused. Refer to
“Avalon-MM Slave Interfaces” on page 4–14 for full details.

2 Input frame
rate

Write-only register. An 8-bit integer value for the input frame rate This register cannot be
read. (Note 1)

3 Output frame
rate

Write-only register. An 8-bit integer value for the output frame rate. The register cannot
be read. (Note 1)

Note to Table A–30:

(1) The behavior of the rate conversion algorithm is not directly affected by a particular choice of input and output rates but only by their ratio.
23.976 -> 29.970 is equivalent to 24 -> 30.

Table A–31. Frame Buffer Control Register Map for the Writer Component

Address Register(s) Description

0 Control The zeroth bit of this register is the Go bit, all other bits are unused. Setting this bit to 0
causes the Frame Buffer MegaCore function to stop the next time control information is
read. Refer to “Avalon-MM Slave Interfaces” on page 4–14 for full details.

1 Status The zeroth bit of this register is the Status bit, all other bits are unused. Refer to
“Avalon-MM Slave Interfaces” on page 4–14 for full details.

2 Frame Counter Read-only register updated at the end of each frame processed by the writer. The counter
is incremented if the frame is not dropped and passed to the reader component.

3 Drop Counter Read-only register updated at the end of each frame processed by the writer. The counter
is incremented if the frame is dropped.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–23
Run-Time Control Register Maps
Table A–32 describes the Frame Buffer control register map for the reader component.

Clocked Video Input
Table A–33 describes the Clocked Video Input control register map.

The width of each register is 16 bits.

Table A–32. Frame Buffer Control Register Map for the Reader Component

Address Register(s) Description

0 Control The zeroth bit of this register is the Go bit, all other bits are unused. Setting this bit to 0
causes the Frame Buffer MegaCore function to stop the next time control information is
read. Refer to “Avalon-MM Slave Interfaces” on page 4–14 for full details.

1 Status The zeroth bit of this register is the Status bit, all other bits are unused. Refer to
“Avalon-MM Slave Interfaces” on page 4–14 for full details.

2 Frame Counter Read-only register updated at the end of each frame processed by the reader. The counter
is incremented if the frame is not repeated.

3 Repeat Counter Read-only register updated at the end of each frame processed by the reader. The counter
is incremented if the frame is about to be repeated.

Table A–33. Clocked Video Input Control Register Map (Part 1 of 2)

Address Register Description

0 Control The zeroth bit of this register is the Go bit:

■ Setting this bit to 1 causes the Clocked Video Input MegaCore function to start data
output on the next video frame boundary. Refer to “Control Port” on page 5–32 for full
details.

Bits 2 and 1 of the Control register are the interrupt enables:

■ Setting bit 1 to 1, enables the status update interrupt.

■ Setting bit 2 to 1, enables the stable video interrupt.

1 Status The zeroth bit of this register is the Status bit:

■ Data is being output by the Clocked Video Input MegaCore function when this bit is
asserted. Refer to “Control Port” on page 5–32 for full details.

Bits 2 and 1 of the Status register are the interrupt status bits:

■ When bit 1 is asserted, the status update interrupt has triggered.

■ When bit 2 is asserted, the stable video interrupt has triggered.

■ The interrupts stay asserted until a write of 1 is performed to these bits.

Bits 6, 5, 4, and 3 are the resolution valid bits:

■ When bit 3 is asserted, the F0SampleCount register is valid.

■ When bit 4 is asserted, the F0LineCount register is valid.

■ When bit 5 is asserted the F1SampleCount register is valid.

■ When bit 6 is asserted the F1LineCount register is valid.

Bit 7 is the interlaced bit:

■ When asserted the input video stream is interlaced.

Bit 8 is the stable bit:

■ When asserted the input video stream has had a consistent resolution for two frames,
in the case of progressive video or four fields, in the case of interlaced video.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–24 Appendix A: Reference
Run-Time Control Register Maps
Clocked Video Output
Table A–34 describes the Clocked Video Output control register map.

The width of each register is 16 bits.

1 Status Bit 9 is the overflow sticky bit:

■ When asserted the input FIFO has overflowed. The overflow sticky bit stays asserted
until a write of is performed to this bit.

2 UsedW The used words level of the input FIFO.

3 F0SampleCount The detected sample count of the video streams F0 field.

4 F0LineCount The detected line count of the video streams F0 field.

5 F1SampleCount The detected sample count of the video streams F1 field.

6 F1LineCount The detected line count of the video streams F1 field.

Table A–33. Clocked Video Input Control Register Map (Part 2 of 2)

Address Register Description

Table A–34. Clocked Video Output Control Register Map (Part 1 of 2)

Address Register Description

0 Control The zeroth bit of this register is the Go bit:

■ Setting this bit to 1 causes the Clocked Video Output MegaCore function to start
video data output. Refer to “Control Port” on page 5–37 for full details.

Bit 1 of the Control register is the interrupt mask:

■ Setting bit 1 to 1, masks the status update interrupt.

1 Status The zeroth bit of this register is the Status bit:

■ Data is being output by the Clocked Video Output MegaCore function when this
bit is asserted. Refer to “Control Port” on page 5–37 for full details.

Bit 1 is the interrupt status bit:

■ When bit 1 is asserted, the status update interrupt has triggered. The interrupt
stays asserted until a write of 1 is performed to this bit.

Bit 2 is the underflow sticky bit:

■ When bit 2 is asserted, the output FIFO has underflowed. The underflow sticky
bit stays asserted until a 1is written to this bit.

2 UsedW The used words level of the output FIFO.

3 VidModeMatch One hot register that indicates the video mode that is selected.

4 Mode1Interlaced Video Mode 1 Interlaced. Setting bit 0 to a 1 causes the mode to output interlaced
video. All other bits are unused.

In run-time switching of color plane transmission formats mode only, setting bit 1
to a 1 causes the mode to output sequential video; setting it to a 0 outputs parallel
video.

5 Mode1F0SampleCount Video Mode 1 Field 0/Progressive sample count. Specifies the active picture width
of the field.

6 Mode1F0LineCount Video Mode 1 Field 0/Progressive line count. Specifies the active picture height of
the field.

7 Mode1F1SampleCount (Interlaced Video Only.) Video Mode 1 Field 1 sample count. Specifies the active
picture width of the field.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–25
Run-Time Control Register Maps
Test Pattern Generator
The width of each register in the Test Pattern Generator control register map is 16 bits.
The control data is read once at the start of each frame and is buffered inside the
MegaCore function, so that the registers can be safely updated during the processing
of a frame.

After control data has been read, the Test Pattern Generator MegaCore function
outputs a control packet that describes the following image data packet. When the
output is interlaced, the control data is processed only before the first field of a frame,
although a control packet is sent before each field.

8 Mode1F1LineCount (Interlaced Video Only.) Video Mode 1 Field 1 line count. Specifies the active
picture height of the field.

9 Mode1HFrontPorch Video Mode 1 Horizontal Front Porch. Specifies the length of the horizontal front
porch in samples.

10 Mode1HSyncLength Video Mode 1 Horizontal Sync Length. Specifies the length of the horizontal sync
length in samples.

11 Mode1HBlanking Video Mode 1 Horizontal Blanking Period. Specifies the length of the horizontal
blanking period in samples.

12 Mode1VFrontPorch Video Mode 1 Vertical Front Porch. Specifies the length of the vertical front porch
in lines.

13 Mode1VSyncLength Video Mode 1 Vertical Sync Length. Specifies the length of the vertical sync length
in lines.

14 Mode1VBlanking Video Mode 1 Vertical Blanking Period. Specifies the length of the vertical blanking
period in lines.

15 Mode1F0VFrontPorch (Interlaced Video Only.) Video Mode 1 Field 0 Vertical Front Porch. Specifies the
length of the vertical front porch in lines.

16 Mode1F0VSyncLength (Interlaced Video Only.) Video Mode 1 Field 0 Vertical Sync Length. Specifies the
length of the vertical sync length in lines.

17 Mode1F0VBlanking (Interlaced Video Only.) Video Mode 1 Field 0 Vertical Blanking Period. Specifies
the length of the vertical blanking period in lines.

18 Mode1APLine Video Mode 1 Active Picture Line. Specifies the line number given to the first line
of active picture.

19 Mode1F0VRising Video Mode 1 Field 0 Vertical Blanking Rising Edge. Specifies the line number
given to the start of field 0's vertical blanking.

20 Mode1FRising Video Mode 1 Field Rising Edge. Specifies the line number given to the end of Field
0 and the start of Field 1.

21 Mode1FFalling Video Mode 1 Field Falling Edge. Specifies the line number given to the end of Field
0 and the start of Field 1.

22 Mode1Valid Video Mode 1 Valid. Set to indicate that this mode is valid and can be used for
video output.

23 Mode2Interlaced ...

24 ... (Note 1) ...

Note to Table A–34:

(1) The rows in the table are repeated in ascending order for each video mode.

Table A–34. Clocked Video Output Control Register Map (Part 2 of 2)

Address Register Description
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–26 Appendix A: Reference
Signals
Table A–35 describes the Test Pattern Generator control register map.

Signals
Table A–36 to Table A–46 list the input and output signals for the Video and Image
Processing Suite MegaCore functions.

Color Space Converter
Table A–36 shows the input and output signals for the Color Space Converter
MegaCore function.

Table A–35. Test Pattern Generator Control Register Map

Address Register(s) Description

0 Control The zeroth bit of this register is the Go bit, all other bits are unused. Setting this bit to 0
causes the Test Pattern Generator MegaCore function to stop before control information
is read.

Refer to “Generation of Avalon-ST Video Control Packets and Run-Time Control” on
page 5–45 for full details.

1 Status The zeroth bit of this register is the Status bit, all other bits are unused. The Test
Pattern Generator MegaCore function sets this address to 0 between frames. It is set to 1
while the MegaCore function is producing data and cannot be stopped.

Refer to “Generation of Avalon-ST Video Control Packets and Run-Time Control” on
page 5–45 for full details.

2 Output Width The width of the output frames in pixels. (Note 1)

3 Output Height The height of the output frames in pixels. (Note 1)

Note to Table A–35:

(1) Value can be from 32 to the maximum specified in the MegaWizard interface.

Table A–36. Color Space Converter Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge of the
clock signal.

reset In The MegaCore function is asynchronously reset when reset is asserted high.
The reset must be de-asserted synchronously with respect to the rising edge of
the clock signal.

din_data In Avalon-ST data bus for port din. Pixel data is transferred into the MegaCore
function over this bus.

din_endofpacket In Avalon-ST endofpacket signal for port din. This signal marks the end of an
Avalon-ST packet.

din_ready Out Avalon-ST ready signal for port din. This signal indicates when the MegaCore
function is ready to receive data.

din_startofpacket In Avalon-ST startofpacket signal for port din. This signal marks the start of
an Avalon-ST packet.

din_valid In Avalon-ST valid signal for port din. This signal identifies the cycles when the
port should input data.

dout_data Out Avalon-ST data bus for port dout. Pixel data is transferred out of the MegaCore
function over this bus.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–27
Signals
Chroma Resampler
Table A–37 shows the input and output signals for the Chroma Resampler MegaCore
function.

dout_endofpacket Out Avalon-ST endofpacket signal for port dout. This signal marks the end of an
Avalon-ST packet.

dout_ready In Avalon-ST ready signal for port dout. This signal is asserted by the
downstream device when it is able to receive data.

dout_startofpacket Out Avalon-ST startofpacket signal for port dout. This signal marks the start
of an Avalon-ST packet.

dout_valid Out Avalon-ST valid signal for port dout. This signal is asserted when the
MegaCore function outputs data.

Table A–36. Color Space Converter Signals (Part 2 of 2)

Signal Direction Description

Table A–37. Chroma Resampler Signals

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge of the
clock signal.

reset In The MegaCore function is asynchronously reset when reset is asserted high.
The reset must be de-asserted synchronously with respect to the rising edge of
the clock signal.

din_data In Avalon-ST data bus for port din. Pixel data is transferred into the MegaCore
function over this bus.

din_endofpacket In Avalon-ST endofpacket signal for port din. This signal marks the end of an
Avalon-ST packet.

din_ready Out Avalon-ST ready signal for port din. This signal indicates when the MegaCore
function is ready to receive data.

din_startofpacket In Avalon-ST startofpacket signal for port din. This signal marks the start of
an Avalon-ST packet.

din_valid In Avalon-ST valid signal for port din. This signal identifies the cycles when the
port should input data.

dout_data Out Avalon-ST data bus for port dout. Pixel data is transferred out of the MegaCore
function over this bus.

dout_endofpacket Out Avalon-ST endofpacket signal for port dout. This signal marks the end of an
Avalon-ST packet.

dout_ready In Avalon-ST ready signal for port dout. This signal is asserted by the
downstream device when it is able to receive data.

dout_startofpacket Out Avalon-ST startofpacket signal for port dout. This signal marks the start
of an Avalon-ST packet.

dout_valid Out Avalon-ST valid signal for port dout. This signal is asserted when the
MegaCore function outputs data.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–28 Appendix A: Reference
Signals
Gamma Corrector
Table A–38 shows the input and output signals for the Gamma Corrector MegaCore
function.

Table A–38. Gamma Corrector Signals

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising
edge of the clock signal.

reset In The MegaCore function is asynchronously reset when reset is asserted
high. The reset must be de-asserted synchronously with respect to the
rising edge of the clock signal.

din_data In Avalon-ST data bus for port din. Pixel data is transferred into the
MegaCore function over this bus.

din_endofpacket In Avalon-ST endofpacket signal for port din. This signal marks the
end of an Avalon-ST packet.

din_ready Out Avalon-ST ready signal for port din. This signal indicates when the
MegaCore function is ready to receive data.

din_startofpacket In Avalon-ST startofpacket signal for port din. This signal marks the
start of an Avalon-ST packet.

din_valid In Avalon-ST valid signal for port din. This signal identifies the cycles
when the port should input data.

dout_data Out Avalon-ST data bus for port dout. Pixel data is transferred out of the
MegaCore function over this bus.

dout_endofpacket Out Avalon-ST endofpacket signal for port dout. This signal marks the
end of an Avalon-ST packet.

dout_ready In Avalon-ST ready signal for port dout. This signal is asserted by the
downstream device when it is able to receive data.

dout_startofpacket Out Avalon-ST startofpacket signal for port dout. This signal marks
the start of an Avalon-ST packet.

dout_valid Out Avalon-ST valid signal for port dout. This signal is asserted when the
MegaCore function outputs data.

gamma_lut_av_address In Avalon-MM address bus of slave port gamma_lut. Specifies a word
offset into the slave address space.

gamma_lut_av_chipselect In Avalon-MM chipselect signal of slave port gamma_lut. The
gamma_lut port ignores all other signals unless this signal is asserted.

gamma_lut_av_readdata Out Avalon-MM readdata bus of slave port gamma_lut. These output
lines are used for read transfers.

gamma_lut_av_write In Avalon-MM write signal of slave port gamma_lut. When this signal is
asserted, the gamma_lut port accepts new data from the writedata
bus.

gamma_lut_av_writedata In Avalon-MM writedata bus of slave port gamma_lut. These input
lines are used for write transfers.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–29
Signals
2D FIR Filter
Table A–39 shows the input and output signals for the 2D FIR Filter MegaCore
function.

2D Median Filter
Table A–40 shows the input and output signals for the 2D Median Filter MegaCore
function.

Table A–39. 2D FIR Filter Signals

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge of the
clock signal.

reset In The MegaCore function is asynchronously reset when reset is asserted high.
The reset must be de-asserted synchronously with respect to the rising edge of
the clock signal.

din_data In Avalon-ST data bus for port din. Pixel data is transferred into the MegaCore
function over this bus.

din_endofpacket In Avalon-ST endofpacket signal for port din. This signal marks the end of an
Avalon-ST packet.

din_ready Out Avalon-ST ready signal for port din. This signal indicates when the MegaCore
function is ready to receive data.

din_startofpacket In Avalon-ST startofpacket signal for port din. This signal marks the start of
an Avalon-ST packet.

din_valid In Avalon-ST valid signal for port din. This signal identifies the cycles when the
port should input data.

dout_data Out Avalon-ST data bus for port dout. Pixel data is transferred out of the MegaCore
function over this bus.

dout_endofpacket Out Avalon-ST endofpacket signal for port dout. This signal marks the end of an
Avalon-ST packet.

dout_ready In Avalon-ST ready signal for port dout. This signal is asserted by the
downstream device when it is able to receive data.

dout_startofpacket Out Avalon-ST startofpacket signal for port dout. This signal marks the start
of an Avalon-ST packet.

dout_valid Out Avalon-ST valid signal for port dout. This signal is asserted when the
MegaCore function outputs data.

Table A–40. 2D Median Filter Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge of the
clock signal.

reset In The MegaCore function is asynchronously reset when reset is asserted high.
The reset must be de-asserted synchronously with respect to the rising edge of
the clock signal.

din_data In Avalon-ST data bus for port din. Pixel data is transferred into the MegaCore
function over this bus.

din_endofpacket In Avalon-ST endofpacket signal for port din. This signal marks the end of an
Avalon-ST packet.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–30 Appendix A: Reference
Signals
Alpha Blending Mixer
Table A–41 shows the input and output signals for the Alpha Blending Mixer
MegaCore function.

din_ready Out Avalon-ST ready signal for port din. This signal indicates when the MegaCore
function is ready to receive data.

din_startofpacket In Avalon-ST startofpacket signal for port din. This signal marks the start of
an Avalon-ST packet.

din_valid In Avalon-ST valid signal for port din. This signal identifies the cycles when the
port should input data.

dout_data Out Avalon-ST data bus for port dout. Pixel data is transferred out of the MegaCore
function over this bus.

dout_endofpacket Out Avalon-ST endofpacket signal for port dout. This signal marks the end of an
Avalon-ST packet.

dout_ready In Avalon-ST ready signal for port dout. This signal is asserted by the
downstream device when it is able to receive data.

dout_startofpacket Out Avalon-ST startofpacket signal for port dout. This signal marks the start
of an Avalon-ST packet.

dout_valid Out Avalon-ST valid signal for port dout. This signal is asserted when the
MegaCore function outputs data.

Table A–40. 2D Median Filter Signals (Part 2 of 2)

Signal Direction Description

Table A–41. Alpha Blending Mixer Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising
edge of the clock signal.

reset In The MegaCore function is asynchronously reset when reset is
asserted high. The reset must be de-asserted synchronously with
respect to the rising edge of the clock signal.

alpha_in_N_data In Avalon-ST alpha data bus for port din for layer N. Pixel data is
transferred into the MegaCore function over this bus. (Note 1)

alpha_in_N_endofpacket In Avalon-ST endofpacket signal for port alpha_in_N. This signal
marks the end of an Avalon-ST packet. (Note 1)

alpha_in_N_ready Out Avalon-ST alpha ready signal for port din for layer N. This signal
indicates when the MegaCore function is ready to receive data. (Note 1)

alpha_in_N_startofpacket In Avalon-ST startofpacket signal for port alpha_in_N. This
signal marks the start of an Avalon-ST packet. (Note 1)

alpha_in_N_valid In Avalon-ST alpha valid signal for port din for layer N. This signal
identifies the cycles when the port should input data. (Note 1)

din_N_data In Avalon-ST data bus for port din for layer N. Pixel data is transferred
into the MegaCore function over this bus.

din_N_endofpacket In Avalon-ST endofpacket signal for port din_N. This signal marks
the end of an Avalon-ST packet.

din_N_ready Out Avalon-ST ready signal for port din for layer N. This signal indicates
when the MegaCore function is ready to receive data.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–31
Signals
Scaler
Table A–42 shows the input and output signals for the Scaler MegaCore function.

din_N_startofpacket In Avalon-ST startofpacket signal for port din_N. This signal marks
the start of an Avalon-ST packet.

din_N_valid In Avalon-ST valid signal for port din for layer N. This signal identifies
the cycles when the port should input data.

dout_data Out Avalon-ST data bus for port dout. Pixel data is transferred out of the
MegaCore function over this bus.

dout_endofpacket Out Avalon-ST endofpacket signal for port dout. This signal marks the
end of an Avalon-ST packet.

dout_ready In Avalon-ST ready signal for port dout. This signal is asserted by the
downstream device when it is able to receive data.

dout_startofpacket Out Avalon-ST startofpacket signal for port dout. This signal marks
the start of an Avalon-ST packet.

dout_valid Out Avalon-ST valid signal for port dout. This signal is asserted when
the MegaCore function outputs data.

control_av_address In Avalon-MM address bus of slave port mix_control. Specifies a
word offset into the slave address space.

control_av_chipselect In Avalon-MM chipselect signal of slave port mix_control. The
gamma_lut port ignores all other signals unless this signal is asserted.

control_av_readdata Out Avalon-MM readdata bus of slave port mix_control. These
output lines are used for read transfers.

control_av_write In Avalon-MM write signal of slave port mix_control. When this
signal is asserted, the mix_control port accepts new data from the
writedata bus.

control_av_writedata In Avalon-MM writedata bus of slave port mix_control. These
input lines are used for write transfers.

Note to Table A–41

(1) These ports are present only if Alpha blending is on in the MegaWizard interface. Note that alpha channel ports are created for layer zero even
though no alpha mixing is possible for layer zero (the background layer). These ports are ignored and can safely be left unconnected.

Table A–41. Alpha Blending Mixer Signals (Part 2 of 2)

Signal Direction Description

Table A–42. Scaler Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge
of the clock signal.

reset In The MegaCore function is asynchronously reset when reset is asserted
high. The reset must be de-asserted synchronously with respect to the
rising edge of the clock signal.

din_data In Avalon-ST data bus for port din. Pixel data is transferred into the
MegaCore function over this bus.

din_endofpacket In Avalon-ST endofpacket signal for port din. This signal marks the end
of an Avalon-ST packet.

din_ready Out Avalon-ST ready signal for port din. This signal indicates when the
MegaCore function is ready to receive data.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–32 Appendix A: Reference
Signals
Clipper
Table A–43 shows the input and output signals for the Clipper MegaCore function.

din_startofpacket In Avalon-ST startofpacket signal for port din. This signal marks the
start of an Avalon-ST packet.

din_valid In Avalon-ST valid signal for port din. This signal identifies the cycles
when the port should input data.

dout_data Out Avalon-ST data bus for port dout. Pixel data is transferred out of the
MegaCore function over this bus.

dout_endofpacket Out Avalon-ST endofpacket signal for port dout. This signal marks the
end of an Avalon-ST packet.

dout_ready In Avalon-ST ready signal for port dout. This signal is asserted by the
downstream device when it is able to receive data.

dout_startofpacket Out Avalon-ST startofpacket signal for port dout. This signal marks the
start of an Avalon-ST packet.

dout_valid Out Avalon-ST valid signal for port dout. This signal is asserted when the
MegaCore function outputs data.

control_av_address In Avalon-MM address bus of slave port control. Specifies a word offset
into the slave address space. (Note 1)

control_av_chipselect In Avalon-MM chipselect signal of slave port control. The control
port ignores all other signals unless this signal is asserted. (Note 1)

control_av_readdata Out Avalon-MM readdata bus of slave port control. These output lines
are used for read transfers. (Note 1)

control_av_waitrequest Out Avalon-MM waitrequest signal of slave port control. (Note 1)

control_av_write In Avalon-MM write signal of slave port control. When this signal is
asserted, the control port accepts new data from the writedata bus.

(Note 1)

control_av_writedata In Avalon-MM writedata bus of slave port control. These input lines
are used for write transfers. (Note 1)

Note to Table A–42

(1) These ports are present only if Run-time control of image size is on in the MegaWizard interface.

Table A–42. Scaler Signals (Part 2 of 2)

Signal Direction Description

Table A–43. Clipper Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge
of the clock signal.

reset In The MegaCore function is asynchronously reset when reset is asserted
high. The reset must be de-asserted synchronously with respect to the
rising edge of the clock signal.

din_data In Avalon-ST data bus for port din. Pixel data is transferred into the
MegaCore function over this bus.

din_endofpacket In Avalon-ST endofpacket signal for port din. This signal marks the end
of an Avalon-ST packet.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–33
Signals
Deinterlacer
Table A–44 shows the input and output signals for the Deinterlacer MegaCore
function.

din_ready Out Avalon-ST ready signal for port din. This signal indicates when the
MegaCore function is ready to receive data.

din_startofpacket In Avalon-ST startofpacket signal for port din. This signal marks the
start of an Avalon-ST packet.

din_valid In Avalon-ST valid signal for port din. This signal identifies the cycles
when the port should input data.

dout_data Out Avalon-ST data bus for port dout. Pixel data is transferred out of the
MegaCore function over this bus.

dout_endofpacket Out Avalon-ST endofpacket signal for port dout. This signal marks the
end of an Avalon-ST packet.

dout_ready In Avalon-ST ready signal for port dout. This signal is asserted by the
downstream device when it is able to receive data.

dout_startofpacket Out Avalon-ST startofpacket signal for port dout. This signal marks the
start of an Avalon-ST packet.

dout_valid Out Avalon-ST valid signal for port dout. This signal is asserted when the
MegaCore function outputs data.

control_av_address In Avalon-MM address bus of slave port control. Specifies a word offset
into the slave address space. (Note 1)

control_av_chipselect In Avalon-MM chipselect signal of slave port control. The control
port ignores all other signals unless this signal is asserted. (Note 1)

control_av_readdata Out Avalon-MM readdata bus of slave port control. These output lines
are used for read transfers. (Note 1)

control_av_waitrequest Out Avalon-MM waitrequest signal of slave port control. (Note 1)

control_av_write In Avalon-MM write signal of slave port control. When this signal is
asserted, the control port accepts new data from the writedata bus.

(Note 1)

control_av_writedata In Avalon-MM writedata bus of slave port control. These input lines
are used for write transfers. (Note 1)

Note to Table A–43

(1) These ports are present only if Include Avalon-MM interface is on in the MegaWizard interface.

Table A–43. Clipper Signals (Part 2 of 2)

Signal Direction Description

Table A–44. Deinterlacer Signals (Part 1 of 3)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the
rising edge of the clock signal.

reset In The MegaCore function is asynchronously reset when reset
is asserted high. The reset must be de-asserted synchronously
with respect to the rising edge of the clock signal.

din_data In Avalon-ST data bus for port din. Pixel data is transferred
into the MegaCore function over this bus.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–34 Appendix A: Reference
Signals
din_endofpacket In Avalon-ST endofpacket signal for port din. This signal
marks the end of an Avalon-ST packet.

din_ready Out Avalon-ST ready signal for port din. This signal indicates
when the MegaCore function is ready to receive data.

din_startofpacket In Avalon-ST startofpacket signal for port din. This signal
marks the start of an Avalon-ST packet.

din_valid In Avalon-ST valid signal for port din. This signal identifies
the cycles when the port should input data.

dout_data Out Avalon-ST data bus for port dout. Pixel data is transferred
out of the MegaCore function over this bus.

dout_endofpacket Out Avalon-ST endofpacket signal for port dout. This signal
marks the end of an Avalon-ST packet.

dout_ready In Avalon-ST ready signal for port dout. This signal is asserted
by the downstream device when it is able to receive data.

dout_startofpacket Out Avalon-ST startofpacket signal for port dout. This
signal marks the start of an Avalon-ST packet.

dout_valid Out Avalon-ST valid signal for port dout. This signal is asserted
when the MegaCore function outputs data.

read_master_N_av_address Out Avalon-MM address bus of read_master_N port.
Specifies a byte address in the Avalon-MM address space.
(Note 1), (2), (3)

read_master_N_av_burstcount Out Avalon-MM burstcount signal of read_master_N port.
Specifies the number of transfers in each burst. (Note 1), (2),
(3)

read_master_N_av_clock In The clock signal for the read_master_N port. The interface
operates on the rising edge of the clock signal. (Note 1), (2),
(3), (4)

read_master_N_av_read Out Avalon-MM read signal of read_master_N port. Asserted
to indicate read requests from the master to the system
interconnect fabric. (Note 1), (2), (3)

read_master_N_av_readdata In Avalon-MM readdata bus of read_master port. These
input lines carry data for read transfers. (Note 1), (2), (3)

read_master_N_av_readdatavalid In Avalon-MM readdatavalid signal of read_master_N
port. This signal is asserted by the system interconnect fabric
when requested read data has arrived. (Note 1), (2), (3)

read_master_N_av_reset In The reset signal for the read_master_N port. The interface
is asynchronously reset when reset is asserted high and must
be de-asserted synchronously with respect to the rising edge of
the clock signal. (Note 1), (2), (3), (4)

read_master_N_av_waitrequest In Avalon-MM waitrequest signal of read_master_N
port. Asserted by the system interconnect fabric to cause the
master port to wait. (Note 1), (2), (3)

write_master_av_address Out Avalon-MM address bus of write_master port.
Specifies a byte address in the Avalon-MM address space.
(Note 1), (3)

Table A–44. Deinterlacer Signals (Part 2 of 3)

Signal Direction Description
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–35
Signals
Frame Buffer
Table A–45 shows the input and output signals for the Frame Buffer MegaCore
function.

write_master_av_burstcount Out Avalon-MM burstcount signal of write_master port.
Specifies the number of transfers in each burst. (Note 1), (2),
(3)

write_master_av_clock In The clock signal for the write_master port. The interface
operates on the rising edge of the clock signal. (Note 1), (3),
(4)

write_master_av_reset In The reset signal for the write_master port. The interface is
asynchronously reset when reset is asserted high and must be
de-asserted synchronously with respect to the rising edge of
the clock signal. (Note 1), (3), (4)

write_master_av_waitrequest In Avalon-MM waitrequest signal of write_master port.
Asserted by the system interconnect fabric to cause the master
port to wait. (Note 1), (3)

write_master_av_write Out Avalon-MM write signal of write_master port. Asserted
to indicate write requests from the master to the system
interconnect fabric. (Note 1), (3)

write_master_av_writedata Out Avalon-MM writedata bus of write_master port.
These output lines carry data for write transfers. (Note 1), (3)

Note to Table A–44:

(1) The write_master_* and read_master_* signals are present only when buffering is used.
(2) When the motion-adaptive algorithm is selected, two read master interfaces are used.
(3) When the motion-adaptive algorithm is selected, one additional read master (motion_read_master_*) and one additional write master

(motion_write_master_*) are used to read and update motion values.
(4) Additional clock and reset signals are available when Use separate clocks for the Avalon-MM master interfaces is on in the MegaWizard

interface.

Table A–44. Deinterlacer Signals (Part 3 of 3)

Signal Direction Description

Table A–45. Frame Buffer Signals (Part 1 of 3)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the
rising edge of the clock signal.

reset In The MegaCore function is asynchronously reset when reset is
asserted high. The reset must be de-asserted synchronously with
respect to the rising edge of the clock signal.

din_data In Avalon-ST data bus for port din. Pixel data is transferred into
the MegaCore function over this bus.

din_endofpacket In Avalon-ST endofpacket signal for port din. This signal marks
the end of an Avalon-ST packet.

din_ready Out Avalon-ST ready signal for port din. This signal indicates when
the MegaCore function is ready to receive data.

din_startofpacket In Avalon-ST startofpacket signal for port din. This signal
marks the start of an Avalon-ST packet.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–36 Appendix A: Reference
Signals
din_valid In Avalon-ST valid signal for port din. This signal identifies the
cycles when the port should input data.

dout_data Out Avalon-ST data bus for port dout. Pixel data is transferred out
of the MegaCore function over this bus.

dout_endofpacket Out Avalon-ST endofpacket signal for port dout. This signal
marks the end of an Avalon-ST packet.

dout_ready In Avalon-ST ready signal for port dout. This signal is asserted by
the downstream device when it is able to receive data.

dout_startofpacket Out Avalon-ST startofpacket signal for port dout. This signal
marks the start of an Avalon-ST packet.

dout_valid Out Avalon-ST valid signal for port dout. This signal is asserted
when the MegaCore function is outputs data.

read_master_av_address Out Avalon-MM address bus of read_master port. Specifies a
byte address in the Avalon-MM address space.

read_master_av_burstcount Out Avalon-MM burstcount signal of read_master port.
Specifies the number of transfers in each burst.

read_master_av_clock In The clock signal for the read_master port. The interface
operates on the rising edge of the clock signal. (Note 1)

read_master_av_read Out Avalon-MM read signal of read_master port. Asserted to
indicate read requests from the master to the system interconnect
fabric.

read_master_av_readdata In Avalon-MM readdata bus of read_master port. These input
lines carry data for read transfers.

read_master_av_readdatavalid In Avalon-MM readdatavalid signal of read_master port.
This signal is asserted by the system interconnect fabric when
requested read data has arrived.

read_master_av_reset In The reset signal for the read_master port. The interface is
asynchronously reset when reset is asserted high and must be
de-asserted synchronously with respect to the rising edge of the
clock signal. (Note 1)

read_master_av_waitrequest In Avalon-MM waitrequest signal of read_master port.
Asserted by the system interconnect fabric to cause the master
port to wait.

reader_control_av_chipselect In Avalon-MM chipselect signal of reader_control slave
port. The reader_control port ignores all other signals
unless this signal is asserted.

reader_control_av_readdata Out Avalon-MM readdata bus of reader_control slave port.
These output lines are used for read transfers.

reader_control_av_write In Avalon-MM write signal of reader_control slave port.
When this signal is asserted, reader_control accepts new
data from the writedata bus.

reader_control_av_writedata In Avalon-MM writedata bus of reader_control slave port
These input lines are used for write transfers.

write_master_av_address Out Avalon-MM address bus of write_master port. Specifies a
byte address in the Avalon-MM address space.

Table A–45. Frame Buffer Signals (Part 2 of 3)

Signal Direction Description
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–37
Signals
Line Buffer Compiler
Table A–46 shows the input and output signals for the Line Buffer Compiler
MegaCore function.

write_master_av_burstcount Out Avalon-MM burstcount signal of write_master port.
Specifies the number of transfers in each burst.

write_master_av_clock In The clock signal for the write_master port. The interface
operates on the rising edge of the clock signal. (Note 1)

write_master_av_reset In The reset signal for the write_master port. The interface is
asynchronously reset when reset is asserted high and must be
de-asserted synchronously with respect to the rising edge of the
clock signal. (Note 1)

write_master_av_waitrequest In Avalon-MM waitrequest signal of write_master port.
Asserted by the system interconnect fabric to cause the master
port to wait.

write_master_av_write Out Avalon-MM write signal of write_master port. Asserted to
indicate write requests from the master to the system interconnect
fabric.

write_master_av_writedata Out Avalon-MM writedata bus of write_master port. These
output lines carry data for write transfers.

writer_control_av_chipselect In Avalon-MM chipselect signal of writer_control slave
port. The writer_control port ignores all other signals
unless this signal is asserted.

writer_control_av_readdata Out Avalon-MM readdata bus of writer_control slave port.
These output lines are used for read transfers.

writer_control_av_write In Avalon-MM write signal of writer_control slave port.
When this signal is asserted, writer_control accepts new
data from the writedata bus.

writer_control_av_writedata In Avalon-MM writedata bus of writer_control slave port.
These input lines are used for write transfers.

Note to Table A–45:

(1) Additional clock and reset signals are available when Use separate clocks for the Avalon-MM master interfaces is on in the MegaWizard
interface.

Table A–45. Frame Buffer Signals (Part 3 of 3)

Signal Direction Description

Table A–46. Line Buffer Compiler Signals

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge of the clock signal.

reset In The MegaCore function is asynchronously reset when reset is asserted high. The reset must be
de-asserted synchronously with respect to the rising edge of the clock signal.

din In Data input bus. Pixel data is transferred into the MegaCore function over this bus.

dout Out Data output bus. Pixel data is transferred out of the MegaCore function over this bus.

enable In Data enable. Data is latched from the input bus din and shifted through the Line Buffer Compiler
when enable is high.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–38 Appendix A: Reference
Signals
Clocked Video Input
Table A–47 shows the input and output signals for the Clocked Video Input
MegaCore function.

Table A–47. Clocked Video Input Signals (Part 1 of 2)

Signal Direction Description

rst In The MegaCore function is asynchronously reset when rst is asserted high. The
reset must be de-asserted synchronously with respect to the rising edge of the
is_clk signal.

vid_clk In Clocked video clock. All the video input signals are synchronous to this clock.

vid_data In Clocked video data bus. Video data is transferred into the MegaCore function over
this bus.

vid_datavalid In Clocked video data valid signal. This signal is asserted when a valid sample of video
data is present on vid_data.

vid_locked In Clocked video locked signal. This signal is asserted when a stable video stream is
present on the input. This signal is de-asserted when the video stream is removed.

vid_f In (Separate Sync Mode Only.) Clocked video field signal. For interlaced input, this
signal distinguishes between field 0 and field 1. For progressive video, this signal
should be deasserted.

vid_hd_sdn In Clocked video color plane format selection signal (in run-time switching of color
plane transmission formats mode only). This signal distinguishes between
sequential (when low) and parallel (when high) color plane formats.

vid_v_sync In (Separate Sync Mode Only.) Clocked video vertical sync signal. This signal is
asserted during the vertical sync period of the video stream.

vid_h_sync In (Separate Sync Mode Only.) Clocked video horizontal sync signal. This signal is
asserted during the horizontal sync period of the video stream.

is_clk In Avalon-ST clock signal for port dout and control. The MegaCore function
operates on the rising edge of the is_clk signal.

is_ready In Avalon-ST ready signal for port dout. This signal is asserted by the downstream
device when it is able to receive data.

is_valid Out Avalon-ST valid signal for port dout. This signal is asserted when the MegaCore
function outputs data.

is_data Out Avalon-ST data bus for port dout. Pixel data is transferred out of the MegaCore
function over this bus.

is_sop Out Avalon-ST startofpacket signal for port dout. This signal is asserted when
the MegaCore function is starting a new frame.

is_eop Out Avalon-ST endofpacket signal for port dout. This signal is asserted when the
MegaCore function is ending a frame.

av_address In Avalon-MM address bus of slave port control. Specifies a word offset into the
slave address space. (Note 1)

av_read In Avalon-MM read signal of slave control port. When this signal is asserted, the
control port drives new data onto the read data bus. (Note 1)

av_readdata Out Avalon-MM read data bus of slave control port. These output lines are used for read
transfers. (Note 1)

av_write In Avalon-MM write signal of slave control port. When this signal is asserted, the
control port accepts new data from the write data bus. (Note 1)
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–39
Signals
Clocked Video Output
Table A–48 shows the input and output signals for the Clocked Video Output
MegaCore function.

av_writedata In Avalon-MM write data bus of slave control port. These input lines are used for write
transfers. (Note 1)

status_update_int Out Avalon-MM interrupt signal of slave control port. When asserted the status
registers of the MegaCore function have been updated and the master should read
them to determine what has occurred. (Note 1)

overflow Out Clocked video overflow signal. A signal corresponding to the overflow sticky bit of
the Status register synchronized to vid_clk. This signal is for information
only and no action is required if it is asserted. (Note 1)

Note to Table A–47

(1) These ports are present only if Use control port is on in the MegaWizard interface.

Table A–47. Clocked Video Input Signals (Part 2 of 2)

Signal Direction Description

Table A–48. Clocked Video Output Signals (Part 1 of 2)

Signal Direction Description

rst In The MegaCore function is asynchronously reset when rst is asserted high. The
reset must be de-asserted synchronously with respect to the rising edge of the
is_clk signal.

vid_clk In Clocked video clock. All the video input signals are synchronous to this clock.

vid_data Out Clocked video data bus. Video data is transferred into the MegaCore function over
this bus.

vid_datavalid Out Clocked video data valid signal. This signal is asserted when an active picture
sample of video data is present on vid_data.

vid_mode_change Out Clocked video mode change signal. This signal is asserted on the cycle before a
mode change occurs.

vid_mode_match Out Clocked video mode match signal. A signal corresponding to the VidModeMatch
register synchronized to vid_clk.

vid_v Out (Separate Sync Mode Only.) Clocked video vertical blanking signal. This signal is
asserted during the vertical blanking period of the video stream.

vid_h Out (Separate Sync Mode Only.) Clocked video horizontal blanking signal. This signal is
asserted during the horizontal blanking period of the video stream.

vid_f Out (Separate Sync Mode Only.) Clocked video field signal. For interlaced input, this
signal distinguishes between field 0 and field 1. For progressive video, this signal is
unused.

vid_v_sync Out (Separate Sync Mode Only.) Clocked video vertical sync signal. This signal is
asserted during the vertical sync period of the video stream.

vid_h_sync Out (Separate Sync Mode Only.) Clocked video horizontal sync signal. This signal is
asserted during the horizontal sync period of the video stream.

vid_ln Out (Embedded Sync Mode Only.) Clocked video line number signal. Used with the SDI
MegaCore function to indicate the current line number when the vid_trs signal is
asserted.

vid_trs Out (Embedded Sync Mode Only.) Clocked video time reference signal (TRS) signal.
Used with the SDI MegaCore function to indicate a TRS, when asserted.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–40 Appendix A: Reference
Signals
Color Plane Sequencer
Table A–49 shows the input and output signals for the Color Plane Sequencer
MegaCore function.

is_clk In Avalon-ST clock signal for port dout and control. The MegaCore function
operates on the rising edge of the is_clk signal.

is_ready Out Avalon-ST ready signal for port dout. This signal is asserted when the MegaCore
function is able to receive data.

is_valid In Avalon-ST valid signal for port dout. This signal is asserted when the
downstream device outputs data.

is_data In Avalon-ST data bus for port dout. Pixel data is transferred into the MegaCore
function over this bus.

is_sop In Avalon-ST startofpacket signal for port dout. This signal is asserted when
the downstream device is starting a new frame.

is_eop In Avalon-ST endofpacket signal for port dout. This signal is asserted when the
downstream device is ending a frame.

av_address In Avalon-MM address bus of slave control port. Specifies a word offset into the
slave address space. (Note 1)

av_read In Avalon-MM read signal of slave control port. When this signal is asserted, the
control port drives new data onto the read data bus. (Note 1)

av_readdata Out Avalon-MM readdata bus of slave control port. These output lines are used for
read transfers. (Note 1)

av_write In Avalon-MM write signal of slave control port. When this signal is asserted, the
control port accepts new data from the write data bus. (Note 1)

av_writedata In Avalon-MM writedata bus of slave control port. These input lines are used for
write transfers. (Note 1)

av_waitrequest Out Avalon-MM waitrequest bus of slave control port. When this signal is asserted,
the control port cannot accept new transactions. (Note 1)

status_update_int Out Avalon-MM interrupt signal of slave control port. When asserted the status
registers of the MegaCore function have been updated and the master should read
them to determine what has occurred. (Note 1)

underflow Out Clocked video underflow signal. A signal corresponding to the underflow sticky bit
of the Status register synchronized to vid_clk. This signal is for information
only and no action is required if it is asserted. (Note 1)

Note to Table A–48

(1) These ports are present only if Use control port is on in the MegaWizard interface.

Table A–48. Clocked Video Output Signals (Part 2 of 2)

Signal Direction Description

Table A–49. Color Plane Sequencer Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge of
the clock signal.

reset In The MegaCore function is asynchronously reset when reset is asserted high.
The reset must be de-asserted synchronously with respect to the rising edge of
the clock signal.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

Appendix A: Reference A–41
Signals
Test Pattern Generator
Table A–50 shows the input and output signals for the Test Pattern Generator
MegaCore function.

dinN_data In Avalon-ST data bus for port dinN. Pixel data is transferred into the MegaCore
function over this bus.

dinN_endofpacket In Avalon-ST endofpacket signal for port dinN. This signal marks the end of
an Avalon-ST packet.

dinN_ready Out Avalon-ST ready signal for port dinN. This signal indicates when the
MegaCore function is ready to receive data.

dinN_startofpacket In Avalon-ST startofpacket signal for port dinN. This signal marks the start
of an Avalon-ST packet.

dinN_valid In Avalon-ST valid signal for port dinN. This signal identifies the cycles when
the port should input data.

doutN_data Out Avalon-ST data bus for port doutN. Pixel data is transferred out of the
MegaCore function over this bus.

doutN_endofpacket Out Avalon-ST endofpacket signal for port doutN. This signal marks the end of
an Avalon-ST packet.

doutN_ready In Avalon-ST ready signal for port doutN. This signal is asserted by the
downstream device when it is able to receive data.

doutN_startofpacket Out Avalon-ST startofpacket signal for port doutN. This signal marks the
start of an Avalon-ST packet.

doutN_valid Out Avalon-ST valid signal for port doutN. This signal is asserted when the
MegaCore function outputs data.

Table A–49. Color Plane Sequencer Signals (Part 2 of 2)

Signal Direction Description

Table A–50. Test Pattern Generator Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge
of the clock signal.

reset In The MegaCore function is asynchronously reset when reset is asserted
high. The reset must be de-asserted synchronously with respect to the rising
edge of the clock signal.

dout_data Out Avalon-ST data bus for port dout. Pixel data is transferred out of the
MegaCore function over this bus.

dout_endofpacket Out Avalon-ST endofpacket signal for port dout. This signal marks the end
of an Avalon-ST packet.

dout_ready In Avalon-ST ready signal for port dout. This signal is asserted by the
downstream device when it is able to receive data.

dout_startofpacket Out Avalon-ST startofpacket signal for port dout. This signal marks the
start of an Avalon-ST packet.

dout_valid Out Avalon-ST valid signal for port dout. This signal is asserted when the
MegaCore function outputs data.

control_av_address In Avalon-MM address bus of slave port control. Specifies a word offset
into the slave address space. (Note 1)
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

A–42 Appendix A: Reference
References
References
1. International Telecommunications Union, Geneva. Recommendation ITU-R BT.601,

Encoding Parameters of Digital Television for Studios, 1992.

2. Ken Turkowski. Graphics gems, chapter Filters for common resampling tasks, pages
147–165. Academic Press Professional, Inc., San Diego, CA, USA, 1990.

3. E Catmull and R Rom. A class of local interpolating splines. Computer Aided Geometric
Design, pages 317–326, 1974.

4. MegaCore IP Library Release Notes and Errata.

5. AN 320: OpenCore Plus Evaluation of Megafunctions.

6. AN427: Video and Image Processing Up Conversion Example Design.

7. Quartus II Installation & Licensing for Windows.

8. Quartus II Installation & Licensing for Linux.

9. Simulating Altera IP in Third-Party Simulation Tools chapter in volume 3 of the
Quartus II Handbook.

10. Avalon Interface Specifications.

control_av_chipselect In Avalon-MM chipselect signal of slave port control. The control
port ignores all other signals unless this signal is asserted. (Note 1)

control_av_readdata Out Avalon-MM readdata bus of slave port control. These output lines are
used for read transfers. (Note 1)

control_av_write In Avalon-MM write signal of slave port control. When this signal is
asserted, the control port accepts new data from the writedata bus.

(Note 1)

control_av_writedata In Avalon-MM writedata bus of slave port control. These input lines are
used for write transfers. (Note 1)

Note to Table A–50

(1) These ports are present only if Runtime control of image size is on in the MegaWizard interface.

Table A–50. Test Pattern Generator Signals (Part 2 of 2)

Signal Direction Description
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/rn/rn_ip.pdf
http://www.altera.com/literature/an/an427.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_linux.pdf
http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/hb/qts/qts_qii53014.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

© March 2009 Altera Corporation
Additional Information
Revision History
The following table shows the revision history for this user guide.

Date Version Changes Made

March 2009 8.0 Updated for Quartus II 9.0:

■ The Deinterlacer MegaCore function supports controlled frame dropping or repeating to
keep the input and output frame rates locked together

■ The Test Pattern Generator MegaCore function can generate a user-specified constant
color that can be used as a uniform background

■ Preliminary support for Arria ® II GX devices

November 2008 7.0 Updated for Quartus II 8.1:

■ Added new Test Pattern Generator MegaCore function

■ The Deinterlacer MegaCore function supports pass-through mode and run-time algorithm
switching

■ The Deinterlacer and Frame Buffer MegaCore functions support clock crossing for
improved external memory access efficiency

■ The Clocked Video Input and Clocked Video Output MegaCore functions support run-time
switching between standard definition (SD) and high definition (HD) video streams

■ The Color Space Converter MegaCore function supports run-time changing of coefficients

■ The Gamma Corrector MegaCore function supports parallel data processing for three
channels

■ The 2D FIR Filter MegaCore function supports run-time changing of coefficients

■ Full support for Stratix ® III devices

July 2008 6.2 Updated for Quartus II 8.0 SP1:

■ Added control packet transfer example

■ Updated timing constraints for the Clocked Video Input and Clocked Video Output

■ Updated register map for the Clocked Video Output

June 2008 6.1 Updated on website only:

■ Added performance data

■ Added control register map for the Clipper

■ Updated the Alpha Blending Mixer functional description

May 2008 6.0 Updated for Quartus II 8.0:

■ Added new Clipper, Clocked Video Input, Clocked Video Output, Frame Buffer, and Color
Plane Sequencer MegaCore functions

■ All MegaCore functions now support 2,600 pixels height and width.

■ Alpha Blending Mixer and Deinterlacer support parallel processing for 1080p60

■ Enhanced Avalon-ST Video protocol description

■ Full support for Cyclone® III devices

■ Preliminary support for Stratix® IV devices
Video and Image Processing Suite User Guide

Info–2 Additional Information
How to Contact Altera
How to Contact Altera
For the most up-to-date information about Altera® products, refer to the following
table.

October 2007 5.0 Updated for Quartus II 7.2:

■ Separate design flows and parameterization chapters

■ Updated parameters and functional description for enhancements to the Color Space
Converter, Chroma Resampler, and Deinterlacer

May 2007 4.0 Updated for Quartus II 7.1:

■ Updated parameters and functional description for enhancements to the Color Space
Converter and Scaler

■ Updated parameters and functional description for arbitrary assignment of bit depths and
resolutions enhancement to all MegaCore functions

■ Updated Interfaces chapter for enhancements to the run-time control facilities

■ Support for Arria™ GX devices

December 2006 3.0 Updated for Quartus II 7.0:

■ Preliminary support for Cyclone III devices

December 2006 2.0 Updated for Quartus II 6.1:

■ Preliminary support for Stratix III devices

■ Added new Interfaces chapter

■ Updated MegaWizard® Plug-In Manager interface

■ Updated functional description for the Scaler MegaCore® function

■ Updated functional description for the 2D FIR MegaCore Function

■ Replaced walkthrough with new tutorial procedures

April 2006 1.0 First revision of this user guide for Suite version 1.0 (Quartus II 6.0).

Date Version Changes Made

Contact (Note 1) Contact Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Altera literature services Email literature@altera.com

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
mailto:literature@altera.com
mailto:nacomp@altera.com
mailto:authorization@altera.com

Additional Information Info–3
Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions that this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicates command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box.

bold type Indicates directory names, project names, disk drive names, file names, file name
extensions, and software utility names. For example, \qdesigns directory, d: drive,
and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicates document titles. For example, AN 519: Stratix IV Design Guidelines.

Italic type Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicates keyboard keys and menu names. For example, Delete key and the Options
menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. Active-low signals are denoted by suffix n. Example: resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

1., 2., 3., and
a., b., c., and so on.

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

r The angled arrow instructs you to press the Enter key.

f The feet direct you to more information about a particular topic.
© March 2009 Altera Corporation Video and Image Processing Suite User Guide

Info–4 Additional Information
Typographic Conventions
Video and Image Processing Suite User Guide © March 2009 Altera Corporation

	Video and Image Processing Suite User Guide
	Contents
	1. About This MegaCore Function Suite
	New Features
	Release Information
	Device Family Support
	Features
	General Description
	Color Space Converter
	Chroma Resampler
	Gamma Corrector
	2D FIR Filter
	2D Median Filter
	Alpha Blending Mixer
	Scaler
	Clipper
	Deinterlacer
	Frame Buffer
	Line Buffer Compiler
	Clocked Video Input
	Clocked Video Output
	Color Plane Sequencer
	Test Pattern Generator
	Example Design

	MegaCore Verification
	Performance and Resource Utilization
	Color Space Converter
	Chroma Resampler
	Gamma Corrector
	2D FIR Filter
	2D Median Filter
	Alpha Blending Mixer
	Scaler
	Clipper
	Deinterlacer
	Frame Buffer
	Line Buffer Compiler
	Clocked Video Input
	Clocked Video Output
	Color Plane Sequencer
	Test Pattern Generator

	Installation and Licensing
	OpenCore Plus Evaluation
	OpenCore Plus Time-Out Behavior

	2. Getting Started
	Design Flows
	SOPC Builder Flow
	MegaWizard Plug-in Manager Flow
	Generated Files
	Simulating the Design
	Compiling the Design and Programming a Device

	3. Parameter Settings
	Color Space Converter
	Chroma Resampler
	Gamma Corrector
	2D FIR Filter
	2D Median Filter
	Alpha Blending Mixer
	Scaler
	Clipper
	Deinterlacer
	Frame Buffer
	Line Buffer Compiler
	Clocked Video Input
	Clocked Video Output
	Color Plane Sequencer
	Test Pattern Generator

	4. Interfaces
	Interface Types
	Avalon-ST Video Protocol
	Video Data Packets
	Examples
	Control Data Packets
	Packet Propagation
	Avalon-ST Video Specification

	Avalon-MM Slave Interfaces
	Specification of the Type of Avalon-MM Slave Interfaces Used

	Avalon-MM Master Interfaces
	Specification of the Type of Avalon-MM Master Interfaces Used

	Buffering of Non-Image Data Packets in Memory

	5. Functional Descriptions
	Color Space Converter
	Input and Output Data Types
	Color Space Conversion
	Constant Precision
	Calculation Precision
	Result of Output Data Type Conversion

	Chroma Resampler
	Horizontal Resampling (4:2:2)
	Vertical Resampling (4:2:0)

	Gamma Corrector
	2D FIR Filter
	Calculation Precision
	Coefficient Precision
	Result to Output Data Type Conversion

	2D Median Filter
	Alpha Blending Mixer
	Scaler
	Nearest Neighbor Algorithm
	Bilinear Algorithm
	Polyphase and Bicubic Algorithms

	Clipper
	Deinterlacer
	Deinterlacing Methods
	Frame Buffering
	Frame Rate Conversion
	Behavior When Unexpected Fields are Received
	Handling of Avalon-ST Video Control Packets

	Frame Buffer
	Handling of Avalon-ST Video Control Packets

	Line Buffer Compiler
	Clocked Video Input
	Video Formats
	Control Port
	Format Detection
	Overflow
	Timing Constraints

	Clocked Video Output
	Video Formats
	Control Port
	Video Modes
	Underflow
	Timing Constraints

	Color Plane Sequencer
	Combining Color Patterns
	Splitting/Duplicating
	Subsampled Data
	Avalon-ST Video Stream Requirements

	Test Pattern Generator
	Generation of Avalon-ST Video Control Packets and Run-Time Control

	Stall Behavior
	Color Space Converter
	Chroma Resampler
	Gamma Corrector
	2D FIR Filter
	2D Median Filter
	Alpha Blending Mixer
	Scaler
	Clipper
	Deinterlacer
	Frame Buffer
	Color Plane Sequencer
	Test Pattern Generator

	Latency

	A. Reference
	Compile Time Parameters
	Color Space Converter
	Chroma Resampler
	Gamma Corrector
	2D FIR Filter
	2D Median Filter
	Alpha Blending Mixer
	Scaler
	Clipper
	Deinterlacer
	Frame Buffer
	Line Buffer Compiler
	Clocked Video Input
	Clocked Video Output
	Color Plane Sequencer
	Test Pattern Generator

	Run-Time Control Register Maps
	Color Space Converter
	Gamma Corrector
	2D FIR Filter
	Alpha Blending Mixer
	Scaler
	Clipper
	Deinterlacer
	Frame Buffer
	Clocked Video Input
	Clocked Video Output
	Test Pattern Generator

	Signals
	Color Space Converter
	Chroma Resampler
	Gamma Corrector
	2D FIR Filter
	2D Median Filter
	Alpha Blending Mixer
	Scaler
	Clipper
	Deinterlacer
	Frame Buffer
	Line Buffer Compiler
	Clocked Video Input
	Clocked Video Output
	Color Plane Sequencer
	Test Pattern Generator

	References

	Additional Information
	Revision History
	How to Contact Altera
	Typographic Conventions

