SystemVerilog
For Design

A Guide to Using SystemVerilog
for Hardware Design and Modeling

by

Stuart Sutherland
Simon Davidmann
Peter Flake

Foreword by Phil Moorby

\g
W

KLUWER ACADEMIC PUBLISHERS

Dedications

To my wonderful wife, LeeAnn, and my children, Ammon, Tamara, Hannah, Seth and
Samuel — thank you for all your patience during the many long hours and late nights
while writing this book.
Stuart Sutherland
Portland, Oregon

To all of the staff of Co-Design and the many EDA colleagues that worked with me
over the years — thank you for helping to evolve Verilog and make its extension and
evolution a reality. And to Penny, Emma and Charles — thank you for allowing me
the time to indulge in language design (and in cars and guitars...).

Simon Davidmann
Santa Clara, California

To my wife Monique, for supporting me when I was not working, and when I was
working too much.

Peter Flake
Thame, UK

About the Authors

Stuart Sutherland provides expert instruction on using SystemVerilog and Verilog.
He has been involved in defining the Verilog language since the beginning of IEEE
standardization work in 1993, and is a member of both the IEEE Verilog standards
committee (where he serves as co-chair of the Verilog PLI task force), and the Accel-
lera SystemVerilog committee (where he serves as the editor for the SystemVerilog
Language Reference Manual). Stuart Sutherland has more than 19 years of experience
in hardware design, and over 15 years of experience with Verilog. He is the founder
of Sutherland HDL Inc., which specializes in providing expert HDL training services.
He holds a Bachelors degree in Computer Science, with an emphasis in Electronic
Engineering Technology. He has also authored “The Verilog PLI Handbook” and
“Verilog-2001: A Guide to the New Features of the Verilog HDL”.

Simon Davidmann has been involved with HDLs since 1978. He was a member of
the HILO team at Brunel University in the UK. In 1984 he became an ASIC designer
and embedded software developer of real time professional musical instruments for
Simmons Percussion. In 1988, he became involved with Verilog as the first European
employee of Gateway Design Automation. He founded Chronologic Simulation in
Europe, the European office of Virtual Chips (inSilicon), and then the European oper-
ations of Ambit Design. In 1998, he co-founded Co-Design Automation, and was co-
creator of SUPERLOG. As CEO of Co-Design, he was instrumental in transitioning
SUPERLOG into Accellera as the beginning of SystemVerilog. Mr. Davidmann is a
member of the Accellera SystemVerilog and IEEE 1364 Verilog committees. He is a
consultant to, and board member of, several technology and EDA companies, and is
Visiting Professor of Digital Systems at Queen Mary, University of London.

Peter Flake was a co-founder and Chief Technical Officer at Co-Design Automation
and was the main architect of the SUPERLOG language. With the acquisition of Co-
Design by Synopsys in 2002, he became a Scientist at Synopsys. His EDA career
spans 30 years: he was the language architect and project leader of the HILO develop-
ment effort while at Brunel University in Uxbridge, U.K., and at GenRad. HILO was
the first commercial HDL-based simulation, fault simulation and timing analysis sys-
tem of the early/mid 1980s. He holds a Master of Arts degree from Cambridge Uni-
versity in the U.K. and has made many conference presentations on the subject of
HDLs.

1able of Contents

FOrewordceiiniciecsicsniienenenissssnsssessissssssens xxi
Preface xxiii
Target AUAIEIICEceiiiiiiccrc ittt st eas st n et enaee Xxiii
TOPICS COVETEA ..uiviririiiiiiiiiiii ettt ettt e bbb et s st ebsta e teteasenetan XXiv
About the examples in this BOOK..........ceveuiienieiiiniciic et XXV
Obtaining copies of the examples .XXVi
EXAMIPIE TESHNG ... icviiitiiiiiiiciiireieti et b b e et vt et eas bttt bbb tn st s eae XXVi
Other sources of INfOIMAtIONcooveiiiiiriciir e bbb XXvi
Acknowledgements
Chapter 1: Introduction to SystemVerilog . 1
1.1 SyStemMVErilog OTIZINS ...ccuieveieeeiirie et ittt et sttt s s s s tenses s seaneesees
1.1.1 The Accellera SystemVerilog standard
1.1.2 Donations to SYStEMVETIIOEcccecvvvvieiinririeiriceeerieeseerireessrsveeeiesesssesees e
1.2 Key SystemVerilog enhancements for hardware design............coccoeeeeveeeeiercccccvcccrinnes 4
L3 SUMMALY .ottt et e a st s na bbb sa sttt ssas et et es e 5
Chapter 2: SystemVerilog Literal Values and Built-in Data Types.........ceouece-.. w7
2.1 Enhanced literal value assignments........cccocovueririiiiriceceeiee e e e 8
2.2 ‘define enhanCemMEntSc.ccovvveeveiiiririririreneaetetnis ettt es ettt et ssben s erssnsenseanen 9
2.2.1 Including backslashes in the Macro teXt.........coovvvierveinvereinieieeseeer v 9
222 Including quotes in the MACIO tEXL.......c..ciiviveriiiiiceieee et e 9
2.2.3 Constructing identifier names from MAaCIOScoveevierieisrirerieeoeesreseresens 10
2.3 External compilation unit declarations........cccoverrivieeiiiiveieeriecceriee e eens 11
2.3.1 Synthesis GUIdEIINESc.occeverrrierieirieieie ettt s 14
2.3.2 SystemVerilog identifier search rulesc..cccovvvvennnreciorireeeeesseeee e
2.3.3 Source code Order........cccceverininrrienniinies e
2.3.4 Coding guidelines for external declarations
2.4 Simulation time units and PreCiSIONcovvrieirrereveriieiiecee ettt seeener e
2.4.1 Verilog’s timescale directive
2.4.2 Time values With time UNtSocevirierrvivinieieicis et
2.43 Module-level time unit and PreciSiono.voveiieinicviceiri et eeesenerenns

2.44 Compilation-unit time units and precision
2.5 SystemVerilog data tyPeS......c.cccccvreemmiirniiorit e seessseaeaesese s s ns e en s

2.5.1 Verilog data tyPes ..ooiiiiiii it et 24

2.5.2 SystemVerilog data tyPeS......cccocivireremimmriiniinsicniine it s e 25
253 Synthests gUITEIINES i s 27
2.6 Relaxation of data tyPe TUIES .vei et s 27
27 Signed and unsigned MOIIETS ..o 31
2 s Stanc and automatic VariableS . ..o 32
2.8.1 Static and automatic variable initializationco..corvvecceinciinrnicenniienes 34
2.8.2 Synthesis guidelines for automatic variablesccoovveoniniicniccine 37
2.8.3 Guidelines for using static and automatic variables .37
2.9 Deterministic variable initializationccccccveireicriieiinrec e 38
2.9.1 Initialization detErMInISINc.ocvrieviviircreereriecreer s eresberesee e es 38
2.9.2 Initializing sequential logic asynchronous inPutsccoeeeervveeneriecrernnenns 41
2,10 TYPE CASLINE .ottt ettt et sttt sttt r et st s n e iene s 43
2.10.1 Static (compile tiME) CASHIE....cerrcrrarirerrerreierrreereerearirecr e oo enseneen 43
2.10.2 Dynamic CaStINE......ccvurermrerrereieniirreeticerenrareiee e ereseeesrersersersnee st eneeeneeessessanes 44
2.10.3 Synthesis gUIdEHNEScccoivviriviririircriieneneeeci et seeeee e 45
2.1 CONSLANLS ...oeeveeieciiiieee ettt er ettt seea ettt bese st e s e es e e e emesaescameseenennereae 46
2,12 SUIMIMATY evveriirririeirreeeenreect e seier e res e st e srea et recsaseenaesmesereesareasesenesaesssnesmtesmesearasres 47
Chapter 3: SystemVerilog User-Defined and Enumerated Data Types.......cocoe. 49
3.1 USEr-defiNed LyPeS...coveiireiieire ettt e e
3.1.1 Local typedef declarationsccceceveieeiienieiininin e
3.1.2 External typedef declarations...
3.1.3 Naming convention for user-defined types
3.2 Enumerated data tyPeS....ooeirivieirireniiierieniieecstiee sttt e s
3.2.1 Enumerated type name SeqUENCES.........ccvcevrvereen
3.2.2 Enumerated tYPe NAME SCOPEvveermiieerereessiniereienmisrisesisisssstsssse it sostensssssns
3.2.3 Enumerated type VAIUESccooeririiieiriccee et
3.2.4 Data type of enumerated type valluesccoceiveuieiioiricerie e 7
3.2.5 Typed and anonymous eMUMErations.ccecreueeeereererrenrseescienseuesteinieenens 58
3.2.6 Strong typing on enumerated type OPerations..........ccccevvciveriieincieieisicnenns 58
3.2.7 Casting expressions to enumerated fypPes..........coocvrriirrrererias et 60
3.2.8 Special system tasks and methods for enumerated types.............ccccocncininns 61
3.2.9 Printing enuUMErated tYPESoveevriirerniecraereraeieiieraeeseecaeaeeessnsseasesssesiesnenssses 63
3.3 SUITIMATY coteiiiiiieceiecie e e s ebe s b b sr et sttt e bt ot s e an e sansrssbeses 64
Chapter 4: SystemVerilog Arrays, Structures and Unions .- 65
A1 SHTUCTUIES oottt ettt ettt st sttt st see st se e b e e e e sb bbb s e ens s s 66
4.1.1 Typed and anonymous SIUCEUIESc..couerrreereeirrernererirneerereeenrercenesiessinenanes 67
4.1.2 Assigning values to structures....... .68
4.1.3 Packed and unpacked StUCIUIES.........cocevevmniininiiniriece e 70

4.1.4 Passing structures through ports.........ccoccceeriiiciiiiinrcie i 73

4.1.5 Passing structures as arguments to tasks and functionsc.cc.cccceeerrerrennienns 73
4.1.6 Synthesis GUIAEIIMEScovveriiriciiviiernr e etneiete ettt sesae s 74
4.2 UDIONS Loeviiiieieiieeiei et sen et st seericae sttt et s s a st a s s s s ane s aens 74
42,1 Typed and anonymous UNIOMS..........occueureucueinrerenrerienenrercrsmersieesensrsaesecsersens 75
4.2.2 Unpacked UNIOMSc.coceerimimenicreieniieeiiees e se st st b s snens
423 Packed UnionS.......ccovevoieiiiiiieriineneiee e
4.2.4 Synthesis guidelines
4.2.5 An example of using structures and UNIONSococervrirenrirrernrrsiensreeeeeneas 78
43 AITAYS oo
4.3.1 Unpacked arrays
4.3.2 PaCKed @ITAYS ..ottt sttt ettt ea e eaas
4.3.3 Using packed and unpacked arrays........ccoeeeveiieniiiriiecrn e eee e 85
4.3.4 Initializing arrays at declaration..........ccoeveoeirniiiieienirrnin e 86
4.3.5 Assigning values to QITAYScceieiiemnrinroiessssisesiessssesisserssssnseesesnsosssesns 88
4.3.6 COPYING BITAYS c.oeerieiiriimiereeriirieriesecrtsas st sasess e e ssesesssserssessssssrssassssssssssssssans 90
4.3.7 Copying arrays using bit-Stream Castingc.ecoeecerverrverererireininererireessseesesens 91
4.3.8 AITAYS OF AITAYS ..eovetiii ettt e et e et besbesbaebsasaerbe s anneses 92
4.3.9 Using user-defined types With arraysc..ccecevvveecseieiesceeeseee e 93
4.3.10 Passing arrays through ports and to tasks and functions.......c..c.ccceeverieerrnnas 93
4.3.11 Arrays of structures and UNIONS.......c.o.occoeeveevenniineenreenrierssiesnnseeses s 94

4.4
4.5
4.6
4.7

5.1 Verilog general purpose always procedural block

5.2 SystemVerilog specialized procedural bIOCKS..........ccovcuivieeiviniciviiie e
5.2.1 Combinational logic procedural blocks
5.2.2 Latched logic procedural blockscveivieecieciiriiciecee s
5.2.3 Sequential logic procedural blockSccccvecvriceirivivrieie it
5.2.4 Synthesis GUIAENNESccoeceivirriiecteecct et
5.3 Enhancements to tasks and functions...........cccoceeveemiieicecreecec e
5.3.1 Static and automatic storage in tasks and functions
5.3.2 Implicit task and function statement grouping..............ccoceevemeveeeeeeercecnnen,

5.3.3 Returning function values

xi

5.3.4 Returning before the end of tasks and functions..........cc.ccocvvieeinnieinnens 120

5.3.5 VOId fUNCHONSovereeeietcieiae ettt ettt 121
5.3.6 Passing task/function arguments by DAMEccooviviniinnninnneienien 123
5.3.7 Enhanced function formal argumentsccciveiimriniiiinnriniesc i 124
5.3.8 Functions with no formal arguments . 124
5.3.9 Default formal argument direction and typeccoeeceveiniiriiinmininnnn 125
5.3.10 Default formal argument ValUeS.........cocooovvrmriieniiiiinneness 126
5.3.11 Arrays, structures and unions as formal argumentscoeconiiiininins 127
5.3.12 Passing argument values by reference instead of COPYcoocvvvrvncnnerrerncnnn. 127
5.3.13 Named task and function €ndscoceveemiiiiiine e 131
5.3.14 Empty tasks and functions ..o 131

5.4 SUITUTIATY 1ovveeersicriiieceneost s ses s cos b bt sttt sttt snne .

Chapter 6: SystemVerilog Procedural Statements 133

6.1 NEW OPETAIOIS ..vvemiereresiiistisiaeie et sb et e bbb sttt b bbb
6.1.1 Increment and decrement operators
6.1.2 ASSIZNMENt OPEIALOLSouivivrmiirireiiriitesssensririarersss st oeisb s
6.1.3 Equality operators with don’t care wild cards...........ccoeevrvicniniiceioians 140
6.1.4 Set membership operator — inside

6.2 Operand enhanCemMENS..... ... viiiiiiiierie e
6.2.1 Operations on 2-state and 4-State LyPeS.......ccurrerririnririceinncin 142
6.2.2 CaSting EXPreSSiON SIZES....c.cerirenriririmrirenreriiessr s 143
6.2.3 Casting expression Signednesscocveeerireiieniieenniee s 144

6.3 Enhanced fOr LOOPSccccoirruemiriiiiiiiiiiiiei et e s 144
6.3.1 Local variables within for loop declarationscocoveemvieirininnorcnincincnen 145

6.3.2 Multiple for loop assignments
6.3.3 Hierarchically referencing variables declared in for 1oopsc..ocoovecinnn. 147
6.3.4 Synthesis guidelines
6.4 Bottom testing do...while loop
6.4.1 Synthesis guidelines
6.5 New jump statements — break, continue, refurn ..o 150
6.5.1 The continue statement
6.5.2 The break STAEIMENE ...c.cccerviiereerereeeii sttt
6.5.3 The return StAteIMENt.cverveericiererceciee ettt enne sttt
6.5.4 Synthesis UIELINESc.ocvvmvmieiiieiii e
6.6 Enhanced block names ...
6.7 StAtement 1aDEIS......viiviuiireriietieeiciete st e

6.8 Enhanced case STAtEIMENLSc.ecvvierruererereimerecririeeinsies e tss e sn s et en s eesisiins
6.8.1 Unique case decisions
6.8.2 Priority case SAtEIMENTS........cooiiieimiineriisier e 160

Xii

6.8.3 Unique and priority versus parallel_case and full_case.......ccccoeveivrenrienns 161

6.9 Enhanced if...else deCISIONS.....c.c.cvrreirrcrinreiicirine et 163
6.9.1 Unique if...else decCiSIONSc.ccoviiiiiiiviiiiiirei et 163
6.9.2 Priority if decisions
6,10 SUIMMINATY ..ottt et et ettt e b e s s e e sase et ebestensereseenssrenen
Chapter 7: Modeling Finite State Machines with SystemVerilog......cccceereanee .167
7.1 Modeling state machines with enumerated types...........cccerivieiiinreirieien e, 168
7.1.1 Representing state encoding with enumerated typescccccerreireceinrirennns 169
7.1.2 Reversed case statements with enumerated types.......ccceveceeeieiicricrnecnnnns 170
7.1.3 Enumerated types and unique case statements
7.1.4 Specifying unused state VaIUES..........coveriivermernieiiee e e ena
7.1.5 Assigning values to enumerated type variablescccveevrirereriinerinnnn, 174
7.1.6 Performing operations on enumerated type variables...........cccoeeeriveeivnnnnn, 176
7.2 Using 2-state data types in FSM modelsccovveiviniiriinieieecceeeeeeecece e 177
7.2.1 2-state data type CharacteriStiCs.........ccvimrivniinieeririennereeesceesesesseseeaenas 177
7.2.2 2-state data types versus 2-state SImulationccocovevuivieeirei i 178
7.2.3 Using 2-state types with case Statementsccoecvrirviiirmivieesioeeniisesresnine 180
7.2.4 Resetting FSMs with 2-state and enumerated variablesc...cococcovevevineinnn, 181
7.3 SUIMMMALY ..ottt ettt sr b s se bbbt bbb et et s eserrsenesenns 182
Chapter 8: SystemVerilog Design Hierarchy 183
8.1 MoOQUIE PIOtOLYPES...c.ouierrrerceieriiersiereseer et reet et eb st satebessbe et ernsseseseneesesenesenseronns 184
8.1.1 Prototype and actual definitionccovcoveneninienininiess e resen 185
8.1.2 Avoiding port declaration redundancy.........c...ccocoeriverieivnieiversseeereee s 185
8.2 Named module end.........ocevniiniiiiienr e, 186
8.3 Nested (local) module declarationsccveevoumeeemeiceceiie et 187
8.3.1 Nested module name visibility.... ..190
8.3.2 Instantiating nested MOAUIESc.coccvierneiirrnieiiseeeire e 191
8.3.3 Nested module name search rules.......c.cucceeeeieririeeniece e 192
8.4 Simplified netlists of module instances.........
8.4.1 Implicit .name port connections
8.4.2 Implicit .* POIt COMNECHION ..cvvvivierriereeieieriiceceie ettt
8.5 Net aliasing...............
8.5.1 Alias rules
8.5.2 Implicit net declarationseceevvvvieineneisisiemiese i s
8.5.3 Using aliases with .name and .*cccormivivivviriiree e 206
8.6 Passing values through module POrtsc..coveeiieeeririnn i e 210
8.6.1 All data types can be passed through portsc.ccceveviverirvcenneeserererienes 210
8.6.2 Module port restrictions in SystemVerilog........ccovveeeviieieieeerivees e, 211

8.7 Reference ports

8.7.1 Reference ports as shared variables ... 215
8.7.2 Synthesis guidelines
8.8 Enhanced port declarationsc.couveusieiueniscnncniniisss s
8.8.1 Verilog-1995 port declarations
8.8.2 Verilog-2001 port declarations
8.8.3 SystemVerilog port declarations
8.9 Parameterized datd tyPeS......cooeceriiiiniiinirie i
8.10 Variable declarations in blocks
8.10.1 Local variables in unnamed blocks

8.11 SUIMIIIATY .vevervieesencresenrseieacsstenssesaseess b saaba s s se st e s ssss e ssess

Chapter 9: SystemVerilog Interfaces
9.1 INtETTACE COMCEPLS . euvmeerurmeriuerersirtiretirsaaseses st eseb st
9.1.1 Disadvantages of Verilog’s module ports
9.1.2 Advantages of SystemVerilog interfaces
9.1.3 SystemVerilog interface CONTENTSocoovuivrierirenereiin i
9.1.4 Differences between modules and interfaces

0.2 INterface dECIATAtIONSc..vcviveverieerieieeeieresenierenrtstssi st sa ettt
9.2.1 Source code declaration Order.............cocovivieiimivininininensie e
9.2.2 Global and local interface definitionsccocvivievimincnnincnicnnii
9.3 Using interfaces as MOAUIE POITS......curvriuiioruimierneorinimniiiin e s
9.3.1 Explicitly named interface POrtsccvvevenicieriiniiiniss e
9.3.2 Generic iINETfACE POTLS w.vvuerueuiriermiiresires s e
9.3.3 Synthesis UIAEHNESoviviiviiiiiiiicn e
9.4 Instantiating and connecting iNterfacescoovoeiererniniinci
9.5 Referencing signals within an interfacec.oeerncimio e
0.6 INtErface MOAPOTLS...cccrcvieiiiiiintitre et

9.6.1 Specifying which modport view to use
9.6.2 Using modports to define different sets of connections

9.7 Using tasks and functions in interfaceso.ovrienniiniiii e
9.7.1 Interface methods
9.7.2 Importing interface Methodscoccvvevrrieiininiii e
9.7.3 Synthesis guidelines for interface methods........coocovivivniiiiine 255
9.7.4 Exporting tasks and functions

9.8 Using procedural blocks in interfacescoocvecoriniiiniciiss

9.9 Reconfigurable INtErfACES........coviviririivieiis it e
9.10 Verification with interfaces.....

Q.11 SUIMITIBIY ©ovvevrnererecieriminiieriasrrs e ss bt e et et
Chapter 10: A Complete Design Modeled with SystemVerilog....coeeserecuereasnn. 263
10.1 SystemVerilog ATM XamMPIe.....c.covviireiinmineriiii s 263

Xiv

10.2 Data abStractionccooivciiiiiiiietineeeet sttt sttt
10.3 Interface encapsulation
10.4 Design top level: squat

10.5 Receivers and transSmitters.........civeieiviresreireesesesenre e escreeseeseesseenesseesesseesssnsontonsosnas 277

10.5.1 Receiver state Maching......c..cccovvieeeeieriirececc ettt 277

10.5.2 Transmitter State MACKINEc.ccociviiivrreriiieiieieiece e sis s e sa e v e eneas 280
JO.6 TeSIDENCH. ...ttt sa bbb st saebe b ereebesrenssbssaenesaen 283
TO.7 SUIMMETY ..ottt sttt ea ettt st v nst s bt asaanesan 289
Chapter 11: Behavioral and Transaction Level Modeling 291
11.1 Behavioral MOENGccociiiviriiiioriiieieniceee et er ettt ettt ers s seranan 292
11.2 What iS @ tranSaCtioN?........ccocveirieriniricetieeiee ettt a s es e te e sbebesbasnesenre e sbesnas 292
11.3 Transaction level modeling in SystemVerilog

11.3.1 Memory SubSYStem €XampPle.....cocevivviriirieiriiiencenriereiieinresrieseestesensesvesreerssenns
11.4 Transaction level models via INterfacesc.ovvvrevioiiiiiciiciieie e
11.5 BUS rbitrationcc.ciivciviieciiieieiecre s sieisieieiee et sbs e ere e ess e e st ereenseseareentoneas
11.6 Transactors, adapters, and bus functional models...............ovivicriricviciiiivieinenne 303

11.6.1 Master adapter as module

11.6.2 Adapter in an iNterfACecvievriinrieienesiiniiiiree e vese e b earevenns

11.7

11.8

Appendix A: The SystemVerilog Formal Definition (BNF) 317
Appendix B: A History of SUPERLOG, The Beginning of SystemVerilog357
Index 3N

XV

List of Examples

This book contains a number of examples that illustrate the proper usage of System-
Verilog constructs. In addition to these examples, each chapter contains many code
fragments that illustrate specific features of SystemVerilog. The examples listed
below can be downloaded from http://www.sutherland-hdl.com. Navigate the links
to “SystemVerilog for Design Book Examples”.

Chapter 1: Introduction to SystemVerilog

Chapter 2: SystemVerilog Literal Values and Built-in Data Types

Example 2-1: External declarations in the compilation-unit SCOPecocvevvvverrrriieienrrnen. 12
Example 2-2: Mixed methods of declaring time units and time precisionc.ccvcecevenrnnne. 23
Example 2-3: Relaxed usage of variablescocoovirenieinnicinreee e 28
Example 2-4: Illegal use of variablesccccccvviiicniiiiniicne et re e 29
Example 2-5: Applying reset at simulation time zero with 2-state data typesc.ceocu.n. 4]

Chapter 3: SystemVerilog User-Defined and Enumerated Data Types

Example 3-1: External typedef declarationsccccoovviiviiiineiiiicir e 51
Example 3-2: State machine modeled with Verilog ‘define and parameter constants 52
Example 3-3: State machine modeled with enumerated typescccocevivivviiieccinrecnenan 54
Example 3-4: Using special methods to iterate through enumerated type listsc.c........ 63
Example 3-5: Printing enumerated type variables by value and by namecccoeeeveeninne. 64

Chapter 4: SystemVerilog Arrays, Structures and Unions

Example 4-1: Using structures and UNIOMScoccvvercrrriennierminrirenseiereesseresessssssesessssans
Example 4-2: Using arrays of structures to model an instruction register

Chapter 5: SystemVerilog Procedural Blocks, Tasks and Functions

Example 5-1: A state machine modeled with an always procedural block 111
Example 5-2: A state machine modeled with an always_comb procedural block 112
Example 5-3: Latched input pulse using an always _latch procedural block 116

Chapter 6: SystemVerilog Procedural Statements
Example 6-1: Using SystemVerilog assignment operators
Example 6-2: Code snippet with unnamed nested begin...end blocks
Example 6-3: Code snippet with named begin and named end blockscccoovevenene... 155

Chapter 7: Modeling Finite State Machines with SystemVerilog

Example 7-1:
Example 7-2:
Example 7-3:
Example 7-4:

A finite state machine modeled with enumerated typescoeeeeiiicoinicene 168
Specifying one-hot encoding with enumerated types

One-hot encoding with reversed case statement Styleccooovineieivcinn 171
Code snippet with illegal assignments to enumerated variables 175

Chapter 8: SystemVerilog Design Hierarchy

Example §-1:
Example 8-2:
Example 8-3:
Example 8-4:
Example 8-5:
Example 8-6:
Example 8-7:
Example 8-8:
Example 8-9:

Example 8-10:

Nested module declarationscoovvvreeeiviieiieeeieenireeeireraire st rnse s

Hierarchy trees with nested modules

Simple netlist using Verilog’s named port CONMECHONSocveurvrinriecriniinnn, 194
Simple netlist using SystemVerilog’s .name port CONNECHIONScocreveveens 199
Simple netlist using SystemVerilog’s .* port CONNECHONS ..covvvvcerrrivusnenn: 202
Netlist using SystemVerilog’s .* port connections without aliases 207
Netlist using SystemVerilog’s .* connections along with net aliases 208
Passing values through module ports

Passing an array into a module instance by reference ..., 214
Polymorphic adder using parameterized data types ..., 220

Chapter 9: SystemVerilog Interfaces

Example 9-1:
Example 9-2:
Example 9-3:
Example 9-4:
Example 9-5:
Example 9-6:
Example 9-7:
Example 9-8:
Example 9-9:

Example 9-10:
Example 9-11:
Example 9-12:

Chapter 10:
Example 10-1:
Example 10-2:
Example 10-3:
Example 10-4:
Example 10-5:
Example 10-6:

Verilog module interconnections for a simple design

SystemVerilog module interconnections using interfaces ..., 232
The interface definition for main_bus, with external inputs 236
Using interfaces with . * connections to simplify complex netlists 237
Referencing signals within an interface ..., 242
Selecting the modport to use at the module InStance ..., 245
Selecting the modport to use at the module definition ..246
A simple design using an interface with modports ... 249
Using modports to select alternate methods within an interface ... 253
Exporting a function from a module through an interface modport 256
Exporting a function from a module into an interface ..., 257
Using parameters in an interface ... 259

A Complete Design Modeled with SystemVerilog
Utopia ATM interface, modeled as a SystemVerilog interface
Cell rewriting and forwarding configuration ...,
ATM squat top-level MOdUIEcovorviviiiinri e
Utopia ATM FECEIVEL ...ocurireriecririieriesierst st
Utopia ATM transmitter
UtopiaMethod interface for encapsulating test methods ...,

xXviii

Example 10-7:
Example 10-8:

Chapter 11:
Example 11-1:
Example 11-2:
Example 11-3:
Example 11-4:
Example 11-5:
Example 11-6:
Example 11-7:

CPUMethod interface for encapsulating test methodsc.cccccovvvevvevrvencnn. 284
Utopia ATM teStBENCHcovviviviiiiceririieeietee e ev et sre e 285

Behavioral and Transaction Level Modeling
Simple memory subsystem with read and write tasksc.ocooreviierininns
Two memory subsystems connected by an interfaceccocceveecvevieenrienns
TLM model with bus arbitration using semaphorescoccovvreerrnrennanns
Adapter modeled as @ MOAUIEccocovviiviiniiiiiiie s
Simplified Intel Multibus with multiple masters and slavesc.cccoevvnnns
Simple Multibus TLM example with master adapter as a module
Simple Multibus TLM example with master adapter as an interface

Xix

Foreword

by Phil Moorby
The creator of the Verilog language

When Verilog was created in the mid-1980s, the typical design size was of the order
of five to ten thousand gates, the typical design creation method was that of using
graphical schematic entry tools, and simulation was beginning to be an essential gate
level verification tool. Verilog addressed the problems of the day, but also included
capabilities that enabled a new generation of EDA technology to evolve, namely syn-
thesis from RTL. Verilog thus became the mainstay language of IC designers.

Throughout the 1990's, the Verilog language continued to evolve with technology,
and the IEEE ratified new extensions to the standard in 2001. Most of the new capa-
bilities in the 2001 standard that users were eagerly waiting for were relatively minor
feature refinements as found in other HDLs, such as multidimensional arrays, auto-
matic variables and the generate statement. Today many EDA tools support these
Verilog-2001 enhancements, and thus provide users with access to these new capabil-
ities.

SystemVerilog is a significant new enhancement to Verilog and includes major exten-
sions into abstract design, testbench, formal, and C-based APIs. SystemVerilog also
defines new layers in the Verilog simulation strata. These extensions provide signifi-
cant new capabilities to the designer, verification engineer and architect, allowing
better teamwork and co-ordination between different project members. As was the
case with the original Verilog, teams who adopt SystemVerilog based tools will be
more productive and produce better quality designs in shorter periods.

A strong guiding requirement for SystemVerilog is that it should be a true superset of
Verilog, and as new tools become available, I believe all Verilog users, and many
users of other HDLs, will naturally adopt it.

When I developed the original Verilog LRM and simulator, I had an expectation of
maybe a 10-15 year life-span, and during this time I have kept involved with its evo-

lution. When Co-Design Automation was formed by two of the authors, Peter Flake
and Simon Davidmann, to develop SUPERLOG and evolve Verilog, I was invited to
join its Technical Advisory Board and, later, I joined the company and chaired its
SUPERLOG Working Group. More recently, SUPERLOG was adopted by Accellera
and has become the basis of SystemVerilog. I did not expect Verilog to be as success-
ful as it has been and, with the extensions in SystemVerilog, I believe that it will now
become the dominant HDL and provide significant benefits to the current and future
generation of hardware designers, architects and verification engineers, as they
endeavor to create smaller, better, faster, cheaper products.

If you are a designer or architect building digital systems, or a verification engineer
searching for bugs in these designs, then SystemVerilog will provide you with signif-
icant benefits, and this book is a great place to start to learn SystemVerilog and the
future of Hardware Design and Verification Languages.

Phil Moorby,
New England, 2003

Xxii

Preface

SystemVerilog, an Accellera standard!, is a set of extensions to the IEEE Std. 1364-
2001™ Verilog Standard (commonly referred to as “Verilog-2001”). These exten-
sions provide new and powerful language constructs for modeling and verifying the
behavior of designs that are ever increasing in size and complexity. The SystemVer-
ilog extensions to Verilog can be generalized to two primary categories:

» Enhancements primarily addressing the needs of hardware modeling, both in terms
of overall efficiency and abstraction levels.

*» Verification enhancements and assertions for writing efficient, race-free test-
benches for very large, complex designs.

Accordingly, the discussion of SystemVerilog is divided into two books. This book,
SystemVerilog for Design, addresses the first category, using SystemVerilog for
modeling hardware designs at the RTL and system levels of abstraction. Most of the
examples in this book can be realized in hardware, and are synthesizable. A forthcom-
ing companion book, System Verilog for Verification, will cover the second purpose
of SystemVerilog, that of verifying correct functionality of large, complex designs.
This companion book is expected to be available in June, 2004.

Target audience

@ This book assumes the reader is already familiar with the Verilog Hardware
Description Language.

This book is intended to help users of the Verilog language understand the potential
and capabilities of the SystemVerilog enhancements to Verilog. The book presents
SystemVerilog in the context of examples, with an emphasis on correct usage of Sys-
temVerilog constructs. These examples include a mix of standard Verilog code along
with SystemVerilog the enhancements. The explanations in the book focus on these
SystemVerilog enhancements, with an assumption that the reader will understand the
Verilog portions of the examples.

Additional references on SystemVerilog and Verilog are listed on page xxvi.

1. Chapter 1 provides more information about the Accellera standards organization,
and the development of the SystemVerilog standard.

Topics covered

This book focusses on the portion of SystemVerilog that is intended for representing
hardware designs in a manner that is both simulatable and synthesizable.

Chapter 1 presents a brief overview of SystemVerilog and the key enhancements that
it adds to the Verilog language.

Chapter 2 goes into detail on the many new data types SystemVerilog adds to Ver-
ilog. The chapter covers the intended and proper usage of these new data types.

Chapter 3 presents user-defined data types, a powerful enhancement to Verilog. The
topics include how to create new data type definitions using typedef and defining
enumerated type variables.

Chapter 4 looks at using structures and unions in hardware models. The chapter also
presents a number of enhancements to arrays, together with suggestions as to how
they can be used as abstract modeling constructs.

Chapter 5 presents the specialized procedural blocks, coding blocks and enhanced
task and function definitions in SystemVerilog, and how these enhancements will
help create models that are correct by design.

Chapter 6 shows how to use the enhancements to Verilog operators and procedural
statements to code accurate and deterministic hardware models, using fewer lines of
code compared to standard Verilog.

Chapter 7 provides guidelines on how to use enumerated types and specialized pro-
cedural blocks for modeling Finite State Machine (FSM) designs. This chapter also
presents a number of guidelines on how to model a design using 2-state logic.

Chapter 8 examines the enhancements to design hierarchy that SystemVerilog pro-
vides. Significant constructs are presented, including nested module declarations and
simplified module instance declarations.

Chapter 9 discusses the powerful interface construct that SystemVerilog adds to Ver-
ilog. Interfaces greatly simplify the representation of complex busses and enable the
creation of more intelligent, easier to use IP (intellectual property) models.

Chapter 10 ties together the concepts from all the previous chapters by applying

them to a much more extensive example. The example shows a complete model of an
ATM switch design, modeled in SystemVerilog.

XXiv

Chapter 11 provides another complete example of using SystemVerilog. This chap-
ter covers the usage of SystemVerilog to represent models at a much higher level of
abstraction, using transactions.

Appendix A lists the formal syntax of SystemVerilog using the Backus-Naur Form
(BNF). The SystemVerilog BNF includes the full Verilog-2001 BNF, showing how
SystemVerilog is an extension of Verilog.

Appendix B presents an informative history of hardware description languages and
Verilog. It covers the development of the SUPERLOG language, which became the
basis for much of the synthesizable modeling constructs in SystemVerilog.

About the examples in this book

The examples in this book are intended to illustrate specific SystemVerilog constructs
in a realistic but brief context. To maintain that focus, many of the examples are rela-
tively small, and often do not reflect the full context of a complete model. However,
the examples serve to show the proper usage of SystemVerilog constructs. To show
the power of SystemVerilog in a more complete context, Chapter 10 contains the full
source code of a more extensive example.

The examples contained in the book use the convention of showing all Verilog and
SystemVerilog keywords in bold, as illustrated below:

Example: SystemVerilog code sample

module uart (output logic [7:0] data,
output logic data_rdy,
input serial_in);

enum {WAIT, LOAD, READY} State, NextState;
bit [2:0] bit_cnt;
bit cntr_rst, shift_en;

always ff @(posedge clock, negedge resetN) begin: shifter
if (!resetN)
data <= 8'h0; //reset (active low)
else if (shift en)
data <= {serial in, datal7:11}; //shift right
end: shifter
endmodule

XXv

Longer examples in this book list the code between double horizontal lines, as shown
above. There are also many shorter examples in each chapter that are embedded in the
body of the text, without the use of horizontal lines to set them apart. For both styles
of examples, the full source code is not always included in the book. This was done in
order to focus on specific aspects of SystemVerilog constructs without excessive clut-
ter from surrounding code.

@ The examples do not distinguish standard Verilog constructs and keywords from
SystemVerilog constructs and keywords. It is expected that the reader is already

familiar with the Verilog HDL, and will recognize standard Verilog versus the new
constructs and keywords added with SystemVerilog.

Obtaining copies of the examples

The complete code for all the examples listed in this book are available for personal,
non-commercial use. They can be downloaded from htp:/www.sutherland-hdl.com.
Navigate the links to “SystemVerilog for Design Book Examples”.

Example testing

Most examples in this book have been tested using the Synopsys ves® simulator,
version 7.1. Many examples have also been tested with the Model Technology (a
Mentor Graphics company) ModelSim™ simulator, version 5.8. Most models in this
book are synthesizable, and have been tested using the Synopsys HDL Compiler™
synthesis compiler, version 2003. 12!

Other sources of information

This book explains only the SystemVerilog enhancements for modeling hardware
designs. The book does not go into detail on the SystemVerilog enhancements for
verification, and does not cover the Verilog standard. Some other resources which can
serve as an excellent companion to this book are:

1. All company names and product names mentioned in this book are the trademark or registered
trademark names of their respective companies.

XXVi

SystemVerilog for Verification by Janick Bergeron, Tom Fitzpatrick, Arturo Salz,
and Stuart Sutherland.

Anticipated to be published about June 2004, Kluwer Academic Publishers, Nor-
well MA. ISBN not yet assigned.

A companion to this book, with a focus on verification methodology using the
SystemVerilog assertion and testbench enhancements to Verilog. For more infor-
mation, visit the web site www.wkap.nl, and search for books on SystemVerilog.

SystemVerilog 3.1 Language Reference Manual, Accellera’s Extensions to Verilog.

The official definition of the SystemVerilog standard, as defined by the Accellera
Standards Organization. The latest released version of the Accellera SystemVer-
ilog LRM is available as a PDF document at www.accellera.org.

IEEE Std 1364-2001, Language Reference Manual LRM)—IEEE Standard Hard-
ware Description Language based on the Verilog Hardware Description Language.

Copyright 2001, IEEE, Inc., New York, NY. ISBN 0-7381-2827-9. Softcover,
665 pages (also available as a downloadable PDF file).

This is the official Verilog HDL and PLI standard. The book is a syntax and
semantics reference, not a tutorial for learning Verilog. For information on order-
ing, visit the web site: http://shop.ieee.org/store and search for Verilog, or call 1-
800-678-4333 (US and Canada), 1-908-981-9667 (elsewhere).

1364.1-2002 IEEE Standard for Verilog Register Transfer Level Synthesis 2002—
Standard syntax and semantics for Verilog HDL-based RTL synthesis.

Copyright 2002, IEEE, Inc.,, New York, NY. ISBN 0-7381-3501-1. Softcover,
106 pages (also available as a downloadable PDF file).

This is the official synthesizable subset of the Verilog language. For information on
ordering, visit the web site: hutp://shop.ieee.org/store and search for Verilog, or call
1-800-678-4333 (US and Canada), 1-908-981-9667 (elsewhere).

The Verilog Hardware Description Language, 5th Edition by Donald E. Thomas
and Philip R. Moorby.

Copyright 2002, Kluwer Academic Publishers, Norwell MA.
ISBN: 1-4020-7089-6. Hardcover, 408 pages.

A complete book on Verilog, covering RTL modeling, behavioral modeling and
gate level modeling. The book has more detail on the gate, switch and strength

Xxvil

level aspects of Verilog than many other books. For more information, refer to the
web site www.wkap.nl/prod/b/1-4020-7089-6.

Verilog Quickstart, A Practical Guide to Simulation and Synthesis, 3rd Edition by
James M. Lee.

Copyright 2002, Kluwer Academic Publishers, Norwell MA.
ISBN: 0-7923-7672-2. Hardcover, 384 pages.

An excellent book for learning the Verilog HDL. The book teaches the basics of
Verilog modeling, without getting bogged down with the more obscure aspects of
the Verilog language. For more information, refer to the web site www. wkap.nl/
prod/b/0-7923-7672-2.

Verilog 2001: A Guide to the New Features of the Verilog Hardware Description
Language by Stuart Sutherland.

Copyright 2002, Kluwer Academic Publishers, Norwell MA.
ISBN: 0-7923-7568-8. Hardcover, 136 pages.

An overview of the many enhancements added as part of the IEEE 1364-2001
standard. For more information, refer to the web site www.wkap.nl/book.htm/0-

7923-7568-8.

Acknowledgements

The authors would like to express their gratitude to all those who have helped with
this book. A number of SystemVerilog experts have taken the time to review all or
part of the text and examples, and provided invaluable feedback on how to make the
book useful and accurate.

We would like to specifically thank those that provided invaluable feedback by
reviewing this book. These reviewers include Clifford E. Cummings., Tom Fitz-
patrick, Dave Kelf, James Kenney, Matthew Hall, Monique L'Huillier, Phil
Moorby, Lee Moore, Karen L. Pieper, Dave Rich, LeeAnn Sutherland and David

W. Smith

We also want to acknowledge the significant contribution of Lee Moore, who con-
verted the Verification Guild ATM model shown in Chapter 10 from behavioral Ver-
ilog into synthesizable SystemVerilog. The authors also express their appreciation to
Janick Bergeron, moderator of the Verification Guild on-line newsletter, for grant-
ing permission to use this ATM switch example.

XXviii

Chapter 1
Introduction to SystemVerilog

his chapter provides an overview of SystemVerilog. The top-
ics presented in this chapter include:

+ The origins of SystemVerilog
+ Technical donations that went into SystemVerilog

» Highlights of key SystemVerilog features

1.1 SystemVerilog origins

SystemVerilog SystemVerilog is a standard set of extensions to the IEEE Std.
extends Verilog 1364-2001 Verilog Standard (commonly referred to as “Verilog-
2001”). The SystemVerilog extensions to the Verilog HDL that are
described in this book are targeted at design and writing synthesiz-
able models. These extensions integrate many of the best features
of the SUPERLOG and C languages. SystemVerilog also contains a
large number of extensions targeted toward verification of large
designs. These verification extensions integrate features from the
SUPERLOG, VERA C, C++, and VHDL languages, along with
OVA assertions and PSL assertions (formerly known as Sugar).
These verification assertions are in a forthcoming companion book,
SystemVerilog for Verification.

SystemVerilog for Design

SystemVerilog
will become part
of the IEEE
Verilog standard

Accellera
promotes the
development of
EDA tools

SystemVerilog
is based on
proven
technology

1.1.1

SystemVerilog
3.0 extends
modeling
capability

This integrated whole created by SystemVerilog greatly exceeds
the sum of its individual components, creating a new type of engi-
neering language, a Hardware Description and Verification Lan-
guage or HDVL. Using a single, unified language enables
engineers to model large, complex designs, and verify that these
designs are functionally correct.

The SystemVerilog enhancements are being defined by a standards
group under the auspices of the Accellera Standards Organization,
rather than directly by the IEEE. Accellera’s stated goal is to turn
the definition of SystemVerilog over to the IEEE for ratification as
part of the full IEEE 1364 standard. It is expected that SystemVer-
ilog will be a major portion of the next generation of the Verilog

standard.

The Accellera standards organization

Accellera is a non-profit organization with the goal of supporting
the development and use of Electronic Design Automation (EDA)
languages. Accellera is he combined VHDL International and Open
Verilog International organizations. Accellera helps sponsor the
IEEE 1076 VHDL and IEEE 1364 Verilog standards groups. In
addition, Accellera sponsors a number of committees doing
research on future languages. SystemVerilog is the result of one of
those Accellera committees. Accellera itself receives its funding
from member companies. These companies comprise several major
EDA software vendors and several major electronic design corpora-
tions. More information on Accellera, its members, and its current
projects can be found at www.accellera.org.

Accellera has based the SystemVerilog enhancements to Verilog on
proven technologies. Various companies have donated technology
to Accellera, which has then been carefully reviewed and integrated
into SystemVerilog. A major benefit of using donations of technol-
ogies is that the SystemVerilog enhancements have already been
proven to work and accomplish the objective of modeling and veri-
fying much larger designs.

The Accellera SystemVerilog standard

A major portion of SystemVerilog was released as an Accellera
standard in June of 2002 under the title of SystemVerilog 3.0. This
initial release of the SystemVerilog standard allowed EDA compa-

Chapter 1: Introduction to SystemVerilog 3

SystemVerilog
3.1 extends
verification
capability

SystemVerilog
3.1a will be
donated to the
IEEE

SystemVerilog
is the third
generation of
Verilog

nies to begin adding the SystemVerilog extensions to existing sim-
ulators, synthesis compilers and other engineering tools. The focus
of this first release of the SystemVerilog standard was to extend the
synthesizable constructs of Verilog, and to enable modeling hard-
ware at a higher level of abstraction. These are the constructs that
are addressed in this book.

A major update to the SystemVerilog set of extensions was released
in May of 2003. This release is referred to as SystemVerilog 3.1,
and adds a substantial number of verification capabilities to Sys-
temVerilog. These testbench enhancements are covered in the
forthcoming companion book, System Verilog for Verification.

At the time this book was written, Accellera was defining another
update to the SystemVerilog standard, with a target release for May
of 2004. This release will be called SystemVerilog 3.1a. This ver-
sion will add additional modeling and verification capabilities to
SystemVerilog. Accellera has announced its intent to donate ver-
sion 3.1a to the IEEE for integration into the IEEE 1364 Verilog
standard.

SystemVerilog began with a version number of 3.0 to show that
SystemVerilog is the third major generation of the Verilog lan-
guage. Verilog-1995 is the first generation, which represents the
standardization of the original Verilog language defined by Phil
Moorby in the early 1980s. Verilog-2001 is the second major gen-
eration of Verilog, and SystemVerilog is the third major generation.
Appendix B of this book contains more details on the history of
hardware descriptions languages, and the evolution of Verilog that
led up to SystemVerilog.)

Obtaining the Accellera SystemVerilog LRM

The latest released version of the Accellera SystemVerilog Lan-
guage Reference Manual (LRM) is available as a PDF document at
the Accellera web site, www.accellera.org. It can also be obtained
at www.systemverilog.org.

1.1.2 Donations to SystemVerilog

The primary technology donations that make up SystemVerilog
include:

SystemVerilog for Design

SystemVerilog
comes from
several
donations

SUPERLOG
was donated by
Co-Design

OpenVERA and
DirectC were
donated by
Synopsys

SystemVerilog
is backward
compatible with
Verilog

+ The SUPERLOG Extended Synthesizable Subset (SUPERLOG
ESS), from Co-Design Automation

+ The OpenVERA™ verification language from Synopsys

« PSL assertions (which began as a donation of Sugar assertions
from IBM)

» OpenVera Assertions (OVA) from Synopsys

+ The DirectC and coverage Application Programming Interfaces
(APIs) from Synopsys

+ Separate compilation and $readmem extensions from Mentor
Graphics

In 2001, Co-Design Automation (which was acquired by Synopsys
in 2002) donated to Accellera the SUPERLOG Extended Synthe-
sizable Subset in June Of 2001. This donation makes up the major-
ity of the modeling enhancements in SystemVerilog. Accellera then
organized the Verilog++ committee, which was later renamed the
SystemVerilog committee, to review this donation, and create a
standard set of enhancements for the Verilog HDL. Appendix B
contains a more complete history of the SUPERLOG language.

In 2002, Synopsys donated OpenVERA testbench, OpenVERA
Assertions (OVA), and DirectC to Accellera, as a complement to
the SUPERLOG ESS donation. These donations significantly
extend the verification capabilities of the Verilog language.

The Accellera SystemVerilog committee also specified additional
design and verification enhancements to the Verilog language that
were not part of these core donations.

Two major goals of the SystemVerilog committee within Accellera
were to maintain full backward compatibility with the existing Ver-
ilog HDL, and to maintain the general look and feel of the Verilog
HDL.

1.2 Key SystemVerilog enhancements for hardware design

The following list highlights some of the more significant enhance-
ments SystemVerilog adds to the Verilog HDL for the design and
verification of hardware: This list is not intended to be all inclusive

Chapter 1: Introduction to SystemVerilog 5

of every enhancement to Verilog that is in SystemVerilog. This list
just highlights a few key features.

1.3 Summary

A unified assertion language for both simulation and formal veri-
fication

Object oriented C++ like classes, with encapsulation, inheritance,
and polymorphism

Interfaces to encapsulate communication and protocol checking
within a design

Special program blocks and clocking domains for defining race
free test programs

Constrained random number generation

C like data types, such as int

User-defined types, using the C typedef
Enumerated types

Type casting

Structures and unions, as in C

Strings, dynamic arrays, associative arrays and lists
External compilation-unit scope declarations

++, --, += and other assignment operators

Pass by reference to tasks, functions and modules

Semaphore and mailbox inter-process communication and syn-
chronization

A Direct Programming Interface (DPI) to allow SystemVerilog
to directly call C functions, and for C functions to directly call
Verilog functions, without the complex Verilog Programming
Language Interface (PLI)

SystemVerilog unifies several proven hardware design and verifi-
cation languages, in the form of extensions to the Verilog HDL.
These extensions provide powerful new capabilities for modeling
hardware at the RTL, system and architectural levels, along with a
rich set of features for verifying model functionality.

Chapter 2

SystemVerilog Literal Values
and Built-in Data Types

ystemVerilog extends Verilog’s built-in data types and

enhances how literal values can be specified. This chapter
explains these enhancements and offers recommendations on
proper usage. A number of small examples illustrate these enhance-
ments in context. Subsequent chapters contain other examples that
utilize SystemVerilog’s enhanced data types and literal values. The
next chapter covers another important enhancement to data types,
user-defined types.

The enhancements presented in this chapter include:

* Enhanced literal values

* ‘define text substitution enhancements

= External compilation-unit scope declarations
+ Time values

+ New data types

» Signed and unsigned types

* Variable initialization

» Static and automatic variables

+ Casting

» Constants

SystemVerilog for Design

2.1 Enhanced literal value assignments

filling a vector
with a literal
value

special literal
value for filling a
vector

In the Verilog language, a vector can be easily filled with all zeros,
all Xs (unknown), or all Zs (high-impedance).

reg [127:0] data;
data = 0; // fills data with 128 bits of zero

data 'bz; // fills data with 128 bits of Z
data 'bx; // fills data with 128 bits of X

I

L}

However, Verilog does not provide a convenient mechanism to fill
a vector with all ones without using a literal value with all bits set to
one, or using operators such as the replicate operator, a ones com-
plement operator, or a twos complement operator. The following
examples illustrate these styles, showing ways to assign a 128 bit
vector to all ones:

data_bus=l28'hFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

data_bus = {128{1'bl}}; // replicate operation
data bus = ~0; // ones complement operation
data bus = -1; // twos complement operation

SystemVerilog enhances assignments of a literal value in two ways.
First, a simpler syntax is added, that allows specifying the fill value
without having to specify a radix of binary, octal or hexadecimal.
Secondly, the fill value can also be a logic 1. The syntax is to spec-
ify the value with which to fill each bit, preceded by an apostrophe
('), which is sometimes referred to as a “tick”. Thus:

+ 0 fills all bits on the left-hand side with 0
+ 1 fills all bits on the left-hand side with 1
« 'z or 'Z fills all bits on the left-hand side with z
« 'x or 'xX fills all bits on the left-hand side with x

Note that the apostrophe character (*) is not the same as the grave
accent (~), which is sometimes referred to as a “back tick”.

Using SystemVerilog, a vector of any width can be filled with all
ones without hard coding the width of the value to be assigned, or
using operations.

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 9

literal values
scale with the
size of the left-
hand side vector

2‘27 *define enhancements

data bus = 'l; //set all bits of data_bus to 1

This enhancement to the Verilog language simplifies writing mod-
els that work with very large vector sizes. The enhancement also
makes it possible to code models that automatically scale to new
vector sizes without having to modify the logic of the model. This
automatic scaling is especially useful when using initializing vari-
ables that have parameterized vector widths.

SystemVerilog extends the ability of Verilog’s *define text sub-
stitution macro by allowing the macro text to include certain special
characters.

2.2.1 Including backslashes in the macro text

‘\ allows a
backslash in the
macro text

2.2.2

The Verilog-2001 standard added the ability to continue a *define
macro definition onto a new line by placing a backslash (\) at the
end of a line. There is no way in Verilog, however, to have a back-
slash included as part of the text that is substituted by the macro.

SystemVerilog allows the normal meaning of the backslash to be
ignored by preceding the backslash with a grave accent (*), some-
times called a “back tick”. In the following example, a macro text is
created that includes two backslash characters. The macro text is
used to represent a hierarchy path that contains escaped names.

‘define reset test.‘'\586_top .‘'\reset-

initial
‘reset = 1;

In this example, the macro ‘reset will expand to:

initial
test.\586_top .\reset- = 1;

Including quotes in the macro text

Verilog allows the quotation mark (") to be used in a *define
macro, but the text within the quotation marks became a literal
string. This means that in Verilog, it is not possible to create a

10

SystemVerilog for Design

' alfows a
quote in the
macro text

2.23

‘v gerves as a
delimiter without
a space in the
macro text

string using text substitution macros where the string contained
embedded arguments.

SystemVerilog allows arguments to be inside a macro text string by
preceding the quotation marks that form the string with a grave
accent (*). The example below defines a text substitution macro
that represents a complete sdisplay statement. The string to be
printed contains a $h format argument. The substituted text will
contain a text string that prints a message, including the name and
logic value of the argument to the macro. The %h within the string
will be correctly interpreted as a format argument.

“define print(x) \
$display(~"variable x = %$h™", x)

“print (data);

In this example, the macro *print () will expand to:

$display("variable data = %d4d", data);

Constructing identifier names from macros

Using Verilog *define, it is not possible to construct an identifier
name by concatenating two or more text macros together. The prob-
lem is that there will always be a white space between each portion
of the constructed identifier name.

SystemVerilog provides a way to delimit an identifier name with-
out introducing a white space, using two consecutive grave accent
marks, i.e. **. This allows two or more names to be concatenated
together to form a new name.

One application for ** is to simplify creating source code where a
set of similar names are needed several times, and an array cannot
be used. In the following example, a 2-state bit variable and a
wand net need to be defined with similar names, and a continuous
assignment of the variable to the net. The variable allows local pro-
cedural assignments, and the net allows wired logic assignments
from multiple drivers, where one of the drivers is the 2-state vari-
able:

In source code without text substitution, these declarations might
be:

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 11

2.3 External compilation unit declarations

1]

bit d00_bit; wand d00_net doo_bit;
bit d0l_bit; wand d01_net = d0l_bit;

bit d62_bit; wand dé62_net
bit d63_bit; wand dé63_net

dé62_bit;
dé63_bit;

Using the SystemVerilog enhancements to *define, these declara-
tions can be simplified as:

‘define TWO_STATE_NET (name) bit name''_bit; \
wand name''_net = name'' bit;

*TWO_STATE_NET (d00)
*TWO_STATE_NET (d10)

‘*TWO_STATE_NET (dé62)
‘TWO_STATE_NET (d63)

Verilog requires
local
declarations

SystemVerilog
has compilation
units

compilation-unit
scopes contain
external
declarations

In Verilog, declarations of variables, nets, tasks and functions must
declared within a module, between the module...endmodule key-
words. The objects declared within a module are local to the mod-
ule. For modeling purposes, these objects should be referenced
within the module in which they are declared. Verilog also allows
hierarchical references to these objects from other modules for ver-
ification purposes, but these cross-module references do not repre-
sent hardware behavior, and are not synthesizable.

SystemVerilog adds a concept called a compilation unit to Verilog.
A compilation unit is all source files that are compiled at the same
time. Compilation units provide a means for software tools to sepa-
rately compile sub-blocks of an overall design. A sub-block might
comprise a single module or multiple modules. The modules might
be contained in a single file or in multiple files. A sub-block of a
design might also contain interface blocks (presented in Chapter 9)
and testbench program blocks (covered in the forthcoming compan-
ion book, SystemVerilog for Verification).

SystemVerilog extends Verilog’s declaration space by allowing
declarations to be made outside of module, interface and program
block boundaries. These external declarations are in a compilation-
unit scope, and are visible to all modules that are compiled at the
same time.

12 SystemVerilog for Design

The compilation-unit scope can contain:

+ Time unit and precision declarations
* Variable declarations
» Net declarations

Constant declarations

User-defined data types, using typedef, enum or class

» Task and function definitions

The following example illustrates external declarations of a con-
stant, a variable, a user-defined type, and a function.

Example 2-1: External declarations in the compilation-unit scope

/******************* External declarations *******************/

parameter VERSION = "l.2a"; // external constant
reg resetN = 1; // external variable (active low)
typedef struct packed { // external user-defined type

reg [31:0] address;

reg [31:0] data;

reg [7:0] opcode;
} instruction_word t;

function automatic int log2 (input int n); // external function
if (n <=1) return(l);
log2 = 0;
while (n > 1) begin
n =n/2;
log2++;
end
return(log2) ;
endfunction

/********************* module definition *********************/
// external declaration is used to define port types
module register (output instruction_word_t g,

input instruction word_t d,

input wire clock);

always @(posedge clock, negedge resetN)
if (!resetN) g <= 0; // use external reset
else g <= d;
endmodule

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 13

@ External compilation-unit scope declarations are not global

A declaration in the compilation-unit scope is not the same as a glo-
bal declaration. A true global declaration, such as global variable or
function, would be shared by all modules that make up a design,
regardless of whether or not source files are compiled separately or
at the same time.

SystemVerilog’s compilation-scope only exists for source files that
are compiled at the same time. Each time source files are compiled,
a compilation-unit scope is created that is unique to just that compi-
lation. For example, if module CPU and module controller both
reference an externally declared variable called reset, then two
possible scenarios exist:

» If the two modules are compiled at the same time, there will be a
single compilation-unit scope. The externally declared reset
variable will be common to both modules.

* If each module were compiled separately, then there would be
two compilation-unit scopes, with two different reset variables.

To create the affect of a global declaration using SystemVerilog’s
compilation unit, all source files that share the declaration must be
compiled at the same time, as a single compilation unit.

SystemVerilog packages

At the time this book was written, a proposal was under consider-
ation to add a package construct to SystemVerilog. The proposed
package would contain the same types of declarations as a compila-
tion-unit scope. However, if two separate compilations use the
same package definition, then variables, tasks and functions that are
declared within the package will be shared by each compilation.
Using packages, global declarations can be created regardless of
whether source files are compiled at the same time or separately. In
addition, specific portions of a design can use different packages,
enabling unique external declarations regardless of how source files
are compiled. For more information on SystemVerilog packages,
refer to the Accellera Standard Organization’s web site for the lat-
est release of the SystemVerilog standard (see page xxvii of the
Preface details on obtaining the SystemVerilog LRM).

14

SystemVerilog for Design

2.3.1 Synthesis guidelines

use external
declarations for
user-defined
types

external tasks
and functions
must be
automatic

The synthesizable constructs that can be declared within the compi-
lation-unit scope (external to all module and interface definitions)
are:

+ typedef user-defined type definitions
» Automatic functions
+ Automatic tasks

» parameter and localparam constants

An important usage of the compilation-unit scope is to create user-
defined types that can be used by several modules in a design. User-
defined types are defined using typedef, and are discussed in
greater detail in the next chapter, Chapter 3.

User-defined types defined in the compilation-unit scope are syn-
thesizable. typedef declarations do not allocate storage. The
actual storage is allocated when variables are declared from a user-
defined type. For synthesis, these variables must be declared within
a module or interface.

When a module references a task or function that is defined in the
compilation-unit scope, Synthesis will duplicate the task or func-
tion code and treat it as if it had been defined within the module. To
be synthesizable, tasks and functions defined in the compilation-
unit scope must be declared as automatic, and cannot contain
static variables. This is because storage for an automatic task or
function is effectively allocated each time it is called. Thus, each
module that references an automatic task or function in the compi-
lation-unit scope sees a unique copy of the task or function storage
that is not shared by any other module. This ensures that the simula-
tion behavior of the pre-synthesis reference to the compilation-unit
scope task or function will be the same as post-synthesis behavior,
where the functionality of the task or function has been imple-
mented within the module.

A parameter constant defined within the compilation-unit scope
cannot be redefined, since it is not part of a module instance. Syn-
thesis treats constants declared in the compilation-unit scope as lit-
eral values.

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 15

2.3.2 SystemVerilog identifier search rules

Declarations in the compilation-unit scope can be referenced any-
where in the hierarchy of modules that are part of the compilation
unit.

the compilation- SystemVerilog defines a simple and intuitive search rule for when
unit scope is referencing an identifier:

second in the
search order 1. First, search for local declarations, as defined in the IEEE 1364

Verilog standard.
2. Second, search for declarations in the compilation-unit scope.

3. Third, search for declarations within the design hierarchy, fol-
lowing IEEE 1364 Verilog search rules.

The SystemVerilog search rules ensure that System Verilog is fully
backward compatible with Verilog.

2.3.3 Source code order

@ Identifiers and type definitions must be declared before being
referenced.

Variables and nets in the compilation-unit scope

undeclared There is an important consideration when using external declara-
identifiers have tions. Verilog supports implicit data types, where, in specific con-
an implicit data texts, an undeclared identifier is assumed to be a net data type
typé (typically a wire type). Verilog requires the data type of identifiers
to be explicitly declared before the identifier is referenced when the
context will not infer an implicit data type, or when a type other

than the default net data type is desired.

external This implicit data type rule affects the declaration of variables and

declarations nets in the compilation-unit scope. Software tools must encounter

must be defined the external declaration before an identifier is referenced. If not, the

before use npame will be treated as an undeclared identifier, and follow the
Verilog rules for implicit data types.

The following example illustrates how source code order can affect
the usage of a declaration external to the module. This example will
not generate any type of compilation or elaboration error. Since the

SystemVerilog for Design

reference to the signal called parity comes before the external
declaration for the signal, software tools will automatically infer
parity is an implicit net data type local to the module.

module parity check (input wire [63:0] data);
assign parity = “data; // parity is an
endmodule // implicit local net

reg parity; // external declaration is not
// used by module parity_check

User-defined types in the compilation-unit scope

external user- An important usage of the compilation-unit scope is to define new

defined types data types using SystemVerilog’s typedef construct. By defining
a new data type external to all modules and interfaces, every mod-
ule and interface, anywhere in the compilation unit, can use the
user-defined type. User-defined types are covered in more detail in
Chapter 3.

SystemVerilog allows user-defined types to be passed through
module ports. To do this, the port type must be declared as the user-
defined type. This requires that the new type be declared outside the
module’s boundaries, so that compilers can see the type definition
before it is used as a port type. Example 2-1, shown earlier on page
12, illustrates declaring a module port as a user-defined type.

2.3.4 Coding guidelines for external declarations

Place shared external declarations in a separate file

Any declaration not within a module, interface or program bound-
ary is in the compilation-unit scope. It is syntactically permissible
for these external declarations to be made in any or all of the source
code files that make up a compilation unit. However, if an external
declaration, such as a user-defined type, is to be used by more than
one module, file order dependencies can result if care is not taken.
It is a common practice to place each module definition in a sepa-
rate file. For example, module CPU might be in file CPU.v, and
module controller might be in file controller.v. If an exter-
nal declaration that is used by both modules in contained in the
cpu.v file, then the controller.v file can only be compiled at

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 17

the same time as CPU.v, and CPU.v must be read in first by com-
piler.

place external By placing external definitions that are to be shared by multiple
declarations in modules in a separate file, each module can be compiled indepen-
separate files dently of other modules, with just the external definitions file.

Keep external declarations in a common file.

TiP

In order to easily debug and maintain design models, it is recom-
mended that shared external declarations be kept together in a com-
mon file. This file should only contain external declarations, and
not any design modules. If a design is partitioned in such a way that
only certain partitions require access to specific compilation-unit
scope declarations, then separate external definition files can be
created for each design partition.

Avoid excessive compilation unit declarations

The compilation-unit scope should be used conservatively. If too
many declarations are made externally, the compilation-unit scope
name space can become cluttered and difficult to maintain. This can
easily occur if different members of a design team each make exter-
nal declarations without consulting other members of the team, and
then all the files from the different team members are compiled
together as a single compilation unit. Name conflicts can also occur
if third party models, such as IP models, make external declarations
that happen to use the same names as other external declarations in
the compilation unit.

limit compilation It is recommended that the compilation-unit scope be primarily lim-
unit declarations ited for defining user-defined types that will be used by many dif-
fo user-defined ferent modules in a design, or that need to be used in module port
types and declarations. Constants that will be used by many modules can also
constants e declared externally, rather than in each module.

Make external names unique

In the typical design project, models are developed by many differ-
ent engineers. Some models will be written by engineers within the
design team. Other models are written by engineers outside of the

18

SystemVerilog for Design

2.4 Simulation time units and precision

design team, such as an intellectual property (IP) model supplier. It
is possible to have problems with name collisions in the compila-
tion-unit scope name space if care is not taken to create unique
external names. One suggestion is that the first two or three letters
of each external name should indicate the name of the product or
project. This will help ensure that external names created within a
design team will be unique from external names defined by other
sources.

2.4.1

Verilog specifies
time units to the
software tool

The Verilog language does not specify time units as part of time
values. Time values are simply relative to each other. A delay of 3
is larger than a delay of 1, and smaller than a delay of 10. Without
time units, the following statement, a simple clock oscillator that
might be used in a testbench, is somewhat ambiguous:

forever #5 clock = ~clock;

What is the period of this clock? Is it 10 picoseconds? 10 nanosec-
onds? 10 milliseconds? There is no information in the statement
itself to answer this question. One must look elsewhere in the Ver-
ilog source code to determine what units of time the #5 represents.

Verilog’s timescale directive

Instead of specifying the units of time with the time value, Verilog
specifies time units as a command to the software tool, using a
“timescale compiler directive. This directive has two compo-
nents: the time units, and the time precision to be used. The preci-
sion component tells the software tool how many decimal places of
accuracy to use.

In the following example,
‘timescale 1ns / 10ps

the software tool is instructed to use time units of 1 nanosecond,
and a precision of 10 picoseconds, which is 2 decimal places, rela-
tive to 1 nanosecond.

Chapter 2: SystemVerilog Literal Values and Built-in Data Types

19

multiple
‘timescale
directives

the ‘timescale
directive is file
order dependent

The ‘timescale directive can be defined in none, one or more
Verilog source files. Directives with different values can be speci-
fied for different regions of a design. When this occurs, the soft-
ware tool must resolve the differences by finding a common
denominator in all the time units specified, and then scaling all the
delays in each region of the design to the common denominator.

A problem with the ‘timescale directive is that the command is
not bound to specific modules, or to specific files. The directive is a
command to the software tool, and remains in effect until a new
‘timescale command is encountered. This creates a dependency
on which order the Verilog source files are read by the software
tool. Source files without a ‘timescale directive are dependent
on the order in which the file is read relative to previous files.

In the following illustration, files A and C contain ‘timescale
directives that set the software tool’s time units and time precision

for the code that follows the directives. File B, however, does not
contain a ‘timescale directive.

compilation order

FileE

‘timescale 1lns/l1ns

module A (...);
nand #3 (...);

endmodule

)
)

module B (...
nand #5 (..
endmodule

File B

‘timescale lms/lms

module C (...}; N
nand #2 (...);
endmodule

Module B delays are in nanoseconds

If the source files are read in the order of File A then B and then C,
the ‘timescale directive that is in effect when module B is com-
piled is I nanosecond units with | nanosecond precision. Therefore,
the delay of 5 in module B represents a delay of 5 nanoseconds.

20 SystemVerilog for Design

If the source files are read in by a compiler in a different order,
however, the effects of the compiler directives could be different.
The illustration below shows the file order as A then C and then B.

compilation order

‘timescale 1lns/lns

module A (...); N
nand #3 (...); File A

endmodule

‘timescale 1lms/lms

module C (...); N
nand #2 (...); F"QE]

endmodule

module B (...);
nand #5 (...); .
endmodule File B

Module B delays are in milliseconds

In this case, the *timescale directive in effect when module B is
compiled is 1 millisecond units with 1 millisecond precision.
Therefore, the delay of 5 represents 5 milliseconds. The simulation
results from this second file order will be very different than the
results of the first file order.

2.4.2 Time values with time units

time units SystemVerilog extends the Verilog language by allowing time units
specified as part to be specified as part of the time value

of the time value
forever #5ns clock = ~clock;

Specifying the time units as part of the time value removes all
ambiguity as to what the delay represents. The preceding example
is a 10 nanoseconds oscillator (5 ns high, 5 ns low).

The time units that are allowed are listed in the following table.

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 21

Table 2-1: SystemVerilog time units

Unit Description
s seconds
ms milliseconds
us microseconds
ns nanoseconds
ps picoseconds
fs femtoseconds
step the smallest unit of time bei'ng used by the software tool;'
restricted to the SystemVerilog testbench clocking domain

@ No space is allowed between the time value and the time unit.

When specifying a time unit as part of the time value, there can be
no white space between the value and time unit.

#3.2ps // legal
#4.1 ps // illegal: no space allowed

2.4.3 Module-level time unit and precision

SystemVerilog allows the time units and time precision of time val-
ues to be specified locally, as part of a module, interface or program
block, instead of as commands to the software tool (interfaces are
discussed in Chapter 9 of this book, and program blocks are pre-
sented in the forthcoming companion book, SystemVerilog for Ver-
ification).

timeunit and In SystemVerilog, the specification of time units is further

timeprecision as enhanced with the keywords timeunit and timeprecision.

part of module These keywords are used to specify the time unit and precision
definition information within a module, as part of the module definition.

module chip (...);
timeunit 1lns;
timeprecision 10ps;

22

SystemVerilog for Design

timeunit and
timeprecision
must be first

The timeunit and timeprecision keywords allow binding the
unit and precision information directly to a module, interface or
program block, instead of being commands to the software tool.
This resolves the ambiguity and file order dependency that exist
with Verilog’s ‘timescale directive.

The units that can be specified with the timeunit and timepre-
cision keywords are the same as the units and precision that are
allowed with Verilog’s ‘timescale directive. These are the units
that are listed in table 2-1 on page 21, except that the special step
unit is not allowed. As with the *timescale directive, the units
can be specified in multiples of 1, 10 or 100.

@ The timeunit and timeprecision statements must be
specified immediately after the module, interface, or program

declaration, before any other declarations or statements.

The specification of a module timeunit and timeprecision
must be the first statements within a module, appearing immedi-
ately after the port list, and before any other declarations or state-
ments. Note that Verilog allows declarations within the port list.
This does not affect the placement of the timeunit and timepre-
cision statements. These statements must still come immediately
after the module declaration. For example:

module adder (input wire [63:0] a, b,
output reg [63:0] sum,
output reg carry) ;

timeunit 1ns;
timeprecision 10ps;

2.4.4 Compilation-unit time units and precision

external timeunit
and
timeprecision

The timeunit and/or the timeprecision declaration can be
specified in the compilation-unit scope (described earlier in this
chapter, in section 2.3 on page 11). The declarations must come
before any other declarations. A timeunit or timeprecision
declaration in the compilation-unit scope applies to all modules,
program blocks and interfaces that do not have a local timeunit or
timeprecision declaration, and which were not compiled with
the Verilog *timescale directive in effect.

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 23

At most, one timeunit value and one timeprecision value can
be specified in the compilation-unit scope. There can be more than
ong timeunit or timeprecision statements in the compilation-
unit scope, as long as all statements have the same value.

Time unit and precision search order

time unit and With SystemVerilog, the time unit and precision of a time value can
precision search be specified in multiple places. SystemVerilog defines a specific
order search order to determine a time value’s time unit and precision:

» If specified, use the time unit specified as part of the time value.

+ Else, if specified, use the local time unit and precision specified
in the module, interface or program block.

» Else, if the module or interface declaration is nested within
another module or interface, use the time unit and precision in
use by the parent module or interface. Nested module declara-
tions are discussed in Chapter 8 and interfaces are discussed in
Chapter 9.

* Else, if specified, use the ~timescale time unit and precision in
effect when the module was compiled.

+ Else, if specified, use the time unit and precision defined in the
compilation-unit scope.

+ Else, use the simulator’s default time unit and precision.

backward This search order allows models using the SystemVerilog exten-
compatibility sions to be fully backward compatible with models written for Ver-
ilog.

The following example illustrates a mixture of delays with time
units, timeunit and timeprecision declarations at both the
module and compilation-unit scope levels, and ‘timeprecision
compiler directives. The comments indicate which declaration
takes precedence.

Example 2-2: Mixed methods of declaring time units and time precision

timeunit 1ins; // external time unit and precision
timeprecision 1lns;

module my chip (...);

24 SystemVerilog for Design

timeprecision 1ps; // local precisicon (priority over external)

always @ (posedge data request) begin
#2.5 send packet; // uses external units & local precision
#3.75ns check crc; // specific units take precedence

end

task send packet () ;

endtask

task check_crc();

endtask
endmodule
“timescale lps/lps // directive takes precedence over external
module FSM (...);

timeunit 1ns; // local units take priority over directive

always @(State) begin

#1.2 case (State) // uses local units & timescale precision

WAIT: #20ps ...; // specific units take precedence

end
endmodule

2.5 SystemVerilog data types

2.5.1 Verilog data types

Verilog’s The Verilog language has hardware-centric net data types. These
hardware data types have special simulation and synthesis semantics to repre-
data types sent the behavior of real connections in a chip or system.

+ The Verilog reg and integer data types have 4 logic values for
each bit: 0, 1, Z and X.

« The Verilog wire, wor, wand, and other net types have 120 val-
ues for each bit (4-state logic plus multiple strength levels) and
special wired logic resolution functions.

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 25

These multi-value data types are necessary for gate-level simula-
tion accuracy, but are not required at the system and RTL level of
modeling, where most logic can be represented using only 2-state
values. At these abstract modeling levels, tri-state busses are the
only place 4-state values are required. Multiple module output or
inout ports connected together are the only time net resolution is
needed.

2.5.2 SystemVerilog data types

SystemVerilog’s SystemVerilog adds several new 2-state data types, intended for
2-state modeling at the abstract levels or RTL and system level. These data

data types types include:
* bit — a I-bit 2-state integer
* byte — an 8-bit 2-state integer, similar to a C char
* shortint — a 16-bit 2-state integer, similar to a C short
* int — a 32-bit 2-state integer, similar to a C int
* longint — a 64-bit 2-state integer, similar to a C longlong

SystemVerilog also adds three other special types for more efficient
system-level modeling and for verification testbenches:

* void — used to define functions that do not have a return value,
or for ignoring a function return using casting

* shortreal — a 32-bit single-precision floating point, the same
asa C float

* logic — a l-bit 4-state integer with no strength levels, equiva-
lent to the Verilog reg data type

The 4-state logic data type

the Verilog reg The Verilog language uses the reg data type as a general purpose
data type variable for modeling hardware behavior in initial and always
procedural blocks. The keyword reg is a misnomer that is often

confusing to new users of the Verilog language. The term “reg”

would seem to imply a hardware “register”, typically built with

some form of sequential logic flip-flops. In actuality, there is no

correlation whatsoever between using a reg variable and the hard-

ware that will be inferred. It is the context in which the reg variable

26

SystemVerilog for Design

the logic
data type
replaces reg

The bit type has
2-state values

the 2-state bit
data type can be
used in place of
reg or logic type

is used that determines if the hardware represented is combinational
logic or sequential logic.

SystemVerilog uses the more intuitive logic keyword to represent
a general purpose, hardware-centric variable. Semantically, the
logic data type is identical to the xeg data type. The two key-
words are synonyms, and can be used interchangeably. Like the
Verilog reg data type, the logic data type can store 4-state logic
values (0, 1, Z and X), and vectors of any width can be defined
using the logic type. Some example declarations using the logic
data type are:

logic resetN; // a 1l-bit wide 4-state variable
logic [63:0] data; // a 64-bit wide variable

logic [0:7] array [(0:255); // an array of 8-bit
variables

Because the keyword logic does not convey a false implication of
the type of hardware represented, the logic data type is a more
intuitive keyword choice for describing hardware when 4-state
logic is required. In the subsequent examples in this book, the
logic data type is used in place of the Verilog reg data type
(except when the example illustrates pure Verilog code. with no
SystemVerilog enhancements).

The 2-state bit data type

The reg or logic data types are used for modeling hardware
behavior in procedural blocks. These data types store 4-state logic
values, 0, 1, Z and X. At the RTL and system levels of modeling,
logic values of Z and X are seldom required. Synthesis and formal
verification tools do not use X as a logic value, and only support the
Z value for the specification of tri-state outputs.

SystemVerilog adds a bit data type. Syntactically, the bit type
can be used any place the Verilog reg or logic types can be used.
However, the bit data type is semantically different, in that it only
stores 2-state values of 0 and 1. This makes the bit data type ideal
for modeling hardware at the RTL and higher levels of abstraction.

Variables of the bit data type are declared in the same way as reg
and logic types. Declarations can be any vector width, from 1-bit

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 27

2.5.3

2-state types
synthesize the
same as 4-state
types

synthesis
ignores the
default initial
value of 2-state
types

wide to the maximum size supported by the software tool. The
IEEE 1364 Verilog standard defines that all compliant software
tools should support vector widths of at least 2'© bits wide.

bit resetN; // a 1-bit wide 2-state variable
bit [63:0] data; // a 64-bit 2-state variable

bit [0:7] array [0:255]; // an array of 8-bit
2-state variables

Synthesis guidelines

The 4-state 1ogic data type and the 2-state bit, byte, shortint,
int, and longint data types are synthesizable. Synthesis compil-
ers treat 2-state and 4-state types the same way. The use of 2-state
data types primarily affects simulation.

2-state data types begin simulation with a default value of logic
value of 0. Synthesis ignores this default initial value. The post-
synthesis design realized by synthesis is not guaranteed to power up
with zeros in the same way that pre-synthesis models using 2-state
data types will appear to power up.

Section 7.2 on page 177 presents additional modeling consider-
ations regarding the default initial value of 2-state data types.

2.6 Relaxation of data type rules

Verilog restricts
usage of
variables and
nets

In Verilog, there are strict semantic restrictions regarding where
variable data types such as reg can be used, and where net data
types such as wire can be used. The decision of when to use reg
and when to use wire is based entirely on the context of how the
signal is used within the model. The general rule of thumb is that a
variable must be used when modeling using initial and always
procedural blocks, and a net must be used when modeling using
continuous assignments, module instances or primitive instances.

These restrictions on data type usage are often frustrating to engi-
neers who are first learning the Verilog language. The restrictions
also make it difficult to evolve a model from abstract system level
to RTL to gate level because, as the context of the model changes,
the data type declarations may also have to be changed.

28

SystemVerilog for Design

SystemVerilog
relaxes
restrictions on
using variables

most signals
can be declared
as logic or bit

SystemVerilog greatly simplifies determining the proper data type
to use in a model, by relaxing the rules of where variables can be
used. With SystemVerilog, any variable data type can receive a
value in any one of the following ways, but no more than one of the

following ways:

+ Be assigned a value from any number of initial or always
procedural blocks (the same rule as in Verilog).

+ Be assigned a value from a single always_comb, always_ff£ or
always latch procedural block. These SystemVerilog proce-
dural blocks are discussed in Chapter 5.

+ Be assigned a value from a single continuous assignment state-
ment.

« Be driven to a value from a single module or primitive output or
inout port.

These relaxed rules for using variables allow most signals in a
model to be declared as a variable type, such as bit or logic. It is
not necessary to first determine the context in which that signal will
be used. The data type of the signal does not need to be changed as
the model evolves from system level to RTL to gate level.

The following simple example illustrates the use of variables under
these relaxed data type rules.

Example 2-3: Relaxed usage of variables

module compare (output bit 1t, eq, gt,
input logic [63:0] a, b);
always @(a, b)
if (a < b) 1t = 1'bl; // procedural assignments

else 1t = 1'b0;

assign gt = (a > b); // continuous assignments

comparator ul (eq, a, b); // module instance
endmodule
module comparator (output bit eq,

input [63:0] a, b);
always @(a, b)

eq:(::
endmodule

)i

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 29

Restrictions on variables can prevent design errors

@ Variables cannot be driven by multiple sources.

SystemVerilog It is important to note that though SystemVerilog allows variables
restrictions on to be used in places where Verilog does not, SystemVerilog does
using variables still have some restrictions on the usage of variables.

SystemVerilog makes it an error to have multiple output ports or
multiple continuous assignments write to the same variable, or to
combine procedural assignments with continuous assignments or
output drivers on the same variable.

It is also illegal to write to an automatic variable from a continuous
assignment or a module output. Only static variables can be contin-
uously assigned or connected to an output port. Static variables are
required because the variable must be present throughout simula-
tion in order to continuously write to it. Automatic variables do not
necessarily exist the entire time simulation is running.

The reason for this restrictions is because variable data types do not
have built-in resolution functionality to resolve a final value when
two or more devices drive the same output. Only the Verilog net
data types, such as wire, wand (wire-and) and wox (wire-or), have
built-in resolution functions.

Example 2-4; Illegal use of variables

module add_and_increment (output bit [63:0] sum,
output bit carry,
input bit [63:0] a, b);
always @(a, b)
sum = a + b; // procedural assignment to sum

assign sum = sum + 1; // ERROR! sum is already being
// assigned a value

look _ahead il (carry, a, b); // module instance drives carry

overflow_check i2 (carry, a, b); // ERROR! 2nd driver of carry
endmodule

module look_ahead (output wire carry, // prototype
input bit [63:0] a, b);

endmodule

30

SystemVerilog for Design

module overflow check (output wire carry, // prototype

endmodule

input bit ([63:0] a, b);

driver logic.

Use variables for single-driver logic, and use nets for multi-
TIP

SystemVerilog’s relaxed rules for using variables, along with the
restriction that variables cannot be driven by multiple outputs or
continuous assignments, can be used to prevent design errors.
Wherever a signal in a design should only have a single driver, a
variable data type can be used. The single driver can be a proce-
dural block, a continuous assignment, or an output port of a module
or primitive. Should a second driver inadvertently be connected to
the same signal, it will be detected as an error, because each vari-
able can only have a single driver.

SystemVerilog does permit a variable to be written to by multiple
always procedural blocks, which can be considered a form of mul-
tiple drivers. This condition must be allowed for backward compat-
ibility with the existing Verilog language. Chapter 5 introduces
three new types of always procedural blocks: always_comb,
always latch and always_f£f. These new procedural blocks
also have the restriction that a variable can only be assigned from
one procedural block. This further enforces the checking that a sig-
nal declared as a variable type only has a single driver.

Only net data types can have multiple drivers, such as multiple con-
tinuous assignments and/or connections to multiple output ports of
module or primitive instances. Therefore, a signal in a design such
as a data bus or address bus that can be driven from several devices
should be declared as a Verilog net data type, such as wire. Bi-
directional module ports, which can be used as both an input and an
output, must also be declared as a net data type.

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 31

2.7 Signed and unsigned modifiers

Verilog-1995 The first IEEE Verilog standard, Verilog-1995, had just one signed

signed types data type, declared with the keyword integer. This data type has a
fixed size of 32 bits in most, if not all, software tools that support
Verilog. Because of this, and some limitations of literal numbers,
Verilog-1995 was limited to doing signed operations on just 32-bit
wide vectors.

Verilog-2001 The IEEE Verilog-2001 standard added several significant

signed types enhancements to allow signed arithmetic operations on any data
type and with any vector size. The enhancement that affects data
types is the ability to declare any data type as signed. This modi-
fier overrides the default definition of unsigned data types in Ver-
ilog. For example:

reg [63:0] u; // unsigned 64-bit variable
reg signed [63:0] s; // signed 64-bit variable

SystemVerilog SystemVerilog adds new data types that are signed by default.

signed and These signed types are: byte, shortint, int, and longint. Sys-

unsigned types temVerilog provides a mechanism to explicitly override the signed
behavior of these new data types, using the unsigned keyword.

int s_int; // signed 32-bit variable
int unsigned u_int; // unsigned 32-bit variable

@ SystemVerilog’s signed declaration is not the same as C’s.

The C language places the signed or unsigned keyword before
the data type keyword.

unsigned int u; /* C declaration */

Verilog places the signed keyword (Verilog does not have an
unsigned keyword) after the data type declaration, as in:

reg signed [31:0] s; // Verilog declaration

SystemVerilog also places the signed or unsigned keyword after
the data type keyword. This is consistent with Verilog, but different

than C.

int unsigned u; // SystemVerilog declaration

32

SystemVerilog for Design

2.8 Static and automatic variables

Verilog-1995
data types are
static

Verilog-2001
adds automatic
tasks and
functions

SystemVerilog
adds static
declarations

In the Verilog-1995 standard, all data types are static, with the
expectation that these data types are for modeling hardware, which
is also static in nature.

The Verilog-2001 standard adds the ability to define variables in a
task or function as automatie, meaning that the variable storage is
dynamically allocated by the software tool when required, and deal-
located when no longer needed. Automatic variables—also referred
to as dynamic variables—are primarily intended for representing
verification routines in a testbench. The dynamic nature of auto-
matic variables allows coding re-entrant tasks, so that a task can be
called while a previous call of the task is still running. Automatic
variables also allow coding recursive function calls, where a func-
tion calls itself. Each time a task or function with automatic vari-
ables is called, new variable storage is created. When the call exits,
the storage is destroyed.

In Verilog, automatic variables are declared by declaring the entire
task or function as automatic. All variables in an automatic task or
function are dynamic.

The following example illustrates a balance adder that adds the ele-
ments of an array together. The low address and high address of the
array elements to be added are passed in as arguments. The function
then recursively calls itself to add the array elements. In this exam-
ple, the arguments 1o and hi are automatic, as well as the internal
variable mid. Therefore, each recursive call allocates new variables
for that specific call.

function automatic int b_add (int lo, hi);
int mid = (lo + hi + 1) »>> 1;
if (lo + 1 != hi)
return(b_add(lo, (mid-1)) + b_add(mid, hi));
else
return(array[lo] + arraylhil);
endfunction

SystemVerilog extends the ability to declare static and automatic
variables. SystemVerilog adds a static keyword, and allows any
variable to be explicitly declared as either static or automatic.
This declaration is part of the variable declaration, and can appear
within tasks, functions, begin..end blocks, or fork..join

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 33

backward
compatibility

blocks. Note that variables declared at the module level cannot be
explicitly declared as static or automatic. At the module level,
all variables are static.

The following code fragment illustrates explicit automatic declara-
tions in a static function:

function int count_ones (input bit[31:0] data);
automatic int i, count = 0;
automatic bit [31:0] temp = data;

for (i=0; |temp; i++) begin
if (temp[0]) count += 1;

temp >>= 1;
end
return (count) ;
endfunction

The next example illustrates an explicit static variable in an auto-
matic task. This example checks a value for errors, and increments
an error count each time an error is detected. If the error count
variable were automatic as is the rest of the task, it would be recre-
ated each time the task was called, and only hold the error count for
that call of the task. As a static variable, it retains its value from one
call of the task to the next, and can thereby keep a running total of
all errors.

typedef struct packed {...} packet t;
task automatic check_results

(input packet_t sent, received);

static int error_count;

if (sent !== received) error_count++;
endtask

The defaults for storage in SystemVerilog are completely backward
compatible with Verilog. In modules, begin..end blocks,
fork...join blocks, and non-automatic tasks and functions, all
storage defaults to static, unless explicitly declared as automatic.
This default behavior is the same as the static storage in Verilog
modules, begin...end or fork...join blocks and non-automatic
tasks and functions. If a task or function is declared as automatic,
the default storage for all variables will be automatic, unless explic-
itly declared as static. This default behavior is the same as with
Verilog, where all storage in an automatic task or function is auto-
matic.

34 SystemVerilog for Design

2.8.1 Static and automatic variable initialization

Verilog variable in-line variable initialization

Verilog only permits in-line variable initialization for variables
declared at the module level. Variables declared in tasks, functions
and begin..end or fork..join blocks cannot have an initial
value specified as part of the variable declaration.

SystemVerilog in-line variable initialization

initializing static SystemVerilog extends Verilog to allow variables declared within
and automatic tasks, functions, begin...end blocks, fork...join blocks, or the
variables compilation-unit scope to be declared with in-line initial values.
SystemVerilog also defines when the initialization will take place

for static and automatic variables, as described in the following

paragraphs.

Initializing variables in modules

A variable declared at the module level will always be static. The
in-line initial value will be assigned one time, prior to simulation
time zero.

module decoder (...);

int count = 0; // only initialized once
// at beginning of simulation

always @(data) begin

end
endmodule

Initializing variables within blocks

variables in SystemVerilog allows local variables declared within a
blocks can be begin...end block or fork...join block to be declared with an in-
initialized line initial value.

module decoder (...);

always @(data) begin: decode_block
int count = 0; // initialized once

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 35

automatic int i= 1; // initialized
// each time called

end
endmodule

static variables 1f a variable within a block is not declared as automatic, it is
are initialized assumed to be static. The in-line initial value will be assigned one
once time, prior to simulation time zero. This is the same behavior as

variables declared at the module level.

automatic If a variable within a begin...end or fork...join block is declared
variables are as automatic, the variable will be re-initialized each time the

initialized each block is entered.
time created

Initializing variables in static tasks and functions

A variable declared in a non-automatic task or function will be
static by default. An in-line initial value will be assigned one time,
before the start of simulation. Calls to the task or function will not
re-initialize the variable.

The following example will not work correctly. The count_ones
function is static, and therefore all storage within the function is
also static, unless expressly declared as automatic. In this exam-
ple, the variable count will have an initial value of O the first time
the function is called. However, it will not be re-initialized the next
time it is called. Instead, the static variable will retain its value from
the previous call, resulting in an erroneous count. The static vari-
able temp will have a value of 0 the first time the function is called,
rather than the value of data. This is because in-line initialization
takes place prior to time zero, and not when the function is called.

function int count ones (input bit([31:0] data);
int i;
count = 0; // static: only initialized once
bit [31:0] temp = data;

for (i=0; |temp; i++) begin
if (temp(0]) count = count + 1;
temp = temp >> 1;
end
return (count) ;
endfunction

36

SystemVerilog for Design

automatic
variables are
initialized each
time created

static variables
are initialized
once

A variable explicitly declared as automatic in a non-automatic
task or function will be dynamically created each time the task or
function is entered, and destroyed each time the task or function
exits. An in-line initial value will be assigned each time the block is
entered. The following version of the count_ones function will
work correctly, because the automatic variables count and temp
are initialized each time the function is called.

function int count ones (inmput bit[31:0] data);
int i;
automatic int count = 0; // initialized each
// time called

automatic bit [31:0] temp = data;

for (i=0; |temp; i++) begin
if (temp[0]) count = count + 1;
temp = temp >> 1;
end
return (count) ;
endfunction

Initializing variables in automatic tasks and functions

A variable declared in an automatic task or function will be auto-
matic by default. Storage for the variable will be dynamically cre-
ated each time the task or function is entered, and destroyed each
time the task or function exits. An in-line initial value will be
assigned each time the task or function is entered and new storage
is created.

A variable can be explicitly declared as static in an automatic
task or function will be created one time, and shared by all calls to
the task or function. An in-line initial value will be assigned one
time, prior to the start of simulation, the same as with in-line vari-
able initialization in a module, or in a static task or function. Subse-
quent calls to the task or function will not re-initialize the variable.

typedef struct packed {...} packet_t;
task automatic check_results

(input packet_t sent, received);

static int error_count = 0;

if (sent !== received) error_count++;
endtask

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 37

2.8.2 Synthesis guidelines for automatic variables

The dynamic storage of automatic variables can be used both in
verification testbenches and to represent hardware models. To be
synthesized in a hardware model, the automatic variables should
only be used to represent temporary storage that does not propagate
outside of the task, function or procedural block.

@ Static variable initialization is not synthesizable. Automatic
variable initialization is synthesizable.

Initialization of static variables is not synthesizable. In-line initial
value assignments to static variables are ignored by synthesis.

In-line initialization of automatic variables is synthesizable. The
count_ocnes function example listed on earlier in this chapter, in
section 2.8 on page 32, meets these synthesis criteria. The auto-
matic variables count and temp are only used within the function,
and the values of the variables are only used by the current call to
the function.

In-line initialization of variables declared with the const qualifier
1s also synthesizable. Section 2.11 on page 46 covers const decla-
rations.

2.8.3 Guidelines for using static and automatic variables

The following guidelines will aid in the decision on when to use
static variables and when to use automatic variables.

* In an always or initial block, use static variables if there is
no in-line initialization, and automatic variables if there is an in-
line initialization. Using automatic variables with in-line initial-
ization will give the most intuitive behavior, because the variable
will be re-initialized each time the block is re-executed.

« If a task or function is to be re-entrant, it should be automatic.
The variables also ought to be automatic, unless there is a spe-
cific reason for keeping the value from one call to the next. As a
simple example, a variable that keeps a count of the number of
times an automatic task or function is called would need to be
static.

38

SystemVerilog for Design

+ If a task or function represents the behavior of a single piece of
hardware, and therefore is not re-entrant, then it should be
declared as static, and all variables within the task or function

should be static.

2.9 Deterministic variable initialization

2.9.1 Initialization determinism

Verilog-1995
initialization can
be
nondeterministic

Verilog-1995 variable initialization

In the original Verilog language, which was standardized in 1995,
variables could not be initialized at the time of declaration, as can
be done in C. Instead, a separate initial procedural block was
required to set the initial value of variables. For example:

integer 1i; // declare a variable named i
integer j; // declare a variable named j
initial

i=5; // initialize i to 5
initial

j o= 1i; // initialize j to the value of i

The Verilog standard explicitly states that the order in which a soft-
ware tool executes multiple initial procedural blocks is nonde-
terministic. Thus, in the preceding example it cannot be determined
whether § will be assigned the value of i before i is initialized to 5
or after i is initialized. If, in the preceding example, the intent is
that 1 is assigned a value of 5 first, and then j is assigned the value
of i, the only deterministic way to model the initialization is to
group both assignments into a single initial procedural block
with a begin...end block. Statements within begin...end blocks
execute in sequence, giving the user control the order in which the
statements are executed.

integer 1i; // declare a variable named i
integer j; // declare a variable named j
initial begin

i = 5; // initialize i to 5

j o= 1i; // initialize j to the value of i
end

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 39

Verilog-2001 variable initialization

The Verilog-2001 standard adds a convenient short cut for initializ-
ing variables, following the C language syntax of specifying a vari-
able’s initial value as part of the variable declaration. Using
Verilog-2001, the preceding example can be shortened to:

integer 1 = 5; // declare and initialize i
integer j i; // declare and initialize j

Verilog-2001 Verilog-2001 defines the semantics for in-line variable initializa-
initialization is tion to be exactly the same as if the initial value had been assigned
nondeterministic in an initial procedural block. This means that in-line initializa-
tion will occur in a nondeterministic order, in conjunction with the
execution of events in other initial procedural blocks and

always procedural blocks that execute at simulation time zero.

This nondeterministic behavior can lead to simulation results that
might not be expected when reading the Verilog code, as in the fol-
lowing example:

integer i = 5; // declare and initialize i
integer j; // declare a variable named j
initial

j o= 1i; // initialize j to the value of i

In this example, it would seem intuitive to expect that i would be
initialized first, and so j would be initialized to a value of 5. The
nondeterministic event ordering specified in the Verilog-2001 stan-
dard, however, does not guarantee this, It is within the specification
of the Verilog standard for j to be assigned the value of i before i
has been initialized, which would mean 3 would receive a value of
X instead of 5.

SystemVerilog initialization order

SystemVerilog The SystemVerilog standard enhances the semantics for in-line
in-line variable initialization. SystemVerilog defines that all in-line initial
initialization is values will be evaluated prior to the execution of any events at the
before time zero giart of simulation time zero. This guarantees that when initial
or always procedural blocks read variables with in-line initializa-
tion, the initialized value will be read. This deterministic behavior

removes the ambiguity that can arise in the Verilog standard.

40

SystemVerilog for Design

Verilog in-line
initialization may
cause an event

SystemVerilog
initialization
does not cause
an event

SystemVerilog
initialization is
backward
compatible

Verilog in-line
initialization is
nondeterministic

@ SystemVerilog in-line variable initialization does not cause a
simulation event.

There is an important difference between Verilog semantics and
SystemVerilog semantics for in-line variable initialization. Under
Verilog semantic rules, in-line variable initialization will be exe-
cuted during simulation time zero. This means a simulation event
will occur if the initial value assigned to the variable is different
than its current value. Note, however, that the current vaiue of the
variable cannot be known with certainty, because the in-line initial-
ization occurs in a nondeterministic order with other initial assign-
ments—in-line or procedural—that are executed at time zero. Thus,
with Verilog semantics, in-line variable initialization may or may
not cause simulation events at simulation time zero.

SystemVerilog semantics change the behavior of in-line variable
initialization. With SystemVerilog, in-line variable initialization
occurs prior to simulation time zero. Therefore, the initialization
will never cause a simulation event within simulation.

The simulation results using the enhanced SystemVerilog seman-
tics are entirely within the allowed, but nondeterministic, results of
the Verilog initialization semantics. Consider the following exam-
ple:

logic resetN = 0; // declare & initialize reset

always @ (posedge clock, negedge resetN)
if (!resetN) count <= 0; // active low reset
else count <= count + 1;

Using the Verilog nondeterministic semantics for in-line variable
initialization, two different simulation results can occur:

+ A simulator could activate the always procedural block first,
prior to initializing the resetN variable. The always procedural
block will then be actively watching for the next positive transi-
tion event on clock or negative transition event on resetN.
Then, still at simulation time zero, when resetN is initialized to
0, which results in an X to 0 transition, the activated always pro-
cedural block will sense the event, and reset the counter at simu-
lation time zero.

+ Alternatively, under Verilog semantics, a simulator could exe-

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 41

cute the initialization of resetN before the always procedural
block is activated. Then, still at simulation time zero, when the
always procedural block is activated, it will become sensitive to
the next positive transition event on clock or negative transition
event on resetN. Since the initialization of resetN has already
occurred in the event ordering, the counter will not trigger at time
zero, but instead wait until the next positive edge of clock or
negative edge of resetN.

SystemVerilog The in-line initialization rules defined in the Verilog standard per-
in-line mit either of the two event orders described above. SystemVerilog
initialization is removes this non-determinism. SystemVerilog ensures that in-line
deterministic injtialization will occur first, meaning only the second scenario can
occur for the example shown above. This behavior is fully back-
ward compatible with the Verilog standard, but is deterministic

instead of nondeterministic.

2.9.2 Initializing sequential logic asynchronous inputs

Verilog’s nondeterministic order for variable initialization can
result in nondeterministic behavior for asynchronous reset or preset
logic in sequential logic. This nondeterminism can affect resets or
presets that are applied at the beginning of simulation.

Example 2-5: Applying reset at simulation time zero with 2-state data types

module test;
wire [15:0] count;
bit clock;
bit resetN = 1; // de-assert reset

counter dut (clock, resetN, count);

initial begin
resetN = 0; // assert active-low reset
#5 resetN = 1; // de-assert reset

end
endmodule

module counter {(input clock, resetN,
output logic [15:0] count);

always @(posedge clock, negedge resetN)
if (!resetN) count <= 0; // active low reset
else count <= count + 1;
endmodule

42

SystemVerilog for Design

ensuring events
at time zero

In the example above, the counter has an asynchronous reset input.
The reset is active low, meaning the counter should reset the
moment resetN transitions to 0. In order to reset the counter at
simulation time zero, the resetN input must transition to logic 0. If
resetN is declared as a 2-state data type such as bit, as in the
example above, its initial value by default is a logic 0. The model
changes the initial value to a logic 1, using an in-line initialization
assignment.

bit resetN = 1; // de-assert reset

Following Verilog semantic rules, this in-line initialization is exe-
cuted during simulation time zero, in a nondeterministic order with
other assignments executed at time zero. In the preceding example,
two event orders are possible:

 The in-line initialization could execute first, setting resetN to 1,
followed by the procedural assignment setting resetN to 0. A
transition to 0 will occur, and at the end of time step 0, resetN
will be 0.

+ The procedural assignment could execute first, setting resetN to
0 (a 2-state data type is already a 0), followed by the in-line ini-
tialization setting resetN to 1. No transition to 0 will occur, and
at the end of time step 0, resetN will be 1.

SystemVerilog removes this non-determinism. With SystemVer-
ilog, in-line initialization will take place before simulation time
zero. In the example shown above, resetN will always be initial-
ized to 1 first, and then the procedural assignment will execute, set-
ting resetN to 0. A transition from 1 to 0 will occur every time, in
every software tool. At the end of time step 0, resetN will be 0.

Initialize variables to their inactive state.

TIP

The deterministic behavior of SystemVerilog in-line variable ini-
tialization makes it possible to guarantee the generation of events at
simulation time zero. If the variable is initialized using in-line ini-
tialization to its inactive state, and then set to its active state using
an initial or always procedural block, SystemVerilog seman-

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 43

tics ensure that the in-line initialization will occur first, followed by
the procedural initial assighment.

In the preceding example, the declaration and initialization of
resetN would likely be part of a testbench, and the always proce-
dural block representing a counter would be part of an RTL model.
Whether in the same module or in separate modules, SystemVer-
ilog’s deterministic behavior for in-line variable initialization
ensures that a simulation event will occur at time zero, if a variable
is initialized to its inactive state using in-line initialization, and then
changed to its active level at time zero using a procedural assign-
ment. Verilog’s nondeterministic ordering of in-line initialization
versus procedural initialization does not guarantee that the desired
events will occur at simulation time zero.

2.10 Type casting

Verilog is Verilog is a loosely typed language that allows a value of one data
loosely typed type to be assigned to a variable or net of a different data type.
When the assignment is made, the value is converted to the new

data type, following rules defined as part of the Verilog standard.

casting is SystemVerilog adds the ability to cast a value to a different data

different than type. Type casting is different than converting a value during an

loosely typed assignment. With type casting, a value can be converted to a new
type within an expression, without any assignment being made.

Verilog does not The Verilog 1995 standard did not provide a way to cast a value to
have type a different data type. Verilog-2001 provides a limited cast capabil-
casting ity that can convert signed values to unsigned, and unsigned values
to signed. This conversion is done using the system functions

$signed and $unsigned.

2.10.1 Static (compile time) casting

SystemVerilog SystemVerilog adds a cast operator to the Verilog language. This
adds a cast operator can be used to cast a value from one type to another, simi-
operator lar to the C language. SystemVerilog’s cast operator goes beyond
C, however, in that a vector can be cast to a different size, and

signed values can be cast to unsigned or vice versa.

44 SystemVerilog for Design
To be compatible with the existing Verilog language, the syntax of
SystemVerilog’s cast operator is different than C’s.

casting an <type>’ (<expression>) — casis a value to any data type,
expression’s including user-defined types. For example:
data type
7+ int’ (2.0 * 3.0) // cast result of
// (2.0 * 3.0) to int
casting an <size>’ (<expression>) — casts a value to any vector size. For
expression’s example:
vector size
17'(n - 2) // cast operation result
// to 17 bits wide
casting an <sign>‘ (<expression>) — casts a value to signed or unsigned.
expression’s For example:
signedness

signed’ (y}) // cast value to a signed value

A Verilog concatenation can also be cast. In this case, the parenthe-
sis around the expression to be cast (the concatenation) can be
omitted. For example:

nflag = signed’{a,b} < 0; // cast concatenation

2.10.2 Dynamic casting

compile-time
versus dynamic
casting

$cast system
function

The cast operation in SystemVerilog, described above, is a com-
pile-time cast. The expression to be cast will always be converted
during run time, without any checking that the expression to be cast
falls within the legal range of the type to which the value is cast.
When stronger checking is desired, SystemVerilog provides a new
system function, $cast, that performs dynamic, run-time checking
on the value to be cast.

The $cast system function takes two arguments, a destination
variable and a source variable. The syntax is:

$cast (dest_var, source_exp);

For example:

int data;

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 45

always @ (posedge clock)
Scast (data, 3.154 * data ** 2};

invalid casts $cast attempts to assign the source expression to the destination
variable. If the assignment is invalid, a run-time error is reported,
and the destination variable is left unchanged. Some examples that
would result in an invalid cast are:

+ Casting a real to an int, when the value of the real number is
too large to be represented as an int.

« Casting a value to an enumerated type, when the value does not
exist in the legal set of values in the enumerated type list. Section
3.2 on page 52 covers enumerated types in more detail.

$cast can return $cast is a system function, which returns a status flag indicating
a status flag whether or not the cast was successful. If the cast is successful,
$cast returns 1. If the cast fails, the $cast function returns 0, and
does not change the destination variable. When called as a function,

no runtime error is reported.

$cast can be $cast can also be called as a task, ignoring the status flag return.
called as a task When called as a task, a runtime error is reported if the cast fails,
and the destination variable is not changed.

The primary usage for $cast is to assign expression results to enu-
merated type variables, which are strongly typed variables. Addi-
tional examples of using $cast are presented in section 3.2 on
page 52, on enumerated types.

2.10.3 Synthesis guidelines

Use the compile-time cast operator for synthesis.

TiP

The static, compile-time cast operator is synthesizable. The
dynamic $cast system function might not be supported by synthe-
sis compilers.

At the time this book was written, the IEEE 1364.1 Verilog RTL
synthesis standards group had not yet defined the synthesis guide-
lines for SystemVerilog. As a general rule, however, system tasks
and system functions are not considered synthesizable constructs. A

46

SystemVerilog for Design

2.11 anstants

safe coding style for synthesis is to use the static cast operator for
casting values.

Verilog
constants

itis iflegal to
assign
constants a
hierarchical
reference

constants are
not allowed in
automatic tasks
and functions

the C-like const
declaration

Verilog provides three types of constants: parameter, specparam
and localparam. In brief:

» parameter is a run-time constant. The value of the constant can
be redefined during elaboration using defparam or in-line
parameter redefinition. Only the latter method is synthesizable.

* specparam is a run-time constant that can be redefined at elabo-
ration time from SDF files.

» localparam is an elaboration-time constant that cannot be rede-
fined.

These Verilog constants all receive their final value at elaboration
time. Elaboration is essentially the process of a software tool build-
ing the hierarchy of the design represented by module instances.
Some software tools have separate compile and elaboration phases.
Other tools combine compilation and elaboration into a single pro-
cess. Because the design hierarchy may not yet be fully resolved
during elaboration, it is illegal to assign a parameter, specparam
or localparam constant a value that is derived from elsewhere in
the design hierarchy.

Verilog also restricts the declaration of the parameter, spec-
param and localparam constants to modules, static tasks, and
static functions. It is illegal to declare one of these constants in an
automatic task or function, or in a begin...end or fork...join
block.

SystemVerilog adds the ability to declare any variable as a con-
stant, using the const keyword. The const form of a constant is
not assigned its value until after elaboration is complete. This
means the value assigned to a const form of a constant can use
values from elsewhere in the design hierarchy.

The declaration of a const constant must include a data type. Any
of the Verilog or SystemVerilog variable data types can be speci-

Chapter 2: SystemVerilog Literal Values and Built-in Data Types 47

const can be
used in
automatic tasks
and functions

fied as a const constant, including enumerated types and user-
defined types.

const bit [23:0] C1 = 7; // 24-bit constant

const int C2 = 15; // 32-bit constant
const real C3 = 3.14; // real constant
const C4 = 5; // ERROR, no data type

A const constant is essentially a variable that can only be initial-
ized. Because the const form of a constant receives its value at
run-time instead of elaboration, a const constant can be declared
in an automatic task or function, as well as in modules or static
tasks and functions. Variables declared in a begin...end or
fork...join block can also be declared as a const constant.

task automatic C;
const int N = 5; // N is a constant

endtask

2.12 Summary

This chapter introduced and discussed the powerful compilation-
unit declaration scope. The proper use of compilation-unit scope
declarations can make it easier to model functionality in a more
concise manner. A primary usage of compilation-unit scope decla-
rations is to define new data types using typedef.

SystemVerilog enhances the ability to specify logic values, making
it easier to assign values that easily scale to any vector size.
Enhancements to the *define text substitution provide new capa-
bilities to macros within Verilog models and testbenches.

SystemVerilog also adds a number of new 2-state modeling data
types to the Verilog language: bit, byte, shortint, int, and
longint. These data types enable modeling designs at a higher
level of abstraction, using 2-state values. The semantic rules for 2-
state values are well defined, so that all software tools will interpret
and execute Verilog models using 2-state logic in the same way. A
new shortreal data type and a logic data type are also added.
The initialization of variables is enhanced, so as to reduce ambigu-

48

SystemVerilog for Design

ities that exist in the Verilog standard. This also helps ensure that
all types of software tools will interpret SystemVerilog models in
the same way. SystemVerilog also enhances the ability to declare
variables that are static or automatic (dynamic) in various levels of
design hierarchy. These enhancements include the ability to declare
constants in begin...end blocks and in automatic tasks and func-

tions.

The next chapter continues the topic on SystemVerilog data types,
covering user-defined data types and enumerated data types.

Chapter 3

SystemVerilog User-Defined
and Enumerated Data Types

ystemVerilog makes a significant extension to the Verilog lan-

guage by allowing users to define new data types. User-defined
types allow modeling complex designs at a more abstract level that
is still accurate and synthesizable. Using SystemVerilog’s user-
defined types, more design functionality can be modeled in fewer
lines of code, with the added advantage of making the code more
self-documenting and easier to read.

The enhancements presented in this chapter include:

» Using typedef to create user-defined types
* Using enum to create enumerated types

» Working with enumerated values

3.1 User-defined types

The Verilog language does not provide a mechanism for the user to
extend the language data types. While the existing Verilog data
types are useful for RTL and gate-level modeling, they do not pro-
vide C-like data types that could be used at higher levels of abstrac-
tion. SystemVerilog adds a number of new data types for modeling
at the system and architectural level. In addition, SystemVerilog
adds the ability for the user to define new data types.

50

SystemVerilog for Design

typedef defines
a user-defined
data type

SystemVerilog user-defined types are created using the typedef
keyword, as in C. User-defined types allow new data type defini-
tions to be created from existing data types. Once a new data type
has been defined, variables of the new type can be declared. For
example:

typedef int unsigned uint;

uint a, b; // two variables of type uint

3.1.1 Local typedef declarations

using typedef
locally

User-defined types can be defined either locally or externally, in the
compilation-unit scope. When a user-defined data type will only be
used within a specific part of the design, the typedef definition
can be made within the module or interface representing that por-
tion of the design. Interfaces are presented in Chapter 9. In the code
snippet that follows, a user-defined data type called nibble is
declared, which is used for variable declarations within a module
called alu. Since the nibble type is defined locally, only the alu
module can see the definition. Other modules or interfaces that
make up the overall design are not affected by the local definition,
and can use the same nibble identifier for other purposes without
being affected by the local typede£ declaration in module alu.

module alu (...);
typedef bit [3:0] nibble;

nibble opA, opB; // variables of the
// nibble data type

nibble [7:0] data; // a 32-bit vector made
// from 8 nibble types

endmodule

3.1.2 External typedef declarations

using typedef
externally

When a user-defined data type is to be used in many different mod-
els, the typedef declaration can be declared externally, in the
compilation-unit scope. External declarations are made by placing
the typedef statement outside of any module, interface or program
block, as was discussed in section 2.3 on page 11.

Chapter 3: SystemVerilog User-Defined and Enumerated Data Types 51

Example 3-1 illustrates the use of an external typedef declaration
to create a user-defined data type called dtype_t, that will be used
throughout the design. The typedef declaration is within an
‘ifdef conditional compilation directive, that defines dtype_t to
be either the 2-state bit data type or the 4-state logic data type.
Using conditional compilation, all modules in the compilation unit
with the external typedef that use the dtype_t user-defined type
can be quickly modified to model either 2-state or 4-state logic.

Example 3-1: External typedef declarations

“ifdef TWO_STATE

typedef bit dtype_t; // external typedef
“else

typedef logic dtype_t; // external typedef
“endif

module counter (output dtype_t [15:0] count,
input dtype_t clock, resetN);

always @ (posedge clock, negedge resetN)

if
(lresetN) count <= 0;
else
count <= count + 1;
endmodule

3.1.3 Naming convention for user-defined types

A user-defined data type can be any legal name in the Verilog lan-
guage. In large designs, and when using external compilation-unit
scope declarations, the source code where a new user-defined type
is defined and the source code where a user-defined type is used
could be separated by many lines of code, or in separate files. This
separation of the typedef declaration and the usage of the new
data types can make it difficult to read and maintain the code for
large designs. When a name is used in the source code, it might not
be obvious that the name is actually a user-defined type.

To make source code easier to read and maintain, a common nam-
ing convention is to end all user-defined data types with the charac-
ters “_t”. This naming convention is used in example 3-1, above,
as well as in many subsequent examples in this book.

52

SystemVerilog for Design

3.2 Enumerated data types

Enumerated data types provide a means to declare an abstract vari-
able that can have a specific list of valid values. Each value is iden-
tified with a user-defined name. In the following example, variable
RGB can have the values of red, green and blue:

enum {red,green,blue} RGB;

Verilog uses The Verilog language does not have enumerated types. To create
constants in pseudo names for data values, it is necessary to define a parame-
place of enum- ter constant to represent each value, and assign a value to that con-
erated types gtant. Alternatively, Verilog’s *define text substitution macro can

Example 3-2: S

be used to define a set of macro names with specific values for each
name.

The following example shows a simple state machine sequence
modeled using parameter constants and ‘define macro names:
The parameters are used to define a set of states for the state
machine, and the macro names are used to define a set of instruc-
tion words that are decoded by the state machine.

tate machine modeled with Verilog ‘define and parameter constants

“define FETC
“define WRIT
“define ADD
“define SUB
“define MULT
“define DIV
“define SHIF
“define NOP

module contr

parameter WAIT

reg [1:0]

always @(p
if (!res
else Sta

H 3'h0

E 3'hl
3'h2
3'h3
3'h4
3'h5
T 3'hé
3'h7
oller (output reg read, write,
input wire [3:0] instruction,
input wire clock, resetN);
=0,
LOAD = 1,
STORE = 2;

State, NextState;

osedge clock, negedge resetN)
etN) State <= WAIT;
te <= NextState;

Chapter 3: SystemVerilog User-Defined and Enumerated Data Types

53

always @(State)
case (State)
WAIT: NextState LOAD;
LOAD: NextState STORE;
STORE : NextState = WAIT;
endcase

]

il

always @(State, instruction)

begin
read = 0; write = 0;
if (State == LOAD && instruction == “FETCH)
read = 1;
else if (State == STORE && instruction == “WRITE)
write = 1;
end
endmodule

constants do not The variables that use the constant values—State and NextState
limit the legal set in the preceding example—must be declared as standard Verilog
of values data types. This means a software tool cannot limit the valid values

of those signals to just the values of the constants. There is nothing

that would limit State or NextState in the example above from

having a value of 3, or a value with one or more bits set to X or Z.
Therefore, the model itself must add some limit checking on the
values. At a minimum, a synthesis “full case” pragma would be
required to specify to synthesis tools that the state variable only

uses the values of the constants that are listed in the case items. The

use of synthesis pragmas, however, would not affect simulation,
which could result in mismatches between simulation behavior and

the structural design created by synthesis.

SystemVerilog adds enumerated data type declarations to the Ver-
ilog language, using the enum keyword, as in C. In its basic form,

the declaration of an enumerated type is also the same as C.

enum {WAIT, LOAD, STORE} State, NextState;

enumerated Enumerated data types can make a model or test program more
values are readable by providing a way to incorporate meaningful names for
identified with the values a variable can have. This can make the code more self-
names documenting and easier to debug. Enumerated data types can be

referenced or displayed using the enumerated names.

54 SystemVerilog for Design

Example 3-3 shows the same simple state sequencer as example 3-
2, but modified to use SystemVerilog enumerated types.

Example 3-3: State machine modeled with enumerated types

typedef enum {FETCH, WRITE, ADD, SUB,
MULT, DIV, SHIFT, NOP |} instr_t;

module controller (output logic read, write,
input instr_t instruction,
input wire clock, resetN);

enum {WAIT, LOAD, STORE} State, NextState;

always ff @(posedge clock, negedge resetN)
if (!resetN) State <= WAIT;
else State <= NextState;

always_comb
case (State)
WAIT: NextState LOAD;
LOAD: NextState STORE;
STORE: NextState = WAIT;
endcase

always_comb
begin
read = 0; write = 0;
if (State == LOAD && instruction == FETCH)
read = 1;
else if (State == STORE && instruction == WRITE)
write = 1;
end
endmodule

enumerated In this example, the variables State and NextState can only
types limit the have the valid values of WAIT, LOAD, and STORE. All software tools
legal set of will interpret the legal value limits for these enumerated type vari-
values aples in the same way, including simulation, synthesis and formal

verification.

The SystemVerilog specialized always_ff and always_comb
procedural blocks used in the preceding example are discussed in
more detail in Chapter 5.

Chapter 3: SystemVerilog User-Defined and Enumerated Data Types 55

3.2.1 Enumerated type name sequences

In addition to specifying a set of unique names, SystemVerilog pro-
vides two shorthand notations to specify a range of names in an
enumerated type list.

Table 3-1: Specifying a sequence of enumerated list names

state creates a single name of the state

state [N] creates a sequence of names, beginning with state0,
statel, .. stateN

state [N:M] | creates a sequence of names, beginning with stateN,
and ending with stateM. If N is less than M, the
sequence will increment from N to M. If N is greater
than M, the sequence will decrement from N to M.

The following example creates an enumerated list with the names
RESET, S0 through s5, and wé through wo:

enum {RESET, S[5], W[6:9]} state;

3.2.2 Enumerated type name scope

enumerated
names must be
unique

The names within an enumerated type list are visible in the scope of
the enumerated variable declaration. Therefore, each name must be
unique within that scope. The scopes that can contain enumerated
type declarations are the compilation unit, modules, interfaces, pro-
grams, begin...end blocks, fork...join blocks, tasks and func-
tions.

The following code fragment will result in an error, because the
enumerated name GO is used twice in the same name scope:

module FSM (...);
enum {GO, STOP} fsml state;

enum {WAIT, GO, DONE} fsm2_state; // ERROR
This error in the preceding example can be corrected by placing at

least one of the enumerated type declarations in a begin...end
block, which has its own naming scope.

56

SystemVerilog for Design

3.23

enumerated
lype names
have a default
value

users can
specify the
name’s value

module FSM (...);

always @ (posedge clock)
begin: fsml
enum {STOP, GO} fsml_state;

end

always @ (posedge clock)
begin: fsm2
enum {WAIT, GO, DONE} fsm2_state;

end

Enumerated type values

By default, the actual value represented by the name in an enumer-
ated type list is an integer of the int data type. The first name in
the enumerated list is represented with a value of 0, the second
name with a value of 1, the third with a value of 2, and so on.

SystemVerilog allows the value for each name in the enumerated
list to be explicitly declared. This allows the abstract enumerated
type to be refined, if needed, to represent more detailed hardware
characteristics. For example, a state machine sequence can be
explicitly modeled to have one-hot values, one-cold values,
Johnson-count, Gray-code, or other type of values.

In the following example, the variable state can have the values
ONE, FIVE or TEN. Each name in the enumerated list is represented
as an integer value that corresponds to the name.

enum {ONE = 1,
FIVE = 5,
TEN = 10 } state;

It is not necessary to specify the value of each name in the enumer-
ated list. If unspecified, the value representing each name will be
incremented by 1 from the previous name. In the next example, the
name A is explicitly given a value of 1, B is automatically given the
incremented value of 2 and C the incremented value of 3. X is
explicitly defined to have a value of 24, and ¥ and 2 are given the
incremented values of 25 and 26, respectively.

enum {A=1, B, C, X=24, Y, Z} listl;

Chapter 3: SystemVerilog User-Defined and Enumerated Data Types 57

name values
must be unique

3.24

enumerated
type names
default to int

types

enum value size

Each name in the enumerated list must have a unique value. An
error will result if two names have the same value. The following
example will generate an error, because C and D would have the
same value of 3:

enum {A=1, B, C, D=3} list2; // ERROR

Data type of enumerated type values

The default data type for enumerated values is int, which is a 32-
bit 2-state data type. In order to represent hardware at a more
detailed level, SystemVerilog allows an explicit data type for the
enumerated values to be declared. For example:

enum bit [1:0] {WAIT, LOAD, READY} state;

If an enumerated name of an explicitly-typed enumerated variable
is assigned a value, the size must match the size of the data type.

enum bit [2:0] {WAIT = 3'b001,
LOAD = 3'b010,
READY = 3'bl00} state;

It is an error to assign a name a value that is a different size than the
size declared for the enumerated type. The following example is
incorrect. The enum variable defaults to an int type. An error will
result from assigning a 3-bit value to the names.

enum {WAIT 3'b001, // ERROR!
LOAD 3'bo10,
READY = 3'bl00} state;

It is also an error to have more names in the enumerated list than
the value size can represent.

enum bit {A=1'b0, B, C} list5;
// ERROR: too many names for 1l-bit size

If the data type of the enumerated values is a 4-state data type, it is
legal to assign values of X or Z to the enumerated names.

enum logic {ON=1’bl, OFF=1'bz} out;

If a value of X or Z is assigned to a name in an enumerated list, the
next name must also have an explicit value assigned. It is an error to

58

SystemVerilog for Design

3.2.5

3.2.6

most data types
are loosely
typed

enumerated
types are
strongly typed

operations use
the data type of
the name

attempt to have an automatically incremented value following a
name that is assigned an X or Z value.

enum logic [1:0]
{WAIT, ERR=2'bxx, LOAD, READY} state;
// ERROR: cannot determine a value for LOAD

Typed and anonymous enumerations

Enumerated types can be declared as a user-defined type. This pro-
vides a convenient way to declare several variables with the same
enumerated value sets.

typedef enum {WAIT, LOAD, READY] states_t;
states_t state, next_state;

An enumerated type declared as a typedef is commonly referred
to as a typed enumerated type. If typedef is not used, the enumer-
ated type is commonly referred to as an anonymous enumerated

type.

Strong typing on enumerated type operations

Most Verilog and SystemVerilog variable data types are loosely
typed, meaning that any value of any type can be assigned to a vari-
able. The value will be automatically converted to the data type of
the variable, following conversion rules specified in the Verilog or
SystemVerilog standard.

Enumerated types are the exception to this general nature of Ver-
ilog. Enumerated types are strongly typed. An enumerated variable
can only be assigned:

+ A named value from its enumerated type list

+ Another enumerated type variable of the same type (that is,
declared with the same enumerated type list)

» A value cast to the type of the enumerated variable
When an operation is performed on an enumerated type value, the

enumerated value is automatically converted to the data type and
internal value that represents the name in the enumerated type list.

Chapter 3: SystemVerilog User-Defined and Enumerated Data Types 59

If a data type for the enumerated type names is not explicitly
declared, the name values will default to int types.

In the following example:

typedef enum {WAIT, LOAD, READY} states t;
states_t state, next_state;
int foo;

WAIT will be represented as an int with a value of 0, LOAD as an
int with a value of 1, and READY as an int value of 2.

The following assignment operation on the enumerated type is
legal:

state = next_state; // legal operation

The state and next_state are both enumerated type variables of
the same type. A value in one enumerated type variable can be
assigned to another enumerated type variable of the same type.

The assignment statement below is also legal. The enumerated type
of state is represented as an int, which is added to the literal
integer 1. The result of the operation is an int value, which is
assigned to a variable of type int.

foo = state + 1; // legal operation

The converse of the preceding example is illegal. An error will
result if a value that is not of the same enumerated type is assigned
to an enumerated type variable. For example:

state = foo + 1; // ERROR: illegal assignment

The next examples are also illegal, and will result in errors:

state = state + 1; // illegal operation
state++; // illegal operation
next_state += state; // illegal operation
The enumerated type of state is represented as an int, which is
added to the literal integer 1. The result of the operation is an int

value. It is an error to directly assign this int result to a variable of
the enumerated type states_t.

60

SystemVerilog for Design

3.2.7 Casting expressions to enumerated types

casting values
to an
enumerated

type

using the cast
operator

using the $cast
system function

The result of an operation can be cast to an enumerated type, and
then assigned to an enumerated type variable of the same type.
Either the SystemVerilog cast operator or the dynamic $cast sys-
tem function can be used.

typedef enum {WAIT, LOAD, READY} states_t;
states_t state, next_state;

next_state = states_t’ (state++); // legal

$cast (next_state, state + 1); // legal

Note that the $cast function cannot be used with the ++ or +=
operators, as these operations directly modify the target variable.

As discussed earlier in section 2.10 on page 43, there is an impor-
tant distinction between using the cast operator and the dynamic
$cast system function. The cast operator will always perform the
cast operation and assignment. There is no checking that the value
to be assigned is in the legal range of the enumerated type set.
Using the preceding enumerated type example for state and
next_state, if state had a value of READY, which is represented
as a value of 2, incrementing it by one would result in an integer
value of 3. Assigning this value to next_state is out of the range
of values within the enumerated type list for next_state.

This out-of-range value can result in indeterminate behavior. Dif-
ferent software tools may do different things with the out-of-range
value. If an out-of-range value is assigned, the actual value that
might end up stored in the enumerated variable during pre-synthe-
sis simulation of the RTL model might be different than the func-
tionality of the gate-level netlist generated by synthesis.

To avoid ambiguous behavior, it is important that a model be coded
so that an out-of-range value is never assigned to an enumerated
type variable. The static cast operator cannot always detect when an
out-of-range value will be assigned, because the cast operator does
not do run-time error checking.

The dynamic $cast system function verifies that the expression
result is a legal value before changing the destination variable. In
the preceding example, if the result of incrementing state is out-
of-range for next state, then the call to $cast (next_state,

Chapter 3: SystemVerilog User-Defined and Enumerated Data Types 61

3.2.8

iterating through
the enumerated
type list

enumerated
type methods
use a C++
syntax

state+1) will not change next_state, and a run-time error will
be reported.

The two ways to perform a cast allow the modeler to make an intel-
ligent trade-off in modeling styles. The dynamic cast is safe
because of its run-time error checking. However, this run-time
checking adds some amount of processing overhead to the opera-
tion, which can affect software tool performance. Also, the $cast
system function may not be synthesizable. The compile-time cast
operator does not perform run-time checking, allowing the cast
operation to be optimized for better run-time performance.

Users can choose which casting method to use, based on the nature
of the model. If it is known that out-of-range values will not occur,
the faster compile-time cast operator can be used. If there is the
possibility of out-of-range values, then the safer $cast system
function can be used. Note that the SystemVerilog assert state-
ment can also be used to catch out-of-range values, but an assertion
will not prevent the out-of-range assignment from taking place.
Assertions are discussed in the forthcoming companion book, Sys-
temVerilog for Verification.

Special system tasks and methods for enumerated types

SystemVerilog provides several functions, referred to as methods,
to iterate through the values in an enumerated type list. These meth-
ods automatically handle the strongly typed nature of enumerated
types, making it easy to do things such as increment to the next
value in the enumerated type list, jump to the beginning of the list,
or jump to the end of the list. Using these methods, it is not neces-
sary to know the names or values within the enumerated list.

These special methods for working with enumerated lists are called
in a manner similar to C++ class methods. That is, the name of the
method is appended to the end of the enumerated variable name,
with a period as a separator.

<enum_variable names.first — returns the value of the first
member in the enumerated list of the specified variable.

<enum_variable name>.last — returns the value of the last
member in the enumerated list.

62

SystemVerilog for Designr

<enum_variable name>.next (<N>) — returns the value of the
next member in the enumerated list. Optionally, an integer value
can be specified as an argument to next. In this case, the Nth next
value in the enumerated list is returned, starting from the position of
the current value of the enumerated variable. When the end of the
enumerated list is reached, a wrap to the start of the list occurs. If
the current value of the enumerated variable is not a member of the
enumerated list, the value of the first member in the list is returned.

<enum_variable names>.prev (<N>) — returns the value of the
previous member in the enumerated list. As with the next method,
an optional integer value can be specified as an argument to prev.
In this case, the Nth previous value in the enumerated list is
returned, starting from the position of the current value of the enu-
merated variable. When the beginning of the enumerated list is
reached, a wrap to the end of the list occurs. If the current value of
the enumerated variable is not a member of the enumerated list, the
value of the last member is returned.

<enum_variable name>.num — returns the number of elements
in the enumerated list of the given variable.

<enum_variable name>.name — returns the string representa-
tion of the name for the value in the given enumeration variable. If
the value is not a member of the enumeration, the name method
returns an empty string.

Example 3-4 illustrates a state machine model that sequences
through its states, using some of the enumeration methods listed
above. The example is a simple 0 to 15 confidence counter, where:

» The in_sync output is initially 0; it is set when the counter
reaches 8; in_sync is cleared again if the counter goes to 0.

o If the compare and synced input flags are both false, the
counter stays at its current count.

o If the compare flag and the synced flag are both true, the
counter increments by 1 (but cannot go beyond 15).

o If the compare flag is true but the synced flag is false, the
counter decrements by 2 (but cannot go below 0).

Chapter 3: SystemVerilog User-Defined and Enumerated Data Types 63

Example 3-4: Using special methods to iterate through enumerated type lists

module confidence_counter (input wire synced, compare,
resetN, clock,
output logic in_sync);

enum {cnt[0:15]} State, NextState;

always_ ff @(posedge clock, negedge resetN)
if (!resetN) State <= cnt0;
else State <= NextState;

always comb begin
NextState = State; // default NextState value
case (State)
cnt0 : if (compare && synced) NextState = State.next;
cntl : begin
if (compare && synced) NextState = State.next;
if (compare && !synced) NextState = State.first;
end
cntl5: if (compare && !synced) NextState = State.prev(2);
default begin
if (compare && synced) NextState State.next;
if (compare && !synced) NextState = State.prev(2);
end
endcase
end

always ff @(posedge clock, negedge resetN)
if (!resetN) in_sync <= 0;
else begin

if (State == cnt8) in_sync <= 1;
if (State == cnt0) in_sync <= 0;
end
endmodule

The preceding example uses SystemVerilog’s specialized proce-
dural blocks, always ff and always comb. These procedural
blocks are discussed in more detail in Chapter S.

3.2.9 Printing enumerated types

printing Enumerated type values can be printed as either the internal value
enumerated ¢y, name, or as the name itself. Printing the enumerated variable

type valu;i;:’g(sj directly will print the internal value of the enumerated variable. The

64 SystemVerilog for Design

name representing the current value is accessed using the enumer-
ated type name method. This method returns a string containing the
name. This string can then be passed to $display for printing.

Example 3-5: Printing enumerated type variables by value and by name

enum bit [1:0] {WAIT=2'b0l, LOAD=2'bl0, READY} State, Next;

always @ (State)
begin
$display("Current state is %s (%b)", State.name, State);
case (State)
WAIT: Next = LOAD;
LOAD: Next = READY;

READY: Next = WAIT;
endcase
$display ("Next state will be %s (%b)", Next.name, Next);
end

3.3 Summary

The C-like typedef declaration allows users to define new data
types built up from the predefined data types in Verilog and Sys-
temVerilog. User-defined types can be used as module ports and
passed in/out of tasks and functions.

Enumerated types allow the declaration of variables with a limited
set of valid values, and the representation of those values with
abstract names instead of hardware-centric logic values. Enumer-
ated types allow modeling a more abstract level than Verilog, mak-
ing it possible to model larger designs with fewer lines of code.
Hardware implementation details can be added to enumerated type
declarations, if desired, such as assigning 1-hot encoding values to
an enumerated type list that represents state machine states.

SystemVerilog also adds a class data type, enabling an object-ori-
ented style of modeling. Class objects and object-oriented program-
ming are primarily intended for verification, and are not currently
synthesizable. Details and examples of SystemVerilog classes can
be found in the forthcoming companion book, SystemVerilog for
Verification.

Chapter 4
SystemVerilog Arrays,

Structures and Unions

ystemVerilog adds several enhancements to Verilog for repre-
S senting large amounts of data. The Verilog array constructs are
extended both in how data can be represented and for operations on
arrays. Structure and union data types have been added to Verilog
as a means to represent collections of variables.

This section presents:

* Structures

* Unions

» Operations on structures and unions

* Unpacked arrays

» Packed arrays

+ Operations on arrays

 Special system functions for working with arrays
* The $bits “sizeof” system function

» Dynamic arrays, associative arrays and strings

66

SystemVerilog for Design

4.1 Structures

structures are a
collection of
variables and/or
constants

structures use a
C-like syntax

Design data often has logical groups of signals, such as all the con-
trol signals for a bus protocol, or all the signals used within a state
controller. The Verilog language does not have a convenient mech-
anism for collecting common signals into a group. Instead, design-
ers must use ad-hoc grouping methods such as naming conventions
where each signal in a group starts or ends with a common set of
characters.

SystemVerilog adds C-like structures to Verilog. A structure is a
collection of variables and/or constants under a single name. The
members (variables or constants) within the structure can be of dif-
ferent data types, including other structures and arrays. The entire
collection can be referenced, using the name of the structure. Each
member within the structure also has a name, which is used to
select it from the structure. A structure is a convenient way of
grouping several pieces of related information together.

A structure differs from an array, in that an array is a collection of
elements that are all the same type and size, whereas a structure is a
collection of variables and/or constants that can be different types
and sizes. Another difference is that the elements of an array are
referenced by an index into the array, whereas the members of a
structure are referenced by a member name.

A structure is declared using the struct keyword. The structure
declaration syntax in SystemVerilog is very similar to the C lan-
guage. The one difference is that C allows for an optional “tag”
after the struct keyword and before the opening brace. System-
Verilog does not allow a tag. An example structure declaration is:

struct |
int a, b;
byte opcode;

bit [23:0] address;
} Instruction_Word;

Structure members can be any variable data type, including user-
defined types, and any constant type. A structure member is refer-
enced the same as in C.

<structure name>.<variable namex>

Chapter 4: SystemVerilog Arrays, Structures and Unions 67

4.1.1

structures can
be user-defined

types

For example, to assign a value to the opcode member of the preced-
ing structure, the reference is:

Instruction_Word.opcode = 16'hFOlE;

Net data types cannot be used within structures. Nets can be
grouped together under a single name using SystemVerilog inter-
faces, which are discussed in Chapter 9.

Typed and anonymous structures

User-defined data types can be created from structures, using the
typedef keyword, as discussed in section 3.1 on page 49. Declar-
ing a structure as a user-defined type does not allocate any storage.
Before values can be stored in the members of a structure that is
defined as a user-defined type, a variable of that user-defined type
must be declared.

typedef struct { // structure definition
int a, b;
byte opcode;
bit [23:0] address;

} instruction_word_t;

instruction word t IW; // structure allocation

Local and external structure definitions

A structure type can be defined within a module or interface, allow-
ing its use throughout that model. A structure can also be defined
externally, in the compilation-unit scope, so that it can be used in
any number of modules or interfaces. Section 2.3 on page 11, dis-
cusses SystemVerilog’s compilation-unit scope.

Anonymous structures

When a structure is declared without using typedef, it is referred
to as an anonymous structure.

struct {
int a, b;
byte opcode;

bit [23:0] address;
} instruction;

68 SystemVerilog for Design

4.1.2 Assigning values to structures

Initializing structures

structures can The members of a structure can be initialized at the time the struc-
be initialized ture is instantiated, using a set of values enclosed in { } braces.
using a C-like The number of values must exactly match the number of members.

syntax
typedef struct {
int a, b;
byte opcode;

bit [23:0] address;
} instruction_word_t;

instruction word_t IW = {100, 3, 8’hFF, 0};

A similar syntax is used for defining structure constants or structure
parameters.

Assigning to structure members

three ways to A value can be assigned to any member of a structure by referenc-
assign to ing the name of the member.

structures
typedef struct {
int a, b;
byte opcode;

bit [23:0] address;
} instr_t;

instr_t IW;

always @(posedge clock, negedge resetN)
if (!resetN) begin
IW.a = 100;
IW.b = 5;
IW.opcode = 8'hFF;
IW.address = 0;
end
else begin

end

Chapter 4: SystemVerilog Arrays, Structures and Unions

69

a structure
expression is
enclosed in {}
braces

a Sstructure
expression can
be listed by
order or by
member name

some or all
members of a
structure can be
assigned a
default value

Assigning structure expressions to structures

A complete structure can be assigned a structure expression. A
structure expression is formed using a comma-separated list of val-
ues enclosed in { } braces, just as when initializing a structure. The
braces must contain a value for each member of the structure.

always @(posedge clock, negedge resetN)
if (!resetN) IW = {100, 5, 8'hFF, 0};
else begin

end

The values in the structure expression can be listed in the order in
which they are defined in the structure. Alternatively, the structure
expression can specify the names of the structure members to
which values are being assigned, where the member name and the
value are separated by a colon. When member names are specified,
the expression list can be in any order.

IW = {address:0, opcode:8'hFF, a:100, b:5};

It is illegal to mix listing by name and listing by order in the same
structure expression.

IW = {address:0, 8'hFF, 100, 5}; // ERROR

Default values in structure expressions

A structure expression can specify a value for multiple members of
a structure by specifying a default value. The default value can be
specified for all members of a structure, using the default key-
word.

IW = {default:0}; // set all members of IR to 0
The default value can also be specified just for members of a spe-
cific data type within the structure, using the keyword for the data
type. The default keyword or data type keyword is separated

from the value by a colon.

typedef struct

real X, Yi
int a, b;
byte opcode;

70 SystemVerilog for Design

bit (23:0] address;
} instruction_word_t;

instruction word t IW;

always @ (posedge clock, negedge resetN)
if (!resetN)
IW = { real:1.0, default:0 };
// assign all real members a default of 1.0
// and all other members a default of 0
else begin

end

The default value assigned to structure members must be compati-
ble with the data type of the member. Compatible values are ones
that can be cast to the member’s data type.

default value There is a precedence in how structure members are assigned val-

precedence yes. The default keyword has the lowest precedence, and will be
overridden by any data type-specific defaults. Data type-specific
default values will be overridden by any explicitly named member
values. The following structure expression will assign r1 a value of
1.0, r2 a value of 3.1415, and all other members of the structure a
value of 0.

typedef struct {

real r0, rl;

int 10, i1l;

bit [15:0] opcode;
} instruction word_t;

instruction _word_t IW;

IW = { real:1.0, default:0, rl:3.1415 };

4.1.3 Packed and unpacked structures

unpacked By default, a structure is unpacked. This means the members of the
structures can structure are treated as independent variables that are grouped
have padding ,oether under a common name. SystemVerilog does not specify
how software tools should store the members of an unpacked struc-
ture. The layout of the storage can vary from one software tool to

another.

Chapter 4: SystemVerilog Arrays, Structures and Unions 71

packed A structure can be explicitly declared as a packed structure, using
structures are the packed keyword. A packed structure stores all members of the
stored without ¢4\ cture as contiguous bits, in a specified order. A packed structure
padding is stored as a vector, with the first member of the structure being the
left-most field of the vector. The right-most bit of the last member
in the structure is the least-significant bit of the vector, and is num-

bered as bit 0. This is illustrated in figure 4-1.

struct packed {
bit wvalid;
byte tag;
bit [31:0] data;
} data_word;

Figure 4-1: Packed structures are stored as a vector

valid tag data

40 39 31 15 0

The members of a packed structure can be referenced by either the
name of the member or by using a part select of the vector repre-
sented by the structure. The following two assignments will both
assign to the tag member of the data_word structure:

data_word.tag = 8'hf0;

data_word[39:32] = 8'hf0; // same bits as tag

@ Packed structures can only contain integral values.

packed All members of a packed structure must be integral values. An inte-
structures must gral value is a value that can be represented as a vector, such as
contain pgc:/ed byte, int and vectors created using bit or logic types. A struc-
vanables ire cannot be packed if any of the members of the structure cannot
be represented as a vector. This means a packed structure cannot
contain real or shortreal variables, unpacked structures,

unpacked unions, or unpacked arrays.

72

SystemVerilog for Design

packed
structures are
seen as vectors

a packed
structures used
as a vector can

be signed or
unsigned

Operations on packed structures

Because a packed structure is stored as a vector, operations on the
complete structure are treated as vector operations. Therefore, math
operations, logical operations, and any other operation that can be
performed on vectors can also be performed on packed structures.

typedef struct packed {
bit wvalid;
byte tag;
bit [31:0] data;

} data_word_t;

data_word_t packet_in, packet_out;

always @ (posedge clock)
packet_out <= packet_in << 2;

Note that when a packed structure is assigned a list of values in { }
braces, as discussed in section 4.1.2 on page 68, values in the list
are assigned to members of the structure. The packed structure is
treated the same as an unpacked structure in this circumstance,
rather than as a vector. The values within the { } braces are sepa-
rate values for each structure member, and not a concatenation of

values.
packet in = {1, ’1, 1024};

The preceding line assigns 1 to valid, FF to tag, and 1024 to
data.

Signed packed structures

Packed structures can be declared with the signed or unsigned
keywords. These modifiers affect how the entire structure is per-
ceived when used as a vector in mathematical or relational opera-
tions. They do not affect how members of the structure are
perceived. Each member of the structure is considered signed or
unsigned, based on the data type declaration of that member. A
part-select of a packed structure is always unsigned, the same as
part selects of vectors in Verilog.

typedef struct packed signed {
bit wvalid;

Chapter 4: SystemVerilog Arrays, Structures and Unions

73

4.14

ports can be
declared as a
structure type

4.1.5

structures can
be passed to
tasks and
functions

byte tag;
bit signed [31:0] data;
} data_word_t;

data_word_t A, B;

always @ (posedge clock)
if (A < B) // signed comparison

Passing structures through ports

Structures can be passed through module ports. The structure must
first be defined as a user-defined data type using typedef, which
then allows the module or interface port to be declared as the struc-
ture type. Software tools must read in the typedef definition of the
structure before reading in the declaration of the module or inter-
face that references the structure type.

typedef struct { //typedef is external to module
int a, b;
byte opcode;
bit [23:0] address;

} instruction word t;

module alu (input instruction word t IW,
input wire clock) ;

endmodule

When an unpacked structure is passed through a module port, a
structure of the exact same type must be connected on each side of
the port. Anonymous structures declared in two different modules,
even if they have the exact same name, members and member
names, are not the same type of structure. Passing unpacked struc-
tures through module ports is discussed in more detail in section
8.6.2 on page 211.

Passing structures as arguments to tasks and functions

Structures can be passed as arguments to a task or function. To do
so, the structure must be defined as a user-defined data type using
typedef, so that the task or function argument can then be
declared as the structure type.

74

SystemVerilog for Design

module processor (...);

typedef struct { // typedef is local
int a, b;
byte opcode;
bit [23:0] address;

} instruction_word_t;

function alu (input instruction_word_t IW);

endfunction
endmodule

When a task or function is called that has an unpacked structure as a
formal argument, a structure of the exact same type must be passed
to the task or function. An anonymous structure, even if it has the
exact same members and member names, is not the same type of
structure.

4.1.6 Synthesis guidelines

4,2 Unions

Both unpacked and packed structures are synthesizable. Synthesis
supports passing structures through module ports, and in/out of
tasks and function. Assigning values to structures by member name
and as a list of values is supported.

a union only
stores a single
value

SystemVerilog adds C-like unions to Verilog. A union is a single
storage element that can have multiple representations. Each repre-
sentation of the storage can be a different data type.

The declaration syntax for a union is similar to a structure, and
members of a union are referenced in the same way as structures.

union {

int 1i;

int unsigned u;
} data;
data.i = -5;

$display{"data is %d", data.i);

data.u = -5;
$display("now data is %d", data.u);

Chapter 4: SystemVerilog Arrays, Structures and Unions 75

unions reduce

Although the declaration syntax is similar, a union is very different

storage and than a structure. A structure can store several values. It is a collec-

may improve
performance

4.2.1

4.2.2

tion of variables under a single name. A union can only store one
value. A typical application of unions is when a value might be rep-
resented as several different data types, but only as one type at any
specific moment in time.

Typed and anonymous unions

A union can be defined as a data type using typedef, in the same
way as structures. A union that is defined as a user-defined type is
referred to as a fyped union. If no typedef is used, the union is
referred to as an anonymous union.

typedef union {

int 1i;
int unsigned u;
} data t;

data_t a, b; // two variables of type data t

Unpacked unions

An unpacked union can contain any variable data type, including
real types and unpacked structures. Software tools can store val-
ues in unpacked unions in an arbitrary manner. There is no require-
ment that each tool align the storage of the different data types used
within the union in the same way.

@ Reading from an unpacked union member that is different than
the last member written may cause indeterminate results.

If a value is written to and read from the same unpacked union
member type, then the value is unchanged. If, however, a value is
stored in the unpacked union using one member type, and read back
using a different member type, then the value read will be con-
verted according to the mapping of the data types. This mapping is
defined for packed unions (described in section 4.2.3), but is not
defined for unpacked unions, and so may yield different results in
different software tools.

76 SystemVerilog for Design

The following example shows a union that can store a value as
either an int data type or a real data type. Since these data types
are stored very differently, it is important that a value always be
read back from the union in the same data type with which it is
written. Therefore, the example contains extra logic to track how
values were stored in the union. The union is a member of a struc-
ture. A second member of the structure is a flag that can be set to
indicate that a real value has been stored in the union. When a value
is read from the union, the flag can be checked to determine what
data type the union is storing.

struct {
bit is_real;
union {
int 1i;
real r;
} value;
} data;
/..
always @(posedge write) begin
case (operation_type)
INT_OP: begin
data.value.i <=
data.is_real <=
end
FP_OP: begin
data.value.r <= 3.1415;
data.is_real <= 1;
end
endcase
end
/...
always @ (posedge read) begin
if (data.is_real)
real operand <= data.value.r;
else
int_operand <= data.value.i;
end

4.2.3 Packed unions

packed union A union can be declared as packed in the same way as a structure.

members all In a packed union, the number of bits of each union member must

have the same ¢ the same. This ensures that a packed union will represent its stor-
size . . . ;

age with the same number of bits, regardless of member in which a

Chapter 4: SystemVerilog Arrays, Structures and Unions 77

value is stored. If any member of a packed union is a 4-state type,
then the union is 4-state.

A packed union cannot contain real or shortreal variables,
unpacked structures, unpacked unions, or unpacked arrays.

A packed union allows data to be written using one format and read
back using a different format. The design model does not need to do
any special processing to keep track of how data was stored. This is
because the data in a packed union will always be stored using the
same number of bits and bit alignment.

The following example defines a packed union in which a value can
be represented in two ways: either as a data packet (using a packed
structure) or as an array of bytes.

typedef struct packed {
bit [15:0] source address;
bit [15:0]} destination_address;
bit [23:0] data;
bit [7:0] opcode;
} data_packet_t;

union packed {
data_packet_t packet; // packed structure
bit [7:0] [7:0] bytes; // packed array

} dreg;

Figure 4-2: Packed union with two representations of the same storage

packet

bytes

63 47 31 7 0
source addr | destination addr data opcode

63 55 47 39 31 23 15 7 0
bytes[7}} bytes[6]| bytes[5]| bytes[4]| bytes[3]| bytes[2]| bytes{1]| bytes[0]

Because the union is packed, the information will be stored using
the same bit alignment, regardless of which union representation is
used. This means a value could be loaded using the array of bytes
format (perhaps from a serial input stream of bytes), and then the
same value can be read using the data_packet format.

78

SystemVerilog for Design

4.2.4

packed unions
can be
synthesized

4.2.5

always @(posedge clock, negedge resetN)
if (!resetN) begin
dreg.packet <= ‘0; // store as packet type
i <= 0;
end
else if (load _data) begin
dreg.bytes[i] <= byte_in; // store as bytes
1 <=1 + 1;
end
always @ (posedge clock)
if (data_ready)
case (dreg.packet.opcode) // read as packet

Synthesis guidelines

@ Only packed unions are synthesizable.

A union only stores a single value, regardless of how many data
type representations are in the union. To realize the storage of a
union in hardware, all members of the union must be stored as the
same vector size using the same bit alignment. Packed unions rep-
resent the storage of a union in this way, and are synthesizable. An
unpacked union does not guarantee that each data type will be
stored in the same way, and is therefore not synthesizable.

An example of using structures and unions

Structures provide a mechanism to group related data together
under a common name. Each piece of data can be referenced indi-
vidually by name, or the entire group can be referenced as a whole.
Unions allow one piece of storage to be used in multiple ways.

The following example models a simple Arithmetic Logic Unit that
can operate on either signed or unsigned values. The ALU opcode,
the two operands, and a flag to indicate if the operation data is
signed or unsigned, are passed into the ALU as a single instruction
word, represented as a structure. The ALU can operate on either
signed values or unsigned values, but not both at the same time.
Therefore the signed and unsigned values are modeled as a union of
two data types. This allows one variable to represent both signed
and unsigned values.

Chapter 4: SystemVerilog Arrays, Structures and Unions 79

Chapter 10 presents another example of using structures and unions
to represent complex information in a simple and intuitive form.

Example 4-1: Using structures and unions

typedef enum {ADD, SUB, MULT, DIV, SL, SR} opcode_t;
typedef enum {UNSIGNED, SIGNED} operand type t;

typedef union packed {

logic [31:0} u_data;
bit signed [31:0] s_data;
} data_t;

typedef struct packed {

opcode_t opc;
operand_type_t op_type;
data_t op_a;
data_t op_b;

} instr t;

module alu (input instr_t IW, output data_t alu_out);

always @(IW) begin
if (IW.op_type == SIGNED} begin
case (IW.opc)
ADD : alu_out.s_data = IW.op_a.s_data + IW.op_b.s_data;
SUB : alu_out.s_data = IW.op_a.s_data - IW.op_b.s data;
MULT: alu_out.s_data = IW.op_a.s_data * IW.op_b.s _data;
DIV : alu _out.s_data = IW.op_a.s_data / IW.op_b.s_data;

SL : alu_out.s_data = IW.op_a.s_data <<< 2;
SR : alu_out.s_data = IW.op_a.s_data >>> 2;
endcase

end
else begin
case (IW.opc)
ADD : alu out.u data = IW.op_a.u_data + IW.op_b.u data;
SUB : alu_out.u_data = IW.op_a.u_data - IW.op_b.u_data;
MULT: alu_out.u_data = IW.op_a.u_data * IW.op_b.u_data;
DIV : alu_out.u_data = IW.op_a.u_data / IW.op_b.u_data;

SL : alu out.u data = IW.op_a.u_data << 2;
SR : alu out.u_data = IW.op_a.u_data >> 2;
endcase
end
end

endmodule

80 SystemVerilog for Design

4.3 Arrays

4.3.1 Unpacked arrays

Verilog-1995 The basic syntax of a Verilog array declaration is:
arrays

<data_type> <vector_size> <array_name> <array_dimensions>

For example:

reg [15:0] RAM [0:4095]; // memory array

Verilog-1995 only permitted one-dimensional arrays. A one-
dimensional array is often referred to as a memory, since its pri-
mary purpose is to model hardware memory devices such as RAMs
and ROMs. Verilog-1995 also limited array declarations to just the
data types reg, integer and time.

Verilog-2001 Verilog-2001 significantly enhances Verilog-1995 arrays by allow-
arrays ing any data type except the event type to be declared as an array,
and by allowing multi-dimensional arrays. With Verilog-2001, both

variable types and net types can be used in arrays.

// a 1l-dimensional unpacked array of
// 1024 1-bit nets
wire n [0:1023];

// a l-dimensional unpacked array of
// 256 8-bit variables
reg [7:0] LUT [0:255];

// a 1-dimensional unpacked array of
// 1024 real variables
real r [0:1023];

// a 3-dimensional unpacked array of
// 32-bit int variables
integer i [7:0][3:0][7:0];

Verilog restricts Verilog restricts the access to arrays to just one element of the array
array access to at a time, or a bit-select or part-select of a single element. Any
one element at a attempt to either read or write to multiple elements of an array is an

error.

Chapter 4: SystemVerilog Arrays, Structures and Unions 81

integer i (7:0]({3:011[7:0};
integer j;

i{31(011[1]; // legal: selects 1 element

]
i[31[0]1; // illegal: selects 8 elements

3

unpacked arrays SystemVerilog refers to the Verilog style of array declarations as
store each ynpacked arrays. With unpacked arrays, each element of the array
in dep:rgrgr?t,/’; is stored independent from other elements, but grouped under a
common array name. Verilog does not define how software tools
should store the elements in the array. For example, given an array
of 8-bit wide elements, a simulator or other software tool might
store each 8-bit element in 32-bit words. Figure 4-3 illustrates how
the following declaration might be stored within memory.

wire [7:0] table [3:0];

Figure 4-3: Unpacked arrays can store each element independently

table[3]
7. table[2]
table[1]
table[0]
31 7 0

SystemVerilog enhancements to unpacked arrays

SystemVerilog SystemVerilog extends unpacked array dimensions to include the
allows unpacked Verilog event data type, and all the SystemVerilog data types.
arrays of any These are logic, bit, byte, int, longint, shortreal, and
data type real. Unpacked arrays of user-defined types defined using type-

def can also be declared, including types using struct and enum.

bit [63:0]) d_array [1:128]; // array of vectors

shortreal cosines [0:90]; // array of floats

typedef enum {Mo, Tu, We, Th, Fr, Sa, Su} Week;
Week Year [1:52]; // array of Week types

82

SystemVerilog for Design

SystemVerilog
can reference all
or slices of an
array

copying into
multiple
elements of an
unpacked array

C arrays are
specified by size

Verilog arrays
are specified by
address range

SystemVerilog also adds to Verilog the ability to reference an
entire unpacked array or a slice of multipie elements within an
unpacked array. A slice is one or more contiguously numbered ele-
ments within one dimension of an array. These enhancements make
it possible to copy the contents of an entire array, or a specific
dimension of an array into another array.

>

In order to directly copy multiple elements into an unpacked array,
the layout of the array or array slice on the left-hand side of the
assignment must exactly match the layout of the right-hand side.
That is, the element size and the number of dimensions copied must
be the same.

The left-hand and right-hand sides of an unpacked array copy
must have identical layouts.

The following examples are legal. Even though the array dimen-
sions are not numbered the same, the size and layout of each is the

same.

int al [7:0]1(1023:0]; // unpacked array
byte a2 [1:8]([1:1024]; // unpacked array
a2 = al; // copy an entire array
a2[3)] = al[0l; // copy a slice of an array

An unpacked array can be copied to an array of a different size
using bit-stream casting. This is presented later in this chapter, in
section 4.3.7 on page 91.

Simplified unpacked array declarations

C language arrays always begin with address 0. Therefore, an array
declaration in C only requires that the size of the array be specified.
For example:

// a C array with addresses
// from 0 to 19

int array [20];

Hardware addressing does not always begin with address 0. There-
fore, Verilog requires that array declarations specify a starting
address and an ending address of an array dimension.

Chapter 4: SystemVerilog Arrays, Structures and Unions

83

SystemVerilog
unpacked arrays
can also be
specified by size

4.3.2

Verilog vectors
are one-
dimensional
packed arrays

SystemVerilog
allows multi-
dimensional

packed arrays

packed arrays
have no padding

// a Verilog array with
// addresses from 64 to 83

int array [64:83];

SystemVerilog adds C-like array declarations to Verilog, allowing
unpacked arrays to be specified with a dimension size, instead of
starting and ending addresses. The array declaration:

logic [31:0] data [1024]);

is equivalent to the declaration:

logic [31:0] data ([0:1023];
As in C, the unpacked array elements are numbered, starting with
address 0 and ending with address size-~1.

The simplified C-style array declarations cannot be used with
packed arrays. The following example is a syntax error.

bit [32] d; // illegal packed array declaration

Packed arrays

The Verilog language allows vectors to be created out of single-bit
data types, such as reg and wire. The vector range comes before
the signal name, whereas an unpacked array range comes after the
signal name.

SystemVerilog refers to vector declarations as packed arrays. A
Verilog vector is a one-dimensional packed array.

wire [3:0] select; // 4-bit vector

reg [63:0] data; // 64-bit vector

SystemVerilog adds the ability to declare multiple dimensions in a
packed array.

bit [3:01[7:0] data; // 2-D packed array

SystemVerilog defines how the elements of a packed array are
stored. The entire array must be stored as contiguous bits, which is

the same as a vector. Each dimension of a packed array is a sub
field within the vector.

84 SystemVerilog for Design

In the packed array declaration above, there is an array of 4 8-bit
sub-arrays. Figure 4-4 illustrates how the two-dimensional array
above will be stored, regardless of the software compiler, operating
system or platform.

Figure 4-4: Packed arrays are stored as contiguous elements

bit [3:0]([7:0] data; // 2-D packed array

31 23 15 7 0
data[3][7:0] | data[2][7:0] | data[1][7:0] | data[0][7:0]

Packed array data types

@ Only bit-wise data types can be packed.

Packed arrays can only be formed from bit-wise data types, which
are logic, bit, reg, wire, wand, tri, triand, trior, trio,
tril, trireg, other packed arrays, packed structures, and packed
unions.

wire [1:0][3:0][3:0] bus; // 3-D packed array

typedef struct packed ({
byte crc;
int data;

} data_word;

data_word [7:0] darray; // 1-D packed array of
// packed structures

Referencing packed arrays

A packed array can be referenced as a whole, as bit-selects, or as
part-selects. Multidimensional packed arrays can also be referenced
in slices. A slice is one or more contiguous dimensions of an array.

Chapter 4: SystemVerilog Arrays, Structures and Unions 85

any vector
operation can
be performed on
packed arrays

packed arrays
use Verilog
vector rules

4.3.3

use unpacked
arrays to model
memories, and
with abstract
data types

bit [3:0] [7:0] data; // 2-D packed array

wire [31:0] out = data; // whole array
wire sign = datal3][7]; // bit-select

data [0][3:0); // part-select

wire [3:0] nib

byte high_byte data(3]; // 8-bit slice

logic [15:0] word = datal[l:0]; // 2 slices

Operations on packed arrays

Because packed arrays are stored as vectors, any legal operation
that can be performed on a Verilog vector can also be performed on
packed arrays. This includes being able to do bit-selects and part-
selects from the packed array, concatenation operations, math oper-
ations, relational operations, bit-wise operations, and logical opera-
tions.

bit [3:0][15:0] a, b, result; // packed arrays
result = (a << 1) + b;

There is no semantic difference between a Verilog vector and a
SystemVerilog packed array. Packed arrays use the standard Ver-
ilog vector rules for operations and assignment statements. When
there is a mismatch in vector sizes, a packed array will be truncated
on the left or extended to the left, just as with a Verilog vector.

Using packed and unpacked arrays

The ability to declare multi-dimensional arrays as either packed
arrays or unpacked arrays gives a great deal of flexibility on how to
represent large amounts of complex data. Some general guidelines
on when to use each type of array follow.

Use unpacked arrays to model:

* Arrays of byte, int, integer, real, unpacked structures,
unpacked unions, and other data types that are not bit-wise types

+ Arrays where typically one element at a time is accessed, such as
with RAMs and ROMs

86 SystemVerilog for Design

module ROM (...);
byte mem [0:4095];
assign data = select? mem[address]: 'z;

use packed Use packed arrays to model:
arrays to create

vectors with « Vectors made up of 1-bit data types (the same as in Verilog)
sub-fields
« Vectors where it is useful to access sub-fields of the vector

bit [39:0] {15:0) packet; // 40 lé6-bit words

packet = input_stream; // assign to all words
data = packet[24]; // select 1 16-bit word

tag = packet [3] [7:0]; // select part of 1 word

4.3.4 Initializing arrays at declaration

Packed array initialization

packed arrays Packed arrays can be initialized at declaration using a simple
are initialized assignment, like vectors in Verilog. The assignment can be a con-
the same as gtant value, a concatenation of constant values or a replication of
with vectors
constant values.

logic [3:0]1({7:0] a = 32'h0; // vector assignment

logic [3:0][7:0] b {16'hz,16'h0}; // concatenate operator

logic [3:0][7:0] ¢ = {1e{2'bo1}}; // replicate operator

?

Unpacked array initialization

unpacked arrays Unpacked arrays can be initialized at declaration, using a list of val-
are initialized yes enclosed in { } braces for each array dimension. This syntax is
with a /"ISt of similar to assigning a list of values to an array in C. Note, however,
ValUS that the C shortcut of omitting the inner braces is not allowed in
SystemVerilog. The assignment requires nested sets of braces that

exactly match the dimensions of the array.

Chapter 4: SystemVerilog Arrays, Structures and Unions

87

int 41l

//
//
//
//

di([o] (0]
di (o] [1]
d1 (o] [2]
di[o] (3]

di{1] [0]
d1i[1] [1]
dif1] [2]
d1{1] [3]

[0:1] [0:3]

P oN o w

{ {7,3,0,5}, {2,0,1,6} };

SystemVerilog provides a shortcut for declaring a list of values. An
inner list for one dimension of an array can be repeated any number

of times using a Verilog-like replicate factor.

{ 2{{7,3,0,5}} }s

int d2

//
//
//
//

=

dzf{o] [o]
dz21o] (1]
dz[o] [2]
dz[0] (3]

dz2[1] (0]
d2[1] [1]
dz {1} [2]
d2[1] [3]

0o w

[0:1]1[0:3]

u o w3

The { } list operator is not the same as the Verilog { }
concatenate operator and {{ }} replicate operator.

the { } braces When initializing an unpacked array, the { } braces represent a list
are used two of values. This is not the same as a Verilog concatenate operation.
Ways As a list of values, each value is assigned to its corresponding ele-

ment, following the same rules as Verilog assignment statements.

This means unsized literal values can be specified in the list, as well

as real values.

The Verilog concatenation and replication operators also use the
{ } braces, but these operators require that literal values have a size
specified, in order to create the resultant single vector. Unsized
numbers and real values are not allowed in concatenation and repli-
cation operators.

88

SystemVerilog for Design

an array can be
initialized to a
default value

Specifying a default value for unpacked arrays

SystemVerilog provides a mechanism to initialize all the elements
of an unpacked array, or a slice of an unpacked array, by specifying
a default value. The default value is specified within { } braces
using the default keyword, which is separated from the value by
a colon. The value assigned to the array must be compatible with
the data type of the array. A value is compatible if it can be cast to
that data type.

int al [0:7][0:1023] = {default:8‘h55};

An unpacked array can also be an array of structures or other user-
defined types (see section 4.3.11 on page 94). These constructs can
contain multiple data types. To allow initializing different data
types within an array to different values, the default value can also
be specified using the keyword for the data type instead of the
default keyword. A default assignment to the array will automat-
ically descend into structures or unions to find variables of the
specified data type. Refer to section 4.1.2 on page 68, for an exam-
ple of specifying default values based on data types.

4.3.5 Assigning values to arrays

Assigning values to unpacked arrays

The Verilog language supports two ways to assign values to
unpacked arrays:

* A single element can be assigned a value.

* A bit-select or part select of a single element can be assigned a

value (added as part of the Verilog-2001 standard).

SystemVerilog extends Verilog with two additional ways to assign
values to unpacked arrays:

* The entire array can be assigned a list of values.

* A slice of the array can be assigned a list of values.

The list of values is specified between { } braces, the same as with

initializing unpacked arrays, as discussed in section 4.3.4 on page
86.

Chapter 4: SystemVerilog Arrays, Structures and Unions 89

byte a [0:3]([0:3];

al[1][0] = 8'h5; // assign to one element

a={{0,1,2,3},{4,5,6,7},{7.6,5,4},{3,2,1,0}};
// assign a list of values to the full array

al3] = {'hF, ‘hA, 'hC, ‘hE};
// assign list of values to slice of the array

The list of assignments to an unpacked array can also specify a
default assignment, using the default keyword. As procedural
assignments, specific portions of an array can be set to different
default values.

always @ (posedge clock, negedge resetN)
if (!resetN) begin

a = {default:0}; // init entire array
alo] = {default:4}; // init slice of array
end
else begin
/7. ..
end

Assigning values to packed arrays

multi- Packed arrays are vectors (that might happen to have sub-fields),
dimensional and can be assigned values, just as with Verilog vectors. A packed

packed arrays ,rray can be assigned a value:
are vectors with

sub-fields To one element of the array

 To the entire array (vector)
* To a part select of the array

* To a slice (multiple contiguous sub-fields) of the array

bit [1:0)([1:0]1(7:0]1 a; // 3-D packed array

a1l [11[0] = 1'bO; // assign to one bit
a = 32'hF1A3C5E7; // assign to full array
a[1][0)[3:0] = 4'hF; // assign to a part select

al[0] = 16'hFACE; // assign to a slice

90

SystemVerilog for Design

4.3.6

assigning
packed array to
packed array is
allowed

assigning
unpacked array
to unpacked
array is allowed

assigning
unpacked arrays
of different sizes
requires casting

assigning
unpacked arrays
fo packed arrays
requires casting

Copying arrays

Assigning packed arrays to packed arrays

A packed array can be assigned to another packed array. Since
packed arrays are treated as vectors, the arrays can be of different
sizes. Standard Verilog assignment rules for vectors are used to
truncate or extend the arrays if there is a mismatch in array sizes.

vector
vector
vector
vector

32 bit
32 bit
16 bit
40 bit

//
//
//
//

// assign 32-bit array to 32-bit array
// upper 16 bits will be truncated
// upper 8 bits will be zero filled

bit [1:0] [15:0]
bit [3:0](7:0]
logic [15:0]
logic [39:0]

aj;
b;
c;
d;
b = a;

Cc = ajy
d = a;

Assigning unpacked arrays to unpacked arrays

Unpacked arrays can be directly assigned to unpacked arrays only
if both arrays have exactly the same number of dimensions and ele-
ment sizes. The assignment is done by copying each element of one
array to its corresponding element in the destination array. The
array elements in the two arrays do not need to be numbered the
same. It is the layout of the arrays that must match exactly.

int a [2:0][9:0], b[1:3]1[1:10];

// assign unpacked array to unpacked
// array

a = b;

If the two unpacked arrays are not identical in layout, the assign-
ment can still be made using a bit-stream cast operation. Bit-stream
casting is presented later in this chapter, in section 4.3.7 on page 91.

Assigning unpacked arrays to packed arrays

An unpacked array cannot be directly assigned to a packed array.
This is because in the unpacked array, each element is stored inde-
pendently and therefore cannot be treated as a vector expression.
However unpacked arrays can be assigned to packed arrays using
bit-stream casting, as discussed in section 4.3.7 on page 91.

Chapter 4: SystemVerilog Arrays, Structures and Unions 91

assigning
packed arrays to
unpacked arrays
requires casting

4.3.7

a bit-stream cast
converts arrays
to a temporary
vector of bits

Assigning packed arrays to unpacked arrays

A packed array cannot be directly assigned to an unpacked array.
Even if the dimensions of the two arrays are identical, the packed
array is treated as a vector, which cannot be directly assigned to an
unpacked array, where each array element can be stored indepen-
dent from other elements. However, the assignment can be made
using a bit-stream cast operation.

Copying arrays using bit-stream casting

A bit-stream cast temporarily converts an unpacked array to a
stream of bits in vector form. The identity of separate elements
within the array are lost—the temporary vector is simply a stream
of bits. This temporary vector can then be assigned to another array.
The destination array must be either a packed array or another bit-
stream representation of an unpacked array. When the stream of
bits is stored in the destination array, the identity of each element in
the destination array.

Bit-stream casting provides a mechanism for:

» assigning an unpacked array to an unpacked array of a different
size or layout

« assigning an unpacked array to a packed array

« assigning a packed array to an unpacked array

Bit-stream casting can also be used to copy an unpacked structure
to another unpacked structure that has a different layout, assign an
unpacked structure to a packed structure, or assign a packed struc-
ture to an unpacked structure.

Bit-stream casting uses the SystemVerilog static cast operator. The
casting requires that at least the destination array be represented as
a user-defined type, using typedef.

typedef int [3:0] [7:0] data_t; // unpacked type
data_t a;
int b [3:0][3:0]; // unpacked array

a = data_t’ (b); // assign unpacked array to
// unpacked array of a
// different size

92

SystemVerilog for Design

4.3.8

an array can mix
packed and
unpacked
dimensions

unpacked
dimensions are
indexed before
packed
dimensions

The cast operation is effectively performed in three steps (these
steps may be optimized internally by software tools). First, the two
arrays are converted into temporary vector representations (a
stream of bits). Second, the assignment is made as a vector to vec-
tor assignment, following Verilog rules for any differences in the
vector sizes represented by the temporary vectors. Finally, the tem-
porary vector representation of the destination array is converted
back to its unpacked representation.

Arrays of arrays

It is common to have a combination of unpacked arrays and packed
arrays. Indeed, a standard Verilog memory array is actually a mix
of array types. The following example declares an unpacked array
of 64-bit packed arrays:

bit [63:0] mem [0:4095];

This next example declares an unpacked array of 32-bit elements,
where each element is a packed array, divided into 4 bytes:

wire [3:0]([7:0] data [0:1023];

Indexing arrays of arrays

When indexing arrays of arrays, unpacked dimensions are refer-
enced first, from the left-most dimension to the right-most dimen-
sion. Packed dimensions (vector fields) are referenced second, from
the left-most dimension to the right-most dimension. Figure 4-5
illustrates the order in which dimensions are selected in a mixed
packed and unpacked multi-dimensional array.

Figure 4-5: Selection order for mixed packed/unpacked multi-dimensional array

logic [3:0] [7:0] mixed_array [0:7]1{0:7][0:7];

mixed_array [0] [1] [2] [3] [4] = 1'bl;

Chapter 4: SystemVerilog Arrays, Structures and Unions 93

4.3.9

arrays can
contain user-
defined types

Using user-defined types with arrays

User-defined types can be used as elements of an array. The follow-
ing example defines a user type for an unsigned integer, and
declares an unpacked array of 128 of the unsigned integers.

typedef int unsigned uint;

uint u_array [0:127]; // array of user types

User-defined types can also be defined from an array definition.
These user types can then be used in other array definitions, creat-
ing a compound array.

typedef bit [3:0] nibble; // packed array
nibble [31:0) big_word; // packed array

The preceding example is equivalent to:
bit [31:0] [3:0] big_word;

Another example of a compound array built up from user-defined
types is:

typedef bit [3:0] nibble; // packed array

typedef nibble nib_array [0:3]; // unpacked

nib_array compound_array [0:7); // unpacked
This last example is equivalent to:

bit {3:0] compound array [0:7][0:3];

4.3.10 Passing arrays through ports and to tasks and functions

SystemVerilog
allows unpacked
arrays as ports
and arguments

In Verilog, a packed array is referred to as a vector, and is limited to
a single dimension. Verilog allows packed arrays to be passed
through module ports, or to be passed in or out of tasks and func-
tions. Verilog does not allow unpacked arrays to be passed through
module ports, tasks or functions.

SystemVerilog extends Verilog by allowing arrays of any type and
any number of dimensions to be passed through ports or task/func-
tion arguments.

94 SystemVerilog for Design
To pass an array through a port, or as an argument to a task or func-
tion, the port or task/function argument must also be declared as an
array. Arrays that are passed through a port follow the same rules
and restrictions as arrays that are assigned to other arrays, as dis-
cussed in section 4.3.6 on page 90.

module CPU (...);
bit [7:0] lookup_ table [0:255];
lookup i1 (.LUT(lookup_table));
endmodule
module lookup (output bit [7:0] LUT [0:255]);
initial load(LUT); //task call
task load (inout bit [7:0] t [0:255]);
endtask
endmodule
4.3.11 Arrays of structures and unions
arrays can Packed and unpacked arrays can include structures and unions as
contain elements in the array. In a packed array, the structure or union must
structures or

unions

also be packed.

typedef struct packed { // packed structure
int a;
byte b;

} packet_t;

packet_t [23:0] packet_array; // packed array
// of 24 structures

typedef struct { // unpacked structure
int a;
real b;

} data_t;

data_t data array [23:0]; // unpacked array
// of 24 structures

Chapter 4: SystemVerilog Arrays, Structures and Unions 95

4.3.12 Arrays in structures and unions

structures and Structures and unions can include packed or unpacked arrays. A
unions can packed structure or union can only include packed arrays.

contain arrays

struct packed { // packed structure
bit parity;
bit [3:0][7:0] data; // 2-D packed array
} data_word;

struct { // unpacked structure

bit data_ready;

byte data [0:3]; // unpacked array of bytes
} packet_t;

4.3.13 Synthesis guidelines

Arrays and assignments involving arrays are synthesizable. Specifi-
cally:

Arrays declarations — Both unpacked and packed arrays are syn-
thesizable. The arrays can have any number of dimensions.

Assigning values to arrays — synthesis supports assigning values
to individual elements of an array, bit-selects or part-selects of an
array element, array slices, or entire arrays. Assigning lists of lit-
eral values to arrays is also synthesizable, including literals using
the default keyword.

Copying arrays — Synthesis supports packed arrays directly
assigned to packed arrays. Synthesis also supports unpacked
arrays directly assigned to unpacked arrays of the same layout.
Assigning any type of array to any type of array using bit-stream
casting is also synthesizable.

Arrays in structures and unions — The use of arrays within struc-
tures and unions is synthesizable. Unions must be packed, which
means arrays within the union must be packed).

Arrays of structures or unions — Arrays of structures and arrays
of unions are synthesizable (unions must be packed). A structure
or union must be typed (using typedef) in order to define an
array of the structure or union.

Passing arrays — Arrays passed through module ports, or as
arguments to a task or function, is synthesizable.

96 SystemVerilog for Design

4.3.14 An example of using arrays

The following example models an instruction register using a
packed array of 32 instructions. Each instruction is a compound
value, represented as a packed structure. The operands within an
instruction can be signed or unsigned, which are represented as a
union of two data types. The inputs to this instruction register are
the separate operands, opcode, and a flag indicating if the operands
are signed or unsigned. The model loads these separate pieces of
information into the instruction register. The output of the model is
the array of 32 instructions.

Example 4-2: Using arrays of structures to model an instruction register

typedef enum {ADD, SUB, MULT, DIV, SL, SR} opcode_t;
typedef enum {UNSIGNED, SIGNED} operand_type_t;

typedef union packed {

logic {31:0] u_data;
bit signed ([31:0} s_data;

} data_t;

typedef struct packed {
opcode_t opc;
operand_type t op_type;
data_t op_a;
data_t op_b;

} instr t;

module instruction_register (
output instr t [0:31} instr_reg, // packed array of structures

input data_t operand_a,
input data_t operand_b,
input operand_type_ t op_type,
input opcode t opcode,

input logic [4:0] write_pointer

)i

always @(write_pointer) begin
instr_reglwrite_pointer].op_type
instr_reglwrite_pointer] .opc

i

op_type;
opcode;

i}

// use op_type to determine the operand data type stored
// in the input operand union
if (op_type == SIGNED) begin
instr_reg[write pointer].op_a.s_data = operand a.s_data;
instr_reg[write_pointer].op_b.s_data = operand b.s_data;
end

Chapter 4: SystemVerilog Arrays, Structures and Unions 97

else begin
instr reglwrite_pointer] .op_a.u_data
instr_reglwrite_pointer].op_b.u data
end
end
endmodule

operand_a.u_data;
operand_b.u_data;

4.4 Array querying system functions

special system SystemVerilog adds several special system functions for working
functions for with arrays. These system functions allow writing verification rou-
working with tineg that work with any size array. They may also be useful in
arrays
abstract models.

The special system functions for working with arrays are:

$dimensions (array_name)

* Returns the number of dimensions in the array (returns 0 if
the object is not an array)

$left (array_name, dimension)

* Returns the most-significant bit (msb) number of the speci-
fied dimension. Dimensions begin with the number 1, starting
from the left-most unpacked dimension. After the right-most
unpacked dimension, the dimension number continues with
the left-most packed dimension, and ends with the right-most
packed dimension. For the array:

bit [1:2][7:0])] word [0:3)[4:1];

$left (word, 1) will return 0
$left (word, 2) will return 4
$left (word, 3) will return 1
$left (word, 4) will return 7

$right (array_name, dimension)

* Returns the least-significant bit (Isb) number of the specified
dimension. Dimensions are numbered the same as with
Sleft.

98 SystemVerilog for Design

$low(array name, dimension)

« Returns the lowest bit number of the specified dimension,
which may be either the msb or the Isb. Dimensions are num-
bered the same as with $1eft. For the array:

bit [7:0] word [1:4];
$low (word, 1) returns 1, and $1low (word, 2) returns 0.

$high(array_name, dimension)

+ Returns the highest bit number of the specified dimension,
which may be either the msb or the Isb. Dimensions are num-
bered the same as with $left.

$size (array name, dimension)

« Returns the total number of elements in the specified dimen-
sion (same as shigh - $1low + 1). Dimensions are numbered
the same as with $left.

$increment (array name, dimension)

« Returns 1 if $1eft is greater than or equal to $right, and -1
if $1eft is less than $right. Dimensions are numbered the
same as with $left.

The dimension argument is optional. If not specified, it defaults to
1, which represents the first dimension of the array, as with sleft,.

The following code snippet shows how some of these special array
system functions can be used to increment through an array, with-
out needing to hard code the size of each array dimension.

bit [3:0][7:0] array [0:1023];

int d = $dimensions(array);
if (d > 0) begin // object is an array
for (int j = $right(array,l);
j < $size(array,l);
j += $increment (array, 1))
begin
. // do something
end
end

Chapter 4: SystemVerilog Arrays, Structures and Unions 99

4.5 The $bits

Synthesis guidelines

These array query functions are synthesizable, provided that the
dimension number argument is a constant, or is not specified at all.
This is an exception to the general rule that synthesis compilers do
not support the usage of system tasks or functions. The return value
of these special array system functions can be determined statically
at elaboration time, based on the declarations of the arrays. There-
fore, synthesis compilers can calculate the function return values
and treat them as constants for synthesis.

“sizeof” system function

3bits is similar to
C’s sizeof
function

SystemVerilog adds a $bits system function, which returns how
many bits are represented by any expression. The expression can
contain any type of value, including packed or unpacked arrays,
structures, unions, and literal numbers. The syntax of $bits is:

$bits (expression)

Some examples of using $bits are:

bit [63:0] a;

logic [63:0] b;

wire [3:0]1([7:0] c [0:15];

struct packed {byte tag; logic [31:0] addr;} d;
* $bits(a) returns 64

e $bits (b) returns 64

* $bits(c) returns 512

* 3bits(d) returns 40

* $bits(a+b) returns 128
Synthesis guidelines
The $bits system function is synthesizable. The return value of

$bits can be determined statically at elaboration time, and is there-
fore treated as a simple literal value for synthesis.

100

SystemVerilog for Design

4.6 Dynamic arrays, associative arrays, sparse arrays and strings

dynamic arrays
can change size
during run-time

SystemVerilog adds classes to Verilog. SystemVerilog also adds
new array types to Verilog that make use of classes and class meth-
ods. These object-oriented array types include:

* Dynamic arrays
» Associative arrays
+ Sparse arrays

« Strings (character arrays)

@ These special array types are not synthesizable.

Classes are not synthesizable, and are intended for use in verifica-
tion routines and for modeling at very high levels of abstraction.
The focus of this book is on writing models with SystemVerilog
that are synthesizable. Therefore, SystemVerilog’s object oriented
array types are only briefly covered in the following subsections.
More details on these object-oriented array types can be found in
the forthcoming companion book, SystemVerilog for Verification.

Dynamic arrays

Dynamic arrays allow the size of the array to be increased or
decreased during simulation. A dynamic array is declared using an
empty set of [] brackets. For example:

int d [1; // dynamically sized array of ints

Storage for a dynamic array is not allocated until the array is actu-
ally created during run-time, and can be changed during run-time.
SystemVerilog includes predefined methods to create dynamic
arrays, and to dynamically change the size of these arrays.

» new[] — a special function to create storage for a dynamic
array.
* gize() — a method that returns the size of a dynamic array.

+ delete() — a method to remove all storage for a dynamic
array.

Chapter 4: SystemVerilog Arrays, Structures and Unions

101

static arrays
store all
elements and
have contiguous
integer indices

associative
arrays only store
the elements
used and have
non-contiguous
indices of any
data type

For example:

module test;

int d [1; // dynamically sized array of ints
initial
begin
d = new[100]; // allocate 100 elements

(d); // add 4 elements
// to array

d = new[d.size + 4]}

end

A more detailed explanation of dynamic arrays, the new function,
and built-in methods can be found in the forthcoming companion
book, SystemVerilog for Verification, along with full examples of
using dynamic arrays.

Associative arrays and sparse arrays

The indices into fixed and dynamic arrays must be integer expres-
sions. The indices for each dimension of the array must be a contig-
uous set of integer values. For example, the array int 1 [0:3] will
have the indices 0, 1, 2, and 3. In addition, packed arrays, unpacked
arrays and dynamic arrays must allocate storage for all elements of
an array. Even if only the first and 25th elements of an array are
used, storage must still be allocated for all elements of the array.

SystemVerilog adds a special associative array object class. Asso-
ciative arrays can use any type of expression as the array indices,
including enumerated types. The values of the indices into an asso-
ciate array do not need to be contiguous values. The storage for
each element of an associative array is not created until that ele-
ment is accessed. This allows associative arrays to be used as
sparse arrays. If only the first and 25th element of an associative
array are used, then only those two elements will have storage allo-
cated. SystemVerilog provides a number of built-in class methods
for working with associative arrays.

As with dynamic arrays, associative arrays are not synthesizable.
Associative arrays are for verification and for representing models
at a very high, non-synthesizable, level of abstraction. The forth-

102 SystemVerilog for Design

coming companion book, SystemVerilog for Verification, presents
the full syntax and usage of associative and sparse arrays.

Strings

SystemVerilog SystemVerilog includes a built-in class object for working with
adds a string ASCII strings. The SystemVerilog string type is a dynamic array of
class characters. A string type will automatically resize itself to the num-
ber of characters stored in the string. A number of special string
object methods are provided to work with strings. The forthcoming
companion book, SystemVerilog for Verification, provides more

information on SystemVerilog string arrays.

4.7 Summary

SystemVerilog adds the ability to represent complex data sets as
single entities. Structures allow variables to be encapsulated into a
single object. The structure can be referenced as a whole. Members
within the structure can be referenced by name. Structures can be
packed, allowing the structure to be manipulated as a single vector.
SystemVerilog unions provide a way to model a single piece of
storage at an abstract level, where the value stored can be repre-
sented as any variable data type.

SystemVerilog also extends Verilog arrays in a number of ways.
With SystemVerilog, arrays can be assigned values as a whole. All
of an array, or slices of one dimension of an array, can be copied to
another array. The basic Verilog vector declaration is extended to
permit multiple dimensions, in the form of a packed array. A
packed array is essentially a vector that can have multiple sub
fields. SystemVerilog also provides a number of new array query
system functions that are used to determine the characteristics of
the array.

Chapter 10 contains a more extensive example of using structures,
unions and arrays to represent complex data in a manner that is con-
cise, intuitive and efficient, and yet is fully synthesizable.

Chapter 5

SystemVerilog Procedural
Blocks, Tasks and Functions

he Verilog language provides a general purpose procedural

block, called always, that i1s used to model a variety of hard-
ware types as well as verification routines. Because of the general
purpose application of the always procedural block, the design
intent is not readily apparent.

SystemVerilog extends Verilog by adding hardware type-specific
procedural blocks that clearly indicate the designer’s intent. By
reducing the ambiguity of the general purpose always procedural
block, simulation, synthesis, formal checkers, lint checkers, and
other EDA software tools can perform their tasks with greater accu-
racy, and with greater consistency between different tools.

SystemVerilog also provides a number of enhancements to Verilog
tasks and functions. Some of these enhancements make the Verilog
HDL easier to use, and others substantially increase the power of
using tasks and functions for modeling large, complex designs.

The topics covered in this chapter include:

» Combinational logic procedural blocks
* Latched logic procedural blocks
» Sequential logic procedural blocks

¢ Task and function enhancements

104

SystemVerilog for Design

an always
procedural block
is an infinite loop

infinite loop

The Verilog always procedural block is an infinite loop that
repeatedly executes the statements within the loop. In order for sim-
ulation time to advance, the loop must contain some type of time
control or event control. This can be in the form of a fixed delay,
represented with the # token, a delay until an expression evaluates
as true, represented with the wait keyword, or a delay until an
expression changes value, represented with the @ token. Verilog’s
general purpose always procedural block can contain any number
of time controls or event controls, and the controls can be specified
anywhere within the procedural block.

— always

begin
wait (resetN == 0) // level-sensitive delay
@ (negedge clock) // edge-sensitive delay
#2 t <= d; // time-based delay

@ (posedge clock)
#1.5 q <= t;
end

an edge event
control can be
used as a
sensitivity list

always can
represent any
type of logic

Sensitivity lists

An edge sensitive event control at the very beginning of an always
procedural block is typically referred to as the sensitivity list for
that procedural block. Since no statement within the procedural
block can execute until the edge-sensitive event control is satisfied,
the entire block is sensitive to changes on the signals listed in the
event control. In the following example, the execution of state-
ments in the procedural block are sensitive to changes on a and b.

always @(a, b) // sensitivity list

begin
sum = a + b;
diff = a - b;
prod = a * b;
end

General purpose usage of always procedural blocks

The Verilog always procedural block is used for general purpose
modeling. At the RTL level, the always procedural block can be
used to model combinatorial logic (also referred to as combina-

Chapter 5: SystemVerilog Procedural Blocks, Tasks and Functions

105

tools must infer
design intent
from the
procedural
block’s contents

tional logic), latched logic, and sequential logic. At more abstract
modeling levels, an always procedural block can be used to model
algorithmic logic behavior, without clearly representing the imple-
mentation details of that behavior, such as an implicit state machine
that performs a number of operations on data over multiple clock
cycles. The same general purpose always procedural block is also
used in testbenches to model clock oscillators and to perform other
tasks that need to be repeated throughout the verification process.

Inferring implementation from always procedural blocks

The multi-function role of the general purpose always procedural
block places a substantial burden on software tools such as synthe-
sis compilers and formal verification. It is not enough to execute the
statements within the procedural block. Synthesis compilers and
formal verification tools must also try to deduce what type of hard-
ware is being represented-—combinational, latched or sequential
logic. In order to infer the proper type of hardware implementation,
synthesis compilers and formal tools must examine the statements
and event controls within the procedural block.

The following always procedural block is syntactically correct, but
is not synthesizable. The procedural block will compile and simu-
late without any compilation or run-time errors, but a synthesis
compiler or formal verification tool would probably have errors,
because the functionality within does not clearly indicate whether
the designer was trying to model combinational, sequential or
latched logic.

always @ (posedge clock) begin

wait (!resetN)
if (mode) gl = a + b;
else gl = a ~ b;
g2 <= gl ! (g2 << 2};
q2++;

end

In order to determine how the behavior of this example can be real-
ized in hardware, synthesis compilers and formal tools must exam-
ine the behavior of the code logic, and determine exactly when each
statement will be executed and when each variable will be updated.
A few, but not all, of the factors these tools must consider are:

* What type of hardware can be inferred from the sensitivity list?

106

SystemVerilog for Design

What can be inferred from if...else and case decisions?

What can be inferred from assignment statements and the opera-
tors within those statements?

Is every variable written to by this procedural block updated in
each loop of the always procedural block? That is, is there any
implied storage within the procedural block’s functionality that
would infer latched behavior?

Are there assignments in the procedural block that never actually
update the variable on the left-side? (In the preceding example
the q2++ statement will never actually increment g2, because the
line before is a nonblocking assignment that updates its left-hand
side, which is g2, after the ++ operation).

Could other procedural blocks elsewhere in the same module
affect the variables being written into by this procedural block?

synthesis In order to reduce the ambiguity of what hardware should be
guidelines for inferred from the general purpose always procedural block, syn-
always (hesis compilers place a number of restrictions and guidelines on

procedural
blocks

the usage of always blocks. The rules for synthesis are covered in
the IEEE 1364.1 standard for Verilog Register Transfer Level Syn-

thesis!. Some highlights of these restrictions and guidelines are:

combinational To represent combinational logic with a general purpose always
logic procedural block:

The always keyword must be followed by an edge-sensitive
event control (the @ token).

The sensitivity list of the event control cannot contain posedge
or negedge qualifiers.

The sensitivity list should include all inputs to the procedural
block. Inputs are any signal read by the procedural block, where
that signal receives its value from outside the procedural block.

The procedural block cannot contain any other event controls.

All variables written to by the procedural block must be updated
for all possible input conditions.

Any variables written to by the procedural block cannot be writ-
ten to by any other procedural block.

1. 1364.1-2002 IEEE Standard for Verilog Register Transfer Level Synthesis. See page xxvii.

Chapter 5: SystemVerilog Procedural Blocks, Tasks and Functions 107

latched logic

sequential logic

modeling
guidelines
cannot be
enforced for a
general purpose
procedural block

To represent latched logic with a general purpose always proce-
dural block:

» The always keyword must be followed by an edge-sensitive
event control (the @ token).

» The sensitivity list of the event control cannot contain posedge
or negedge qualifiers.

¢« The sensitivity list should include all inputs to the procedural
block. Inputs are any signal read by the procedural block, where
that signal receives its value from outside the procedural block.

* The procedural block cannot contain any other event controls.

» At least one variable written to by the procedural block must not
be updated for some input conditions.

» Any variables written to by the procedural block cannot be writ-
ten to by any other procedural block.

To represent sequential logic with a general purpose always proce-
dural block:

* The always keyword must be followed by an edge-sensitive
event control (the @ token).

» All signals in the event control sensitivity list must be qualified
with posedge or negedge qualifiers.

+ The procedural block cannot contain any other event controls.

* Any variables written to by the procedural block cannot be writ-
ten to by any other procedural block.

Since Verilog always procedural blocks are general purpose pro-
cedural blocks, these synthesis guidelines cannot be enforced other
by software tools. Simulation tools, for example, must allow
always procedural blocks to be used in a variety of ways, and not
just within the context imposed by synthesis compilers. Because
simulation and synthesis are not enforcing the same semantic rules
for always procedural blocks, mismatches in simulation and syn-
thesis results can occur if the designer does not follow strict, self-
imposed modeling guidelines. Formal verification tools may also
require that self-imposed modeling guidelines be followed, to pre-
vent mismatches in simulation results and formal verification
results.

108

SystemVerilog for Design

5.2 SystemVerilog specialized procedural blocks

specialized
procedural
blocks are
synthesizable

specific
procedural block
types document
design intent

5.2.1

always_comb
represents
combinational
logic

always_comb
infers its
sensitivity list

SystemVerilog adds three specialized procedural blocks to reduce
the ambiguity of the Verilog general purpose always procedural
block. These are: always_comb, always_latch and always_f£f£.

These specialized procedural blocks are infinite loops, the same as
an always procedural block. However, the procedural blocks add
syntactic and semantic rules that enforce a modeling style compati-
ble with the IEEE 1364.1 synthesis standard. These specialized pro-
cedural blocks are used to model synthesizable RTL logic.

The specialized always_comb, always_latch and always_£f
procedural blocks indicate the design intent. Software tools do not
need to infer from context what the designer intended, as must be
done with the general purpose always procedural block. 1f the con-
tent of a specialized procedural block does not match the rules for
that type of logic, software tools can issue warning messages.

By using always_comb, always latch, and always_££f proce-
dural blocks, the engineer’s intent is clearly documented for both
software tools and for other engineers who review or maintain the
model. Note, however, that SystemVerilog does not require soft-
ware tools to verify that a procedural block’s contents match the
type of logic specified with the specific type of always procedural
block. Warning messages regarding the procedural block’s contents
are optional.

Combinational logic procedural blocks

The always_comb procedural block is used to indicate the intent to
model combinational logic.

always_comb
if (!mode)

Yy = a + b;
else
y =a - b;

Unlike the general purpose always procedural block, it is not nec-
essary to specify a sensitivity list with always_comb. A combina-
tional logic sensitivity list can be automatically inferred, because
software tools know that the intent is to represent combinational
logic. This inferred sensitivity list includes every signal that is read

Chapter 5: SystemVerilog Procedural Blocks, Tasks and Functions 109

shared variables
are prohibited

tools do not
need to infer
design intent

by the procedural block, if the signal receives its value from outside
the procedural block. Temporary variables that are only assigned
values using blocking assignments, and are only read within the
procedural block, are not included in the sensitivity list. System-
Verilog also includes in the sensitivity list any signals read by func-
tions called from the procedural block, except for temporary
variables that are only assigned and read within the function. The
rules for inferring the sensitivity of bit selects, part selects and array
indexing are described in the SystemVerilog LRM.

Following the semantic rules for always comb, all software tools
will infer the same sensitivity list. This eliminates the risk of mis-
matches that can occur with a general purpose always procedural
block, should the designer inadvertently specify an incorrect sensi-
tivity list.

The always_comb procedural block also requires that variables on
the left-hand side of assignments cannot be written to by any other
procedural block. This restriction prevents a form of shared vari-
able usage that does not behave like combinational logic. The
restriction matches the guidelines for synthesis, and ensures that all
software tools—not just synthesis—are enforcing the same model-
ing guideline.

Non-ambiguous design intent

An important advantage of always_comb over the general purpose
always procedural block is that when always comb is specified,
the designer’s intent is clearly stated. Software tools no longer need
to examine the contents of the procedural block to try to infer what
type of logic the engineer intended to model. Instead, with the
intent of the procedural block explicitly stated, software tools can
examine the contents of the procedural block and issue warning
messages if the contents do not represent combinational logic.

In the following example with a general purpose always proce-
dural block, a software tool cannot know what type of logic the
designer intended to represent, and consequently will infer that
latched logic was intended, instead of combinational logic.

always @(a, b)
if (b) vy = a;

110

SystemVerilog for Design

always_comb
ensures outputs
start off
consistent with
input values

With SystemVerilog, this same example could be written as fol-
lows:

always_comb
if (b) y = a;

Software tools can then tell from the always_comb keyword that
the designer’s intent was to model combinational logic, and can
issue a warning that a latch would be required to realize the proce-
dural block’s functionality in hardware.

The correct way to model the example above as combinational
logic would be to include an else branch so that the output y
would be updated for all conditions of b. If the intent were that y
did not change when b was false, then the correct way to model the
logic would be to use an always_latch procedural block, as
described in section 5.2.2 on page 115 of this chapter.

Automatic evaluation at time zero

The always comb procedural block also differs from generic
always procedural blocks in that an always_comb procedural
block will automatically trigger once at simulation time zero, after
all initial and always procedural blocks have been activated.
This automatic evaluation occurs regardless of whether or not there
are any changes on the signals in the inferred sensitivity list. This
special semantic of always_comb ensures that the outputs of the
combinational logic are consistent with the values of the inputs to
the logic at simulation time zero. This automatic evaluation at time
zero can be especially important when modeling with 2-state vari-
ables, which, by default, begin simulation with a logic 0. A reset
may not cause events on the signals in the combinational logic sen-
sitivity list. If there are no events, a general-purpose always proce-
dural block will not trigger and, therefore, the output variables will
not be updated.

The following example illustrates this difference between
always comb and general-purpose always procedural blocks.
The model represents a simple Finite State Machine modeled using
enumerated types. The three possible states are WAIT, LOAD and
STORE. When the state machine is reset, it returns to the WAIT state.
The combinational logic of the state machine decodes the current
state, and if the current state is WAIT, sets the next state to be LOAD.

Chapter 5: SystemVerilog Procedural Blocks, Tasks and Functions 111

On each positive edge of clock, the state sequence logic will set
the State variable to the value of the NextState variable.

The code listed in example 5-1 models this state machine with Ver-
ilog’s general purpose always procedure.

Example 5-1: A state machine modeled with an always procedural block

module controller (output logic read, write,
input instr_t instruction,
input wire clock, resetN);

enum {WAIT, LOAD, STORE} State, NextState;
always @ (posedge clock, negedge resetN)

if (!resetN) State <= WAIT;
else State <= NextState;

always @(State) & Only triggers when state
case (State) changes value
WAIT: NextState = LOAD;
LOAD: NextState = STORE;
STORE: NextState = WAIT;

endcase

. // set controller outputs based on current State
endmodule

There is a simulation subtlety in example 5-1. At simulation time
zero, enumerated variables default to the first value in the enumer-
ated list. Therefore, both the State variable and the NextState
variable default to the value of WAIT. On a positive edge of clock,
the state sequence logic will set State to NextState. Since both
variables have the same value, however, State does not actually
change. Since there is no change on State, the always @ (State)
procedural block does not trigger, and the NextState variable
does not get updated to a new value. The simulation of this model is
locked, because the State and the NextState variables have the
same values. This problem continues to exist even when reset is
applied. A reset sets State to the value of WAIT, which is the same
as its current value. Since State does not change, the always
@(State) procedural block does not trigger, perpetuating the
problem that State and NextState have the same value.

112

SystemVerilog for Design

Example 5-2, below, makes one simple change to this example. The
always @(State) is replaced with always_comb. The
always_comb procedural block will infer a sensitivity list for all
external variables that are read by the block, which in this example
is state. Therefore, the always comb infers the same sensitivity
list as in example 5-1:

Even though the sensitivity lists are the same, there is an important
difference between always comb and using always @(State).
An always_comb procedural block automatically executes one
time at simulation time zero, after all procedural blocks have been
activated. In this example, this means that at simulation time zero,
NextState will be updated to reflect the value of State at time
zero. When the first positive edge of clock occurs, State will
transition to the value of NextState, which is a different value.
This will trigger the always_comb procedure, which will then
update NextState to reflect the new value of state. Using
always_comb, the simulation lock problem illustrated in example
5-1 will not occur.

Example 5-2: A state machine modeled with an always_comb procedural block

module controller (output logic read, write,

input instr_t instruction,
input wire clock, resetN);

enum {WAIT, LOAD, STORE} State, NextState;

always @(posedge clock, negedge resetN)
if (!resetN) State <= WAIT;
else State <= NextState;

always_comb -g— Infers @ (State) — block
case (State) automatically executes once
WAIT: NextState = LOAD; at time zero, even if not
L.OAD: NextState = STORE; triggered
STORE: NextState = WAIT;

endcase

// set controller outputs based on current State

endmodule

Chapter 5: SystemVerilog Procedural Blocks, Tasks and Functions 113

always @* does
not have
combinational
logic semantics

@* can be used
incorrectly

@ sensitivity
list may not be
complete

always comb versus always @*

The Verilog-2001 standard added the ability to specify a wildcard
for the @ event control, using either @* or @(*). The primary
intent of the wildcard is to allow modeling combinational logic sen-
sitivity lists without having to specify all the signals within the list.

always @* // combinational logic sensitivity
if (!mode)
y = a + b;
else
y = a - b;

The inferred sensitivity list of Verilog’s @* is a convenient shortcut,
and can simplify modeling complex procedural blocks with combi-
national logic. However, the @* construct does not require that the
contents of the general-purpose always procedural block adhere to
synthesizable combinational logic modeling guidelines.

The specialized always comb procedural block not only infers the
combinational logic sensitivity list, but also restricts other proce-
dural blocks from writing to the same variables so as to help ensure
true combinatorial behavior. In addition, always_comb executes
automatically at time zero, to ensure output values are consistent
with input values, whereas the @* sensitivity list will only trigger if
at least one of the inferred signals in the list changes. This differ-
ence was illustrated in examples 5-1 and 5-2, above.

The @ event control can be used both at the beginning of a proce-
dural block, as a sensitivity list, as well as to delay execution of any
statements within a procedural block. Synthesis guidelines do not
support combinational event controls within a procedural block.
Since @* is merely the event control with a wildcard to infer the sig-
nals in its event control list, it is syntactically possible to use (or
misuse) @* within a procedural block, where it cannot be synthe-
sized.

Another important distinction between @* and always_comb is in
the sensitivity lists inferred. The Verilog standard defines that @*
will infer sensitivity to all variables read in the statement or state-
ment group that follows the @*. When used at the very beginning of
a procedural block, this effectively infers sensitivity to all signals
read within that procedural block. If a procedural block calls a func-

114

SystemVerilog for Design

always_comb
sensitivity list
includes signals
read by
functions

tion, @* will only infer sensitivity to the arguments of the task/func-
tion call.

always_comb is defined to infer sensitivity to all signals read
within the procedural block, plus any variables read within func-
tions that are called by the procedural block. This allows a more
structured coding style to be easily used in procedural blocks that
contain a large amount of combinational logic.

A common problem in large designs is that the amount of code in a
combinational procedural block can become cumbersome. One
solution to prevent the size of a combinational procedural block
from getting too large, is to partition the logic into multiple proce-
dural blocks. This partitioning, however, can lead to convoluted
spaghetti code, where many signals propagate through several pro-
cedural blocks. Another solution is to keep the combinational logic
within one procedural block, but break the logic down to smaller
sub-blocks using functions. Since functions synthesize to combina-
tional logic, this is an effective method of structuring the code
within large combinational procedural blocks.

The Verilog @* places a limitation on the use of functions to struc-
ture large blocks of combinational logic. The sensitivity list
inferred by always @* only looks at the signals read directly by the
always procedural block. It does not infer sensitivity to the signals
read from within any functions called by the procedural block.
Therefore, each function call must list all signals to be read by each
function as inputs to the function, and each function definition must
list these signals as formal input arguments. If, as the design
evolves, the signals used by a function should change, then this
change must be made in both the function formal argument list and
from where the function is called. This additional coding and code
management reduces the benefit of using functions to structure
large combinational procedural blocks.

SystemVerilog’s always_comb procedural block eliminates this
limitation of @*. An always_comb procedural block is sensitive to
both the signals read within the block and the signals read by any
function called from the block. This allows a function to be written
without formal arguments. If during the design process, the signals
that need to be referenced by the function change, no changes need
to be made to the function formal argument list or to the code that
called the function.

Chapter 5: SystemVerilog Procedural Blocks, Tasks and Functions 115

5.2.2

always_latch
represents
latched logic

always_latch
has the same
semantics as
always_comb

The following example illustrates the difference in sensitivity lists
inferred by @* and always_comb. In this example, the procedural
block using @* will only be sensitive to changes on data. The
always comb procedure will be sensitive to changes on data,
sel,c,dand e.

always @* begin -f—— Infers @ (data) —I
al = data << 1;
bl = decode();

end

always comb begin --f— Infers
a2 = data << 1; @(data, sel, ¢, 4, e)
b2 = decode(};

end

function decode; // function with no inputs
begin
case (sel)

2'b01: decode = 4 | e;
2'b10: decode = d & €;
default: decode = c;

endcase
end
endfunction

Latched logic procedural blocks

The always latch procedural block is used to indicate that the
intent of the procedural block is to model latched-based logic. As
always comb, always latch infers its sensitivity list.

always latch
if (enable) g <= d;

An always_latch procedural block follows the same semantic
rules as with always_comb. The rules for what is to be included in
the sensitivity list are the same for the two types of procedural
blocks. Variables written in an always_latch procedural block
cannot be written by any other procedural block. The
always latch procedural blocks also automatically execute once
at time zero, in order to ensure that outputs of the latched logic are
consistent with the input values at time zero.

116 SystemVerilog for Design

tools can verify What makes always_latch different than always comb is that
always_latch goftware tools can determine that the designer’s intent is to model
rggg:g;st latched logic, and perform different checks on the code within the
latched logic procedural block than the checks that would be performed for com-
binational logic. For example, with latched logic, the variables rep-
resenting the outputs of the procedural block do not need to be set
for all possible input conditions. In the example above, a software
tool could produce an error or warning if always_comb had been
used, because the if statement without a matching else branch
infers storage that combinational logic does not have. By specifying
always_latch, software tools know that the designer’s intent is to

have storage in the logic of the design.

An example of using always_latch procedural blocks

The following example illustrates a 5-bit counter that counts from 0
to 31. An input called ready controls when the counter starts
counting. The ready input is only high for a brief time. Therefore,
when ready goes high, the model latches it as an internal enable
signal. The latch holds the internal enable high until the counter
reaches a full count of 31, and then clears the enable, preventing
the counter from running again until the next time the ready input

goes high.

Example 5-3: Latched input pulse using an always_latch procedural block

module register_reader (input clk, ready, resetN,
output logic [4:0] read_pointer

)i

// internal enable signal for the counter
// internal counter overflow flag

logic enable;
logic overflow;

always_latch begin // latch the ready input

if
enable
else if
enable
else if
enable
end

(!resetN)

<= 0;
(ready)
<= 1;
(overflow)
<= 0y

always @(posedge clk, negedge resetN) begin // 5-bit counter
if (!resetN)
{overflow, read pointer} <= 0;

Chapter 5: SystemVerilog Procedural Blocks, Tasks and Functions

117

else if

(enable)

{overflow, read pointer} <= read_pointer + 1;

end
endmodule

5.2.3

always_ff
represents
sequential logic

tools can verify
that always_ff
contents
represent
sequential logic

always_ff
enforces
synthesizable
sensitivity lists

Sequential logic procedural blocks

The always £f specialized procedural block indicates that the
designer’s intent is to model synthesizable sequential logic behav-
ior.

always ff @(posedge clock, negedge resetN)
if (!resetN) g <= 0;
else q <= d;

A sensitivity list must be specified with an always_££ procedural
block. This allows the engineer to model either synchronous or
asynchronous set and/or reset logic, based on the contents of the
sensitivity list.

By using always_f£f to model sequential logic, software tools do
not need to examine the procedural block’s contents to try to infer
the type of logic intended. With the intent clearly indicated by the
specialized procedural block type, software tools can instead exam-
ine the procedural block’s contents and warn if the contents cannot
be synthesized as sequential logic. As with always_comb and
always latch, these additional semantic checks on an
always_f£f procedural block’s contents are optional.

Sequential logic sensitivity lists

The always ££ procedural block requires that every signal in the
sensitivity list must be qualified with either posedge or negedge.
This rule helps ensure that simulation results will match synthesis
results. An always_£ £ procedural block also prohibits using event
controls anywhere except at the beginning of the procedural block.
Event controls within the procedural block do not represent a sensi-
tivity list for the procedural block, and are not allowed. These rules
for sequential logic sensitivity lists follow the modeling guidelines
specified in the IEEE 1364.1 Verilog synthesis standard.

118

SystemVerilog for Design

524

5.3 Enhancements to tasks and functions

Synthesis guidelines

The specialized always comb, always_latch, and always_££
procedural blocks are synthesizable. These specialized procedural
blocks are a better modeling choice than Verilog’s general purpose
always procedural block whenever a model is intended to be used
with simulation and synthesis tools. The specialized procedural
blocks require simulators and other software tools to check for rules
that are required by synthesis compilers. The use of always_comb,
always_ latch, and always_££ procedural blocks can help elim-
inate potential modeling errors early in the design process, before
models are ready to synthesize.

5.3.1

Verilog-1995
has static tasks
and functions

Verilog-2001
adds automatic
tasks and
functions

SystemVerilog makes several enhancements to Verilog tasks and
functions. These enhancements make it easier to model large
designs in an efficient and intuitive manner.

Static and automatic storage in tasks and functions

In the Verilog-1995 standard, tasks and functions are always static
in nature. This means that for each instance of a task or function,
storage for the formal arguments and internal variables of the task
or function are only allocated once. All calls to the task or function
share the same storage. Each new call overwrites the values of the
previous call.

Fully automatic tasks and functions

The Verilog-2001 standard adds automatic tasks and functions,
declared using the automatic keyword, which immediately fol-
lows the task or function keyword. With automatic tasks and
functions, all storage is allocated each time the task or function is
called. For tasks, which can take simulation time to execute, this
means a task can be called again, while a previous call is still exe-
cuting. This capability is referred to as re-entrant tasks. For func-
tions, which execute in zero time, automatic functions can call
themselves recursively. Each recursive call to the function places
the storage of the previous call on a stack. The values from the

Chapter 5: SystemVerilog Procedural Blocks, Tasks and Functions 119

SystemVerilog
allows a mix of
static and
automatic

5.3.2

begin...end
groups multiple
Statements

SystemVerilog
infers
begin...end

stack are retrieved when the current call exits, allowing the previ-
ous call to continue with its own, unique storage.

Mixed storage in tasks and functions

SystemVerilog adds the ability to explicitly declare automatic stor-
age within a static task or function, or any procedural block. One
advantage of automatic variables in a task or function is that when
in-line initialization is used, the initial value is assigned each time
the task or function is called. If the variable were static, then the ini-
tial value would only be assigned once, prior to the start of simula-
tion.

SystemVerilog also permits an automatic task or function to con-
tain static storage. This mixture of storage is primarily beneficial in
verification. Static storage in an automatic task or function implies
that multiple calls to the task or function are sharing the same stor-
age, which infers multiple drivers to that element. Static storage in
an automatic task or function should generally be avoided in mod-
els that are to be synthesized.

Section 2.8 on page 32 discusses declaring static and automatic
variables, and provides examples of using a mixture of static and
automatic storage in tasks and functions.

Implicit task and function statement grouping

In Verilog, multiple statements within a task or function must be
grouped using begin...end. Tasks also allow multiple statements
to be grouped using fork...join.

SystemVerilog simplifies task and function definitions by not
requiring the begin...end grouping for multiple statements. If the
grouping is omitted, multiple statements within a task or function
are executed sequentially, as if within a begin...end block.

function int add and inc (int a, b);
add_and_inc = a + b;
return ++add_and_inc;

endfunction

120 SystemVerilog for Design

5.3.3 Returning function values

functions create In Verilog, the function name itself is an inferred variable that is the
an implied same data type as the function. The return value of a function is set
sa‘r/sgantgrengf;gg by assigning a value to the name of the function. A function exits
¢ when the execution flow reaches the end of the function. The last

ype
value that was written into the inferred variable of the name of

function is the value returned by the function.

function int add_and_inc (input int a, b);
add_and_inc = a + b;
add_and_inc = add_and_inc + 1;
endfunction

SystemVerilog adds a return statement, which allows functions to
return a value using return, as in C.

function int add_and_inc (input int a, b);
return(a + b + 1);
endfunction

The parenthesis are not required in a return statement, but can help
with readability when the return value is a compound expression.

return has To maintain backward compatibility with Verilog, the return value
priority over of a function can be specified using either the return statement or
returning the 1, agioning to the function name. The return statement takes
value in the .)

function name precedence. If a return statement is executed, that is the value
returned. If the end of the function is reached without executing a
return statement, then the last value assigned to the function name
is the return value, as it is in Verilog. Even when using the return
statement, the name of the function is still an inferred variable, and
can be used as temporary storage before executing the return

statement. For example:

function int add_and_inc (input int a, b);
add_and_inc = a + b;
return (++add_and_inc);

endfunction

5.3.4 Returning before the end of tasks and functions

rea C%e{::%rr]rzjug; In Verilog, a task or function exits when the execution flow reaches
a task or the end, which is denoted by endtask or endfunction. In order
function to exit to exit before the end a task or function is reached using Verilog,

Chapter 5: SystemVerilog Procedural Blocks, Tasks and Functions 121

conditional statements such as if...else must be used to force the
execution flow to jump to the end of the task or function. A task can
also be forced to jump to its end using the disable keyword, but
this will affect all currently running invocations of a re-entrant task.
The following example requires extra coding to prevent executing
the function if the input to the function is less than or equal to 1.

function automatic int log2 (input int n);
if (n <=1)
log2 = 1;
else begin // skip this code when n<=1
log2 = 0;
while (n > 1) begin
n=n/2;
log2 = log2+1;
end
end
endfunction

the return The SystemVerilog return statement can be used to exit a task or
statement can function at any time in the execution flow, without having to reach

be used to exit e end of the task or function.
before the end

function automatic int log2 (input int n);
if (n <=1) return 1; // abort function
log2 = 0;
while (n > 1) begin

n = n/2;
log2++;
end
endfunction

Using return to exit a task or function before the end is reached
can simplify the coding within the task or function, and make the
execution flow more intuitive and readable.

5.3.5 Void functions

Verilog functions In Verilog, functions must have a return value. If no return value is
must return a specified, static functions return the value of the previous call to the
value finction, and automatic functions will return the default uninitial-

ized value for the data type of the function.

void functions SystemVerilog adds a void data type, similar to C. Functions can

do not retur 7 @ be explicitly declared as a void data type, indicating that there is
value

122

SystemVerilog for Design

no return value from the function. Void functions are called as
statements, like tasks, but have the syntax and semantic restrictions
of functions. For example, functions cannot have any type of delay
or event control, and cannot use nonblocking assignment state-
ments. Another benefit of void functions is that they overcome the
limitation that functions cannot call tasks. A function can call other
functions, however. A void function is called in the same way as a
task, since there is no return value. Functions can call void func-
tions, and accomplish the same structured coding style of using
tasks.

Another SystemVerilog enhancement is that functions can have
output and inout formal arguments. This allows a void function,
which has no return value, to still propagate changes to the scope
that called the function. Function formal arguments are discussed in
more detail later in this chapter, in section 5.3.7 on page 124.

typedef struct {
bit valid;
bit [7:0] check;
bit [63:0] data;
} packet_t;

function void fill packet (
input logic [63:0] data_in,
output packet_t data_out);
data_out.data = data_in;
for (int i=0; i<=7; i++)
data_out.check[i] = “data in[(8*i)+:8];
data_out.valid = 1;
endfunction

Synthesis guidelines

In synthesizable models, use void functions in place of tasks.

TIP

An advantage of void functions is that they can be called like a task,
but must adhere to the restrictions for function contents. These
restrictions, such as the requirement that functions cannot contain
any event controls, help ensure proper synthesis results.

Chapter 5: SystemVerilog Procedural Blocks, Tasks and Functions 123

5.3.6

Verilog passes
argument values
by position

SystemVerilog
can pass
argument values
by name

named
argument
passing can
reduce errors

Passing task/function arguments by name

When a task or function is called, Verilog only allows values to be
passed to the task or function in the same order in which the formal
arguments of the task or function are defined. Unintentional coding
errors can occur if values are passed to a task or function in the
wrong order. In the following example, the order in which the argu-
ments are passed to the divide function is important. In the call to
the function, however, it is not apparent whether or not the argu-
ments are in the correct order.

always @ (posedge clock)
result <= divide(b, a);

function int divide (input int numerator,

denominator) ;

if (denominator == 0) begin

$display ("Error! divide by zero");

divide = 0;
end
else

divide = numerator / denominator;

endfunction

SystemVerilog adds the ability to pass argument values to a task or
function using the names of formal arguments, rather than the order
of the formal arguments. Named argument values can be passed in
any order, and will be explicitly passed through the specified for-
mal argument. The syntax for named argument passing is the same
as Verilog’s syntax for named port connections to a module
instance.

With SystemVerilog, the call to the function above can be coded as:

// SystemVerilog style function call
always @ (posedge clock)
result <= divide(.denominator (b),
.numerator (a));

Using named argument passing removes any ambiguity as to which
formal argument of each value is to be passed. The code for the task
or function call clearly documents the designer’s intent, and
reduces the risk of inadvertent design errors that could be difficult
to detect and debug.

124

SystemVerilog for Design

5.3.7

Verilog functions
can only have
inputs

SystemVerilog
functions can
have inputs and
outputs

5.3.8

SystemVerilog
functions can
have no
arguments

Enhanced function formal arguments

In Verilog, functions can only have inputs. The only output from a
Verilog function is its single return value.

// Verilog style function formal arguments
function [63:0] add (input [63:0] a, b);

endfunction

SystemVerilog allows the formal arguments of functions to be
declared as input, output or inout, the same as with tasks. This
greatly extends what can be modeled using functions, by allowing
the function to have any number of outputs, in addition to the func-
tion return value,

The following code snippet shows a function that returns the result
of an addition operation, plus an output formal argument that indi-
cates if the addition operation resulted in an overflow.

// SystemVerilog style function formal args
function [63:0] add (input [63:0] a, b,
output overflow) ;

{overflow,add} = a + b;
endfunction

Restrictions on calling functions with outputs

In order to prevent undesirable—and unsynthesizable—side
effects, SystemVerilog restricts from where functions with output
or inout arguments can be called. A function with output or inout
arguments can not be called from:

¢ an event expression.

* an expression within a procedural continuous assignment.

* an expression that is not within a procedural statement.

Functions with no formal arguments

Verilog allows a task to have any number of formal arguments,
including none. However, Verilog requires that functions have at
least one input formal argument, even if the function never uses the
value of that argument. SystemVerilog allows functions with no

Chapter 5: SystemVerilog Procedural Blocks, Tasks and Functions 125

5.3.9

the default
formal argument
direction is input

the default
formal argument
data type is logic

formal arguments, the same as with Verilog tasks. An example of
using functions without arguments, and the benefits this style can
offer, is presented in the latter part of section 5.2.1, under
always_comb versus @*, on page 113.

Default formal argument direction and type

In Verilog, the direction of each formal argument to a task or func-
tion must be explicitly declared as an input for functions, or as
input, output, or inout for tasks. A comma-separated list of
arguments can follow a direction declaration. Each argument in the
list will be the last direction declared.

function integer compare (input integer a,
input integer b);

endfunction

task mytask (input a, b, output yl, y2);
endtask
SystemVerilog simplifies the task and function declaration syntax,
by making the default direction input. Until a formal argument
direction is declared, all arguments are assumed to be inputs. Once

a direction is declared, subsequent arguments will be that direction,
the same as in Verilog.

function int compare (int a, b);

endfunction

// a and b are inputs, yl and y2 are outputs

task mytask (a, b, output yl, y2);

endtask
In Verilog, each formal argument of a task or function is assumed
to be reg data type, unless explicitly declared as another variable
type. SystemVerilog makes the default data type for task or func-

tion arguments the logic type. Since logic is synonymous with
reg, this is fully compatible with Verilog.

126

SystemVerilog for Design

5.3.10 Default formal argument values

each formal
argument can
have a default
value

a call to a task
or function can
leave some
arguments
unspecified

SystemVerilog allows an optional default value to be defined for
each formal argument of a task or function. The default value is
specified using a syntax similar to setting the initial value of a vari-
able. In the following example, the formal argument count has a
default value of 0, and step has a default value of 1.

function int incrementor(int count=0, step=1);
incrementor = count + step;
endfunction

When a task or function is called, it is not necessary to pass a value
to the arguments that have default argument values. If nothing is
passed into the task or function for that argument position, the
default value is used for that call of the task or function. In the call
to the incrementor function below, only one value is passed into
the function, which will be passed into the first formal argument of
the function. The second formal argument, step, will use its
default value of 1.

always @ (posedge clock)
result = incrementor(data_bus);

!é Default formal argument values allow task or function calls to
TP only pass values to the arguments unique to that call.

Specifying default argument values allows a task or function to be
defined that can be used in multiple ways. In the preceding exam-
ple, if the function to increment a value is called with just one argu-
ment, its default is to increment the value passed in by one.
However, the function can also be passed a second value when it is
called, where the second value specifies the increment amount.

SystemVerilog also changes the semantics for calling tasks or func-
tions. Verilog requires that a task or function call have the exact
same number of argument expressions as the number of task/func-
tion formal arguments. SystemVerilog allows the task or function
call to have fewer argument expressions than the number of formal
arguments, as in the preceding example.

Chapter 5: SystemVerilog Procedural Blocks, Tasks and Functions 127

@ A task/function formal argument must have a default value in
order to leave the argument unspecified in the task/function call.

If a task or function call does not pass a value to an argument of the
task or function, then the formal definition of the argument must
have a default value. An error will result if a formal argument with-
out a default value is not passed in a value.

5.3.11 Arrays, structures and unions as formal arguments

formal SystemVerilog allows arrays, structures or unions to be passed in or
arguments can out of tasks and functions. To do so, the formal argument must be
be structures or gefined as an array, structure or union. For example:
arrays
typedef struct packed {
bit valid;
bit [7:0] check;
bit [63:0] data;
} packet t;

task fill packet (
input bit [7:0] data_in [0:7], // array arg
output packet_t data out); // structure arg

for (int i=0; i<=7; i++) begin
data_out.data[(8*i)+:8] = data_in[i];

data_out.check[i] = "data_in[i];
end
data_out.valid = 1;
endtask

5.3.12 Passing argument values by reference instead of copy

values are When a task or function is called, inputs are copied into the task or
passed in and function. These values then become local values within the task or
out ‘f’f ta;s'ks agd function. When the task or function returns at the end of its execu-
unc /or:;p;/ tion, all outputs are copied out to the caller of the task or function.

SystemVerilog extends tasks and functions by adding the capability
to pass values by reference instead of by copy. Passing by reference
allows a variable to be declared in just the calling scope, and not
duplicated within a task or function. Instead, the task or function

refers to the variable in the scope from which it is called.

128

SystemVerilog for Design

a ref formal
arguments is an
alias to the
actual value

To pass a value by reference, the formal argument is declared using
the keyword ref instead of the direction keywords input, output
or inout. The name of the ref argument becomes an alias of the
hierarchical reference to the actual storage for the value passed to
the task or function. The actual declaration and storage of the value
is declared in the scope that calls the task or function.

In the example below, a structure called data_packet and an
array called raw data are allocated in module chip. These
objects are then passed as arguments in a call to the £111_packet
function. Within £111_packet, the formal arguments are declared
as ref arguments, instead of inputs and outputs. The formal argu-
ment data_in becomes an alias within the task for the raw_data
array in the calling scope, chip. The formal argument data_out
becomes an alias for the data_packet structure within chip.

module chip (...);

typedef struct packed {
bit valid;
bit [7:0] check;
bit [63:0] data;

} packet t;

packet_t data_packet;
bit [7:0] raw_data [0:7];

always @ (posedge clock)
£ill packet (.data_in(raw_data),
.data_out (data_packet));

task fill_packet {)
ref bit [7:0] data_in [0:7], // ref arg
ref packet_t data_out); // ref arg

for (int i=0; i<=7; i++) begin
data_out.data[(8*i)+:8] = data_in[i];

data_out.check[i] = "data_in{i];
end
data_out.valid = 1;
endtask

endmodule

Chapter 5: SystemVerilog Procedural Blocks, Tasks and Functions 129

pass by
reference can
be read-only

pass by
reference allows
sensitivity to
changes

Read-only reference arguments

A reference formal argument can be declared to only allow reading
of the object that is referenced, by declaring the formal argument as
const ref. This can be used to allow the task or function to refer-
ence the information in the calling scope, but prohibit the task or
function from modifying the information within the calling scope.

task fill packet (
const ref bit [7:0] data_in {[0:7],
ref packet_t data_out };

endtask
Ref arguments are sensitive to changes in calling scope

An important characteristic of ref arguments is that the logic of the
task can be sensitive to when the signal in the calling scope changes
value. In the following example, the received packet and done
flag are passed by reference. This allows the wait statement to
observe when the flag becomes true in the module that calls the
task. If done had been copied in as an input, the wait statement
would be looking at the local copy of done, which would not be
updated when the done flag changed in the calling module.

typedef struct packed {
bit valid;
bit [7:0] check;
bit [63:0] data;

} packet t;

packet_t send_packet, receive_packet;

task automatic check results (
input packet_t sent,
ref packet_t received,
ref done);

static int error_count = 0;

wait (done)
if (sent !== received) begin
error_count++;
$display ("ERROR! received bad packet");
end
endtask

130

SystemVerilog for Design

Ref arguments can read current values

In the preceding example, the sent packet is an input, which is
copied in at the time the task is called. The received packet is
passed by reference, instead of by copy. When the done flag
changes, the task will compare the current value of the received
packet with the copy of the sent packet from the time when the
task was called. If the received packet had been copied in, the
comparison would have been made using the value of the
received packet at the time the task was called, instead of at the
time the done flag became true.

Ref arguments can propagate changes immediately

When task outputs are passed by copy, the value is not copied back
to the calling scope until the task exits. If there are time controls or
event controls between when the local copy of the task argument is
changed and when the task exits, the calling scope will see the
change to the variable when the task exits, and not when the local
copy inside the task is assigned.

When a task output is passed by reference, the task is making its
assignment directly to the variable in the calling scope. Any event
controls in the calling scope that are sensitive to changes on the
variable will see the change immediately, instead of waiting until
the task completes its execution and output arguments are copied
back to the calling scope.

Restrictions on calling functions with ref arguments

A function with ref formal arguments can modify values outside
the scope of the function, and therefore has the same restrictions as
functions with output arguments. A function with output, inout
or ref arguments can not be called from:

* an event expression

* an expression within a procedural continuous assignment

* an expression that is not within a procedural statement

These restrictions do not apply to a const ref function argument,

as this type of formal argument is read-only, and cannot modify a
value outside of the function.

Chapter 5: SystemVerilog Procedural Blocks, Tasks and Functions 131

5.3.13 Named task and function ends

SystemVerilog allows a name to be specified with the endtask or
endfunction keyword. The syntax is:

endtask : <task_name>

endfunction : <function_ name>

The white space before and after the colon is optional. The name
specified must the same as name of the corresponding task or func-
tion. For example:

function int add_and inc (int a, b);
add_and_inc = a + b;
return ++add_and_inc;

endfunction : add and inc

task automatic check_results (
input packet_ t sent,
ref packet_t received,
ref done);
static int error_count = 0;

endtask: check_results

Specifying a name with the endtask or endfunction keyword
can help make large blocks of code easier to read, thus making the
model more maintainable.

5.3.14 Empty tasks and functions

a task or Verilog requires that tasks and functions contain at least one state-
function can be ment (which can be an empty begin...end statement group). Sys-
empty temVerilog allows tasks and functions to be completely empty,
with no statements or statement groups at all. An empty function
will return the current value of the implicit variable that represents

the name of the function.

An empty task or function is a place holder for partially completed
code. In a top-down design flow, creating an empty task or function
can serve as documentation in an abstract model for the place
where more detailed functionality will be filled in later in the
design flow.

132 SystemVerilog for Design

5.4 Summary

This chapter has presented the always_comb, always_latch,
and always_££ specialized procedural blocks that SystemVerilog
adds to the Verilog standard. These specialized procedural blocks
add semantics that increase the accuracy and portability for model-
ing hardware, particularly at the synthesizable RTL level of model-
ing. Also important is that these specialized procedural blocks
make the designer’s intent clear as to what type of logic the proce-
dural block should represent. Software tools can then examine the
contents of the procedural block, and issue warnings if the code
within the procedural block cannot be properly realized with the
intended type of hardware.

SystemVerilog also adds a number of enhancements to Verilog
tasks and functions. These enhancements include simplifications of
Verilog syntax or semantic rules, as well as new capabilities for
how tasks and functions can be used. Both types of changes allow
modeling larger and more complex designs more quickly and with
less coding.

Chapter 6
SystemVerilog

Procedural Statements

ystemVerilog adds several new operators and procedural state-
ments to the Verilog language that allow modeling at a more

abstract, C-like level. Additional enhancements convey the
designer’s intent, helping to ensure that all software tools interpret
the procedural statements in the same way. This chapter covers
these operators and procedural statements, and offers guidelines on
how to properly use these new constructs.

This SystemVerilog features presented in this chapter include:

New operators
Enhanced £or loop
New bottom testing loop
New jump statements
Enhanced block names
Statement labels

Unique and priority decisions

134 SystemVerilog for Design

6.1 New operators

6.1.1 Increment and decrement operators

++and -- SystemVerilog adds the ++ increment operator and the - - decre-
operators ment operator to the Verilog language. These operators are used in
the same way as in C. For example:

for (i = 0; 1 <= 31; i++)

@ (posedge shift clock) serial out <= datalil;

Post-increment and pre-increment

As in C, the increment and decrement operators can be used to
either pre-increment/pre-decrement a variable, or to post-incre-
ment/post-decrement a variable. Table 6-1 shows the four ways in
which the increment and decrement operators can be used.

Table 6-1: Increment and decrement operations

Statement Operation Description

j = i++; | post-increment | j is assigned the value of i, and then i is incremented by 1
j o= ++i; pre-increment | i is incremented by 1, and j is assigned the value of i

j = i--; | post-decrement | jis assigned the value of i, and then i is decremented by 1
j o= --1i; pre-decrement | i is decremented by 1, and j is assigned the value of i

The following code fragments show how pre-increment versus post
increment can affect the termination value of a loop.

while (i++ < LIMIT) begin: loopl
// last value of i will be LIMIT
end

while (++j < LIMIT) begin: loop2
// last value of j will be LIMIT-1
end

In loopl, the current value of i will first be compared to LIMIT,
and then i will be incremented. Therefore, the last value of i within
the loop will be equal to LIMIT.

Chapter 6: SystemVerilog Procedural Statements 135

blocking and
nonblocking
assignments

++and --
behave as
blocking
assignments

++ and -- can
have race
conditions in
sequential logic

In 1loop2, the current value of j will first be incremented, and then
the new value compared to LIMIT. Therefore, the last value of j
within the loop will be one less than LIMIT.

Avoiding race conditions

The Verilog language has two assignments operators, blocking and
nonblocking. The blocking assignment is represented with a single
equal token (=), and the nonblocking assignment is represented
with a less-than-equal token (<=).

out = in; // blocking assignment

out <= in; // nonblocking assignment

A full explanation of blocking and nonblocking assignments is
beyond the scope of this book. A number of books on the Verilog
language discuss the behavior of these constructs. The primary pur-
pose of these two assignment operators is to accurately emulate the
behavior of combinational and sequential logic in zero delay mod-
els. Proper usage of these two types of assignments is critical, in
order to prevent simulation event race conditions. A general guide-
line is to use blocking assignments to model combinational logic,
and nonblocking assignments to model sequential logic.

@ The ++ and -- operators behave as blocking assignments.

The increment and decrement operators behave as blocking assign-
ments. The following two statements are semantically equivalent:

144 // increment i with blocking assign

i =1+ 1; // increment i with blocking assign

Just as it is possible to misuse the Verilog blocking assignment, cre-
ating a race condition within simulation, it is also possible to mis-
use the increment and decrement operators. The following example
illustrates how an increment or decrement operator could be used in
a manner that would create a simulation race condition. In this
example, a simple counter is incremented using the ++ operator.
The counter, which would be implemented as sequential logic using
some form of flip-flops, is modeled using a sequential logic
always_£f procedural block. Another sequential logic procedural

136

SystemVerilog for Design

guidelines for
using ++ and --

block reads the current value of the counter, and performs some
type of functionality based on the value of the counter.

always ff @(posedge clock)
if (!resetN) count <= 0;
else count++; // same as count = count + 1;

always ff @(posedge clock)
case (state)
HOLD: if (count == MAX)

Will count in this example be read by the second procedural block
before or after count is incremented? This example has two proce-
dural blocks that trigger at the same time, on the positive edge of
clock. This creates a race condition, between the procedural block
that increments count and the procedural block that reads the value
of count. The defined behavior of a blocking assignment is that the
software tool can execute the code above in either order. This
means a concurrent process can read the value of a variable that is
incremented with the ++ operator (or decremented with the --
operator) before or after the variable has changed.

The pre-increment and pre-decrement operations will not resolve
this race condition between two concurrent statements. Pre- and
post- increment/decrement operations affect what order a variable
is read and changed within the same statement. They do not affect
the order of reading and changing between concurrent statements.

A nonblocking assignment is required to resolve the race condition
in the preceding example. The behavior of a nonblocking assign-
ment is that all concurrent processes will read the value of a vari-
able before the assignment updates the value of the variable. This
properly models the behavior of a transition propagating through
sequential logic, such as the counter in this example.

Avoid using ++ and -- on variables where nonblocking

TP assignment behavior is required.

To prevent potential race conditions, the increment and decrement
operators should only be used to model combinational logic.
Sequential and latched logic procedural blocks should not use the
increment and decrement operators to modify any variables that are
to be read outside of the procedural block. Temporary variables that

Chapter 6: SystemVerilog Procedural Statements 137

are only read within a sequential or latched logic procedural block
can use the ++ and - - operators without race conditions. For exam-
ple, a variable used to control a for loop can use the ++ or - - oper-
ators even within a sequential procedural block, so long as the
variable is not read anywhere outside of the procedural block.

The proper way to model the preceding example is shown below.
The ++ operator is not used, because count is representing the out-
put of sequential logic that is to be read by another concurrent pro-
cedural block.

always_ff @(posedge clock)
if (!resetN) count <= 0;
else count <= count + 1; // nonblocking assign

always_ff @(posedge clock)

case (state)
HOLD: if (count == MAX)

Synthesis guidelines

Both the pre- and post- forms of the increment and decrement oper-
ators are synthesizable, but only when used as a separate statement.

i++; // synthesizable
sum = i++; // not synthesizable

6.1.2 Assignment operators

+= and other
assignment
operators

SystemVerilog adds several additional types of assignment opera-
tors to Verilog. These new operators combine some type of opera-
tion with the assignment.

All of the new assignment operators have the same general syntax.
For example, the += operator is used as:

out += in; // add and assign
The += operator is a short cut for the statement:

out = out + in; // add and assign

Table 6-2 lists the assignment operators which SystemVerilog adds
to the Verilog language.

138 SystemVerilog for Design
Table 6-2: SystemVerilog assignment operators
Operator Description
+= add right-hand side to left-hand side and assign
-= subtract right-hand side from left-hand side and assign
*= multiply lefi-hand side by right-hand side and assign
/= divide left-hand side by right-hand side and assign
§= divide left-hand side by right-hand side and assign the remainder
&= bitwise AND right-hand side with left-hand side and assign
= bitwise OR right-hand side with left-hand side and assign
*= bitwise exclusive OR right-hand side with left-hand side and assign
cen bitwise left-shift the left-hand side by the number of times indicated by the
- right-hand side and assign
. bitwise right-shift the left-hand side by the number of times indicated by the
N right-hand side and assign
arithmetic left-shift the left-hand side by the number of times indicated by the
<<= . . .
right-hand side and assign
arithmetic right-shift the left-hand side by the number of times indicated by
>>>= . . .
the right-hand side and assign
@ Assignment operators behave as blocking assignments.
assignment The assignment operators have a blocking assignment behavior. To
operators are avoid simulation race conditions, the same care needs to be taken
blocking ith these assignment operators as with the ++ and -~ increment
assignments

and decrement operators, as described in section 6.1.1 on page 134.

Synthesis guidelines

The assignment operators are synthesizable, but synthesis compil-
ers may place restrictions on multiply and divide operations.

Example 6-1 illustrates using the SystemVerilog assignment opera-
tors. The operators are used in a combinational logic procedural

Chapter 6: SystemVerilog Procedural Statements

139

block, which is the correct type of procedural block for blocking
assignment behavior.

Example 6-1: Using SystemVerilog assignment operators

typedef enum {ADD, SUB, MULT, DIV, SL, SR} opcode_t;

typedef enum {UNSIGNED, SIGNED} operand type t;

typedef union packed {

logic [23:0]
bit signed [23
} data_t;

u_data;

:0] s_data;

typedef struct packed {

opcode_t
operand_type_t
data_t
data_t

} instruction_t;

opc;
op_type;
op_a;
op_b;

module alu (input instruction_ t instr, output data_t alu_out);

always_comb begin
if (instr.op_type == SIGNED) begin

alu_out.s_data = instr.op_a.s_data;

case (instr.opc)

ADD
SUB
MULT
DIV
SL
SR
endcase
end
else begin

alu_out.s_data
alu_out.s_data
alu_out.s_data
alu_out.s_data
alu out.s_data
alu out.s_data

+=

<<=

>>5>=

instr.
instr.
instr.
instr.

2;
2;

alu_out.u data = instr.op_a.u_data;
case (instr.opc)

ADD
SUB
MULT
DIV
SL

SR

endcase
end
end
endmodule

alu_out.u_data
alu_out.u_data
alu_out.u_data
alu_out.u data
alu_out.u_data
alu_out.u_data

* =
/=
<<=
>>=

instr.
instr.
instr.
instr.

2;
2;

op_b.s_data;
op_b.s_data;
op_b.s_data;
op_b.s_data;

op_b.u_data;
op_b.u_data;
op_b.u_data;
op_b.u_data;

140

SystemVerilog for Design

6.1.3 Equality operators with don’t care wild cards

The Verilog language has two types of equality operators, the ==
operator and the === operator (referred to as the case equality oper-
ator or as the identity operator). Both operators compare two
expressions, and return true if the expressions are the same, and
false if they are different. The two operators handle logic X and
logic Z values differently:

» The == operator will consider any comparison where X or Z val-
ues are in either operand to be unknown, and return a logic X.

+ The === case equality operator will perform a bit-wise compari-
son of the two operands, and look for an exact match of 0, 1, X
and Z values in both operands. If the operands are identical, the
operator will return true, otherwise, the operator will return false.

Each of these operators has a not-equal counterpart, 1= and 1==.
These operators invert the results of the true/false test, returning
true if the operands are not equal, and false if they are equal.

SystemVerilog provides two additional case equality operators,
=?= and 1?=. These operators allow for don’t-care bits to be
masked from the comparison. The =?= operator, referred to as the
wild equality operator, will perform a bit-wise comparison of its
two operands, similar to the === case equality operator. With the
=7= wild equality operator, however, a logic X or a logic Z in a bit
position of either operand is treated as a wildcard that will match
any value in the corresponding bit position of the other operand.

Table 6-3 shows the differences in the types of equality operators.

Table 6-3: SystemVerilog equality operators

a== a=== a=?bh al=b al==b al?=b

0000

0000 true true true false false false

0000

0101 false false false true true true

010Z

0101 unknown false true unknown true false

010z

010Z | unknown true true unknown false false

010X

010Z unknown false true unknown true false

010X

010X unknown true true unknown false false

Chapter 6: SystemVerilog Procedural Statements 141

The wild equality operators allow performing a decision based on
the value of a vector, with specific bits of the vector masked out.
The bits which are masked out are treated as don’t care bits, and
have no bearing on the result of the outcome of a true/false test.

bit [7:0] opcode;

if (opcode =?= 8'b11011???) // mask out low bits

If the operands are not the same size, then the wild equality opera-
tors will expand the vectors to the same size before performing the
comparison. The vector expansion rules are the same as with the
case equality operators.

Synthesis guidelines

Currently, the wild equality operators are not synthesizable. These
operators should be reserved for use in verification testbenches and
abstract behavioral models that will not be synthesized.

6.1.4 Set membership operator — inside

SystemVerilog adds an operator to test if a value matches anywhere
within a set of values. The operator uses the keyword, ingide.

bit [2:0] a;

if (a inside {3'b001, 3'b010, 3'b100})

The inside operator can simplify comparing a value to several
possibilities. Without the inside operator, the preceding i f decision
would likely have been coded as:

if ((a==3'b001) || (a==3'b010) || (a==3'b1l00})

The set of values to which the first value is matched can be other
signals.

if (data inside {busl, bus2, bus3, bus4})

142

SystemVerilog for Design

6.2 Operand enhancements

The set of values can also be an array. The next example tests to see
if the value of 13 occurs anywhere in an array called d_array.

int d_array [0:1023];

if (13 inside d_array)

The inside operator uses the value Z to represent don’t care con-
ditions. The following test will be true if a has a value of 3'b101,
3’b111,3'blxl,0r3’'blzl.

logic [2:0] a;
if (a inside {3'b1?1})

This is similar to the casez statement, but with an important differ-
ence. The casez statement treats Z values on both sides of the
comparison as don’t care bits. The inside operator only treats Z
values in the set of expressions as don’t care bits. Bits in the first
operand, the one before the inside keyword, are not treated as
don’t care bits.

Synthesis guidelines

The inside operator is synthesizable. When don’t care expres-
sions are used, synthesis compilers may require that the expressions
in the value set (on the right-hand side of the inside operator) be lit-
eral values.

6.2.1 Operations on 2-state and 4-state types

operations with
all 2-state types
have 2-state
results

Verilog defines the rules for operations on a mix of most data types.
SystemVerilog extends these rules to also cover operations on 2-
state types, which Verilog does not have.

For operations that involve two operands:

* When both operands are 2-state data types, such as bit or int,
the result will be 2-state.

Chapter 6: SystemVerilog Procedural Statements 143

6.2.2

vector widths
can be castto a
different size

» When both operands are 4-state data types, such as logiec, reg
or integer, the result will be 4-state.

* When one operand is 2-state and the other operand is 4-state, the
result will be 4-state.

For unary reduction operators:

» If the operand type is 4-state, the result will be of type logic

* If the operand type is 2-state, the result will be of type bit

For the increment and decrement operators, the result will be the
same data type as the operand.

The assignment operators will follow the same rules as the equiva-
lent operator that uses two operands. If any operand is 4-state, then
the result will be 4-state.

Operations involving the new shortreal data type follow the
same rules and have the same restrictions as the Verilog real data

type.

Casting expression sizes

In Verilog, the number of bits of an expression is determined by the
operand, the operation, and the context. The IEEE 1364-2001 Ver-
ilog standard defines the rules for determining the size of an expres-
sion. SystemVerilog follows the same rules as defined in Verilog.

SystemVerilog extends Verilog by allowing the size of an expres-
sion to be cast to a different size. An explicit cast can be used to set
the size of an operand, or to set the size of an operation result.

bit [15:0] a, b, ¢, sum; // 16 bits wide

bit carry; // 1 bit wide
sum = a + 16' (5); // cast operand
{carry,sum} = 17’ (a + 3); // cast result

sum = a + 16'(b - 2) / ¢c; // cast intermediate
// result

144 SystemVerilog for Design

If an expression is cast to a smaller size than the number of bits in
the expression, the left-most bits of the expression are truncated. If
the expression is cast to a larger vector size, then the expression is
left-extended. These are the same rules as when an expression of
one size is assigned to a variable or net of a different size.

6.2.3 Casting expression signedness

SystemVerilog follows Verilog rules for determining if an opera-
tion result is signed or unsigned. The new ++ and - - increment and
decrement operators follow the rules for unary operations, where
the result of the operation has the same signedness as the operand.

SystemVerilog also allows explicitly casting the signedness of a
value. Either the signedness of an operand can be cast, or the sign-
edness of an operation result can be cast.

sum = signed’ (a) + signed’ (a); // cast operands

if (unsigned'(a-b) <= 5) // cast intermediate
// result

The SystemVerilog cast operators, when used to cast the signedness
of a value, perform the same conversion as the Verilog $signed
and $unsigned system functions. Sign casting is synthesizable,
following the same rules as the $signed and $unsigned system
functions.

6.3 Enhanced for loops

Verilog for loop In Verilog, the variable used to control a for loop must be declared
variables are prior to the loop. When multiple for loops are used, separate vari-

declared outside ,p,1e5 myst be declared for each loop:
the loop

module chip (...); // Verilog style loops
reg [7:0] 1i;
integer j, k;

always @ (posedge clock) begin

for (i = 0; 1 <= 15; 1 = 1 + 1)
for (j = 511; j »>= 0; j = j - 1) begin
end

end

Chapter 6: SystemVerilog Procedural Statements 145

always @ (posedge clock) begin
for (k = 1; k <= 1024; k = k + 2) begin

end
end
endmodule

concurrent loops Because the variable must be declared outside of the for loop, cau-
can interfere tion must be observed when concurrent procedural blocks within a
with each other ,qule have for loops. If the same variable is inadvertently used
as a loop control in two or more concurrent loops, then each loop
will be modifying the control variable used by another loop. Either
different variables must be declared at the module level, as in the
example above, or local variables must be declared within each

concurrent procedural block, as shown in the following example.

module chip (...); // Verilog style loops

always @(posedge clock) begin: loopl
reg [7:0] i; // local variable
for (i = 0; i <= 15; 1 = i + 1) begin

end
end

always @(posedge clock) begin: loop2
integer i; // local variable
for (i = 1; i <= 1024; i = i + i) begin

end
end
endmodule

6.3.1 Local variables within for loop declarations

declaring local SystemVerilog simplifies declaring local variables for use in for

loop variables loops. With SystemVerilog, the declaration of the for loop vari-
able can be made within the for loop itself. This eliminates the
need to define several variables at the module level, or to define
local variables within named begin...end blocks.

module chip (...); // SystemVerilog style loops

always ff @(posedge clock) begin
for (bit [4:0] i = 0; 1 <= 15; i++)

146

SystemVerilog for Design

local loop
variables
prevent
interference

local loop
variables are
automatic

local loop
variables do not
exist outside of
the loop

end

always ff @(posedge clock) begin
for (int i = 1; 1 <= 1024; i += 1)

end
endmodule

A variable declared within as part of a £or loop is local to the loop.
References to the variable name within the loop will see the local
variable, and not any other variable of the same name elsewhere in
the containing module, interface, program, task, or function.

@ Variables declared as part of a £or loop are automatic variables.

When a variable is declared as part of a for loop initialization
statement, the variable has automatic storage, not static storage.
The variable is created and initialized when the for loop is
invoked, and destroyed when the loop exits. The use of automatic
variables has important implications:

+ Automatic variables cannot be referenced hierarchically.
« Automatic variables cannot be dumped to VCD files.

 The value of the for loop variable cannot be used outside of the
for loop, because the variable does not exist outside of the loop.

The following example is illegal. The intent is to use a fox loop to
find the lowest bit that is set within a 64 bit vector. Because the
lo_bit variable is declared as part of the £or loop, however, it is
only in existence while the loop is running. When the loop termi-
nates, the variable disappears, and cannot be used after the loop.

always_comb begin

for (int lo bit=0; lo_bit<=63; lo_bit++) begin
if (data[lo bit]) break; // exit loop if

end // bit is set

if (lo_bit > 7) // ERROR: lo_bit is not there

end

When a variable needs to be referenced outside of a loop, the vari-
able must be declared outside of the loop. For example:

Chapter 6: SystemVerilog Procedural Statements 147

always comb begin
int lo_bit; // local variable to the block
for (lo_bit=0; lo _bit<=63; lo_bit++) begin
if (datal[lo_bit]) break; // exit loop if
end // bit is set
if (lo_bit > 7) // lo_bit has last loop value

end

6.3.2 Multiple for loop assignments

SystemVerilog also enhances Verilog for loops by allowing more
than one initial assignment statement, and more than one step
assignment statement. Multiple initial or step assignments are sepa-
rated by commas. For example:

for (int i=1, int j=0; i*j < 128; i++, J+=3)

6.3.3 Hierarchically referencing variables declared in for loops

local loop Local variables declared as part of a for loop cannot be referenced
variables do not hierarchically. A testbench, waveform display, or a VCD file can-
have a hier a; Caf;f}; not reference the local variable.

always ff @(posedge clock) begin
for (int i = 0; i <= 15; i++) begin
...// i cannot be referenced hierarchically
end
end

When hierarchical references to a for loop control variable is
required, the variable should be declared outside of the for loop,
either at the module level, or in a named begin...end block.

always ff @(posedge clock) begin : loop
int i; // i can be referenced hierarchically
for (i = 0; i <= 15; i++) begin

end
end

In this example, the variable i can be referenced hierarchically with
the last portion of the hierarchy path ending with . 1oop.1.

148

SystemVerilog for Design

6.3.4 Synthesis guidelines

6.4 Bottom testing do...while loop

SystemVerilog’s enhanced for loops are synthesizable, following
the same synthesis coding guidelines as Verilog £or loops.

a while loop
might not
execute at all

Verilog has the while loop, which executes the loop as long as a
loop-control test is true. The control value is tested at the beginning
of each pass through the loop.

It is possible that a while loop might not execute at all. This will
occur if the test of the control value is false the very first time the
loop is encountered in the execution flow.

This top-testing behavior of the while loop can require extra code
prior to the loop, in order to ensure that any output variables of the
loop are consistent with variables that would have been read by the
loop. In the following example, the while loop executes as long as
an input address is within the range of 128 to 255. If, however, the
address is not in this range, the while loop will not execute at all.
Therefore, the range has to be checked prior to the loop, and the
three loop outputs, done, OutOfBound, and out set for out-of-
bounds address conditions.

always_comb begin

if (addr < 128 || addr > 255) begin
done = 0;
OutOfBound = 1;
out = mem[128];

end

else while (addr >= 128 && addr <= 255) begin
if (addr == 128) begin

done = 1;
OutOfBound = 0;
end
else begin
done = 0;
OoutOfBound = 0;
end
out = memladdr];
addr -= 1; ’

end
end

Chapter 6: SystemVerilog Procedural Statements 149

a do...while loop

SystemVerilog adds a do..while loop, as in C. With the

will execute at do...while loop, the control for the loop is tested at the end of each

least once

pass of the loop, instead of the beginning. This means that each
time the loop is encountered in the execution flow of a procedural
block, the loop statements will be executed at least once.

The basic syntax of a do...while loop is:

do <statement or statement block>
while (<conditions);

If the do portion of the loop contains more than one statement, the
statements must be grouped in a begin...end block. The while
statement comes after the block of statements to be executed. Note
that there is a semicolon after the while statement.

Because the statements within a do...while loop are guaranteed to
execute at least once, all the logic for setting the outputs of the loop
can be placed inside the loop. This bottom-testing behavior can
simplify the coding of while loops, making the code more concise
and more intuitive.

In the next example, the do...while loop will execute at least once,
thereby ensuring that the done, OutC£fBound, and out variables
are consistent with the inputs to the loop. No additional logic is
required before the start of the loop.

always comb begin
do begin

done = 0;

OutOfBound = 0;

out = mem[addr];

if (addr < 128 || addr > 255) begin
OutOfBound = 1;
out = mem([128];

end
else if (addr == 128) done = 1;
addr -= 1;

end

while (addr >= 128 && addr <= 255);
end

150 SystemVerilog for Design

6.4.1 Synthesis guidelines

Verilog while loops are generally synthesizable, with a number of
restrictions. These same restrictions apply to SystemVerilog’s
do...while loop. The restrictions allow synthesis compilers to stat-
ically determine how many times a loop will execute. Without
restrictions, the while loop and do...while loops can execute an
arbitrary number of times, until some expression evaluates as false.
Executing an arbitrary number of times requires run-time dynamics

that are not available to synthesis compilers.

6.5 New jump statements — break, continue, return

Verilog uses the disable statement as a way to cause the execu-
tion flow of a sequence of statements to jump to a different point in
the execution flow. Specifically, the disable statement causes the
execution flow to jump to the end of a named statement group, or to

the end of a task.

the disable The disable statement can be used a variety of ways. It can be
statementis used to jump to the end of a loop, and continue execution with the
both a continue pex¢ pags of the loop. The same disable statement can also be

and a break

used to prematurely break out of all passes of a loop. The multiple

usage of the same keyword can make it difficult to. read and main-
tain complex blocks of code. Two ways of using disable are illus-
trated in the next example. The effect of the disable statement is

determined by the placement of the named blocks being disabled.

// find first bit set within a range of bits
always @* begin
begin: loop
integer i;
first bit = 0;
for (i=0; 1i<=63; i=i+1l) begin: pass
if (i < start_range)
disable pass; // continue loop
if (i > end_range)
disable loop; // break out of loop
if (data[i]) begin
first_bit = i;
disable loop; // break out of loop
end
end // end of one pass of loop
end // end of the loop

Chapter 6: SystemVerilog Procedural Statements 151

// process data based on first bit set
end

the disable The disable statement can also be used to return early from a

statement can task, before all statements in the task have been executed.
be used as a
return task add_to_max (input [5:0] max,
output [63:0] result);
integer i;
begin
result = 1;
if (max == 0)
disable add_to_max; // exit task
for (i=1; 1<=63; i=i+1) begin
result = result + result;
if (i == max)
disable add_to_max; // exit task
end
end
endtask

The disable statement can also be used to externally disable a
concurrent process or task. An external disable is not synthesizable,
however.

continue, break SystemVerilog adds the C language jump statements: break, con-
and return tinue and return. These jump statements can make code more
statements inwjitive and concise. SystemVerilog does not include the C goto

statement.

An important difference between Verilog’s disable statement and
these new jump statements is that the disable statement applies to
all currently running invocations of a task or block, whereas break,
continue and return only apply to the current execution flow.

6.5.1 The continue statement

The continue statement jumps to the end of the loop and executes
the loop control, if present, like a continue statement in C. Using
the continue statement, it is not necessary to add named
begin...end blocks to the code, as is required by the disable
statement.

bit [15:0] array [0:255];

152 SystemVerilog for Design

always_comb begin
for (int i = 0; i <= 255; i++) begin : loop
if (arrayl[i] == 0)
continue; // skip empty elements
transform_function{arrayl[il);
end // end of loop
end

6.5.2 The break statement

The break statement terminates the execution of a loop immedi-
ately. The loop is not executed again unless the execution flow of
the procedural block encounters the beginning of the loop again, as
a new statement.

// find first bit set within a range of bits
always_comb begin
first_bit = 0;
for (int i=0; i<=63; i=i+1l) begin
if (i < start_range) continue;
if (i > end_range) break; // exit loop
if (datal[i]) begin
first_bit = 1i;
break; // exit loop
end
end // end of the loop
// process data based on first bit set
end

The SystemVerilog break statement is used in the same way as a
break in C to break out of a loop. C also uses the break statement
to exit from a switch statement. SystemVerilog does not use
break to exit a Verilog case statement (analogous to a C switch
statement). A case statement exits automatically after a branch is
executed, without needing to execute a break.

6.5.3 The return statement

SystemVerilog adds a C-like retuxrn statement, which is used to
return a value from a non-void function, or to return from a void
function or a task. The return statement can be executed at any
time in the execution flow of the task or function. When the
return is executed, the task or function exits immediately, without
needing to reach the end of the task or function.

Chapter 6: SystemVerilog Procedural Statements 153

task add_to_max (input [5:0] max,
output ([63:0] result);
result = 1;
if (max == 0) return; // exit task
for (int i=1; i<=63; i=i+1) begin
result = result + result;
if (i == max) return; // exit task
end
endtask

The return statement can be used to exit early from either a task
or a function. The Verilog disable statement can only cause a task
to exit early. It cannot be used with functions.

function automatic int log2 (input int n);
if (n <=1) return 1;

log2 = 0;
while (n > 1) begin
n = n/2;
log2++;
end
return log2;
endfunction

Note that the return keyword must not be followed by an expres-
sion in a task or void function, and must be followed by an expres-
sion in a non-void function.

6.5.4 Synthesis guidelines
The break, continue, and return jump statements are synthe-

sizable constructs. The synthesis results are the same as if a Verilog
disable statement had been used to model the same functionality.

6.6 Enhanced block names

Complex code will often have several nested begin...end state-
ment blocks. In such code, it can be difficult to recognize which
end is associated with which begin.

154 SystemVerilog for Design

code can have The following example illustrates how a single procedural block
several nested might contain several nested begin...end blocks. Even with proper
begliz}(.)ecrlg indenting and keyword bolding as used in this short example, it can

be difficult to see which end belongs with which begin.

Example 6-2: Code snippet with unnamed nested begin...end blocks

always ff @(posedge clock, posedge reset)
begin
bit breakVar;
if (reset) begin
// reset all outputs
end
else begin
case (SquatState)
wait_rx_valid:
begin
Rxready <= '1;
breakVar = 1;
for (int j=0; j<NumRx; j+=1) begin
for (int i=0; i<NumRx; i+=1) begin
if (Rxvalid[i] && RoundRobin[i] && breakVar)
begin
ATMcell <= RxATMcelll[i];
Rxready([i] <= 0;
SquatState <= wait_rx_not_valid;
breakVar = 0;

end
end
end
end
// process other SquatState states
endcase
end
end

named ends can Verilog allows a statement block to have a name, by appending
be paired With ; <name> after the begin keyword. The block name creates a local
named begins hierarchy scope that serves to identify all statements within the
block. SystemVerilog allows (but does not require) a matching
block name after the end keyword. This additional name does not
affect the block semantics in any way, but does serve to enhance
code readability by documenting which statement group is being

completed.

Chapter 6: SystemVerilog Procedural Statements 155

To specify a name to the end of a block, a :<name> is appended
after the end keyword. White space is allowed, but not required,
before and after the colon.

begin: <block_name>
end: <block_name>

The optional block name that follows an end must match exactly
the name with the corresponding begin. It is an error for the corre-
sponding names to be different.

The following code snippet modifies example 6-2 on the previous

page by adding names to the begin...end statement groups, help-
ing to make the code easier to read.

Example 6-3: Code snippet with named begin and named end blocks

always ff @(posedge clock, posedge reset)
begin: FSM_procedure
bit breakVar;
if (reset) begin: reset logic
// reset all outputs
end: reset_logic
else begin: FSM_sequencer
unique case (SquatState)
wait_rx valid:
begin: rx valid_state
Rxready <= '1;
breakvar = 1;
for (int j=0; j<NumRx; j+=1) begin: loopl
for (int i=0; i<NumRx; i+=1) begin: loop2
if (Rxvalid{i] && RoundRobin[i] && breakVar)
begin: match
ATMcell <= RxXATMcell [i];
Rxready [i] <= 0;
SquatState <= wait_rx not_valid;
breakvVar = 0;
end: match
end: loop2
end: loopl
end: rx valid state
// process other SquatState states
endcase
end: FSM_sequencer
end: FSM_procedure

156

SystemVerilog for Design

6.7 Statement labels

a named block
identifies a
group of
statements

a statement
label identifies a
single statement

a labeled
statement
creates a name
scope

a statement
block can have
anameora
label

In addition to named blocks of statements, SystemVerilog allows a
label to be specified before any procedural statement. Statement
labels use the same syntax as C:

<label> <statement>

A statement label is used to identify a single statement, whereas a
named statement block identifies a block of one of more statements.

: decode_block
(opcode)

always comb begin
decoder : case
2'b00:
outer loop: for (int i=0; i<=15; i++)
inner loop: for (imt j=0; j<=15; Jj++)

/...
// decode other opcode values
endcase
end : decode block

Statement labels document specific lines of code, which can help
make the code more readable, and can make it easier to reference
those lines of code in other documentation. Statement labels can
also be useful to identify specific lines of code for debug utilities
and code coverage analysis tools. Statement labels also allow state-
ments to be referenced by name. A statement that is in the process
of execution can be aborted using the disable statement, in the
same way that a named statement group or task can be disabled.

Statement blocks

A begin...end block is a statement, and can therefore have either a

statement label or a block name.
begin: blockl // named block

end: blockl

block2: begin // labeled block
end

It is illegal to give a statement block both a label and a block name.

Chapter 6: SystemVerilog Procedural Statements 157

0.8 Enhanced case statements

The Verilog case, casex, and casez statements allow the selec-
tion of one branch of logic out of multiple choices. For example:

always_ comb

case (opcode) case express1on

2'b00: Yy = a + b;
case selection| 2'b01: Yy = a - b;
items 2'bl0: y =a * b;
2'bll: y = a / b;

endcase

The expression following the case, casex, or casez keyword is
referred to as the case expression. The expressions to which the
case expression is matched are referred to as the case selection
items.

simulation and The Verilog standard specifically defines that case statements must
synthesis might evaluate the case selection items in the order in which they are
interpret case jisroq This infers that there is a priority to the case items, the same
statements . . , . L

differently 28 in a series of if...else...if decisions. Software tools such as
synthesis compilers will typically try to optimize out the additional
logic required for priority encoding the selection decisions, if the
tool can determine that all of the selection items are mutually exclu-

sive.

SystemVerilog provides special unique and priority modifiers
to case, casex, and casez decisions. These modifiers allow an
engineer to explicitly state that the decision sequence must be
maintained (priority), or that software tools can optimize out the
priority-encoded logic (unique). These modifiers are placed before
the case, casex, or casez keywords:

unigue case

priority case

6.8.1 Unique case decisions

a unique case The unique modifier indicates that the order of the case selection

can b? items is not significant, and the selections can be evaluated in paral-

evaluated ’”l lel. Software tools can optimize out the inferred priority of the
paralle selection order. For example:

158

SystemVerilog for Design

a unique case
cannot have
overlapping
conditions

always_comb
unique case (opcode)

2'b00: y = a + b;

2’b01: y = a - b;

2'bl10: y =a * b;

2'bll: y = a / b;
endcase

Checking for unique conditions

When a case, casex, or casez statement is specified as unique,
software tools must perform additional semantic checks to verify
that each of the case selection items is mutually exclusive. If a case
expression value occurs during run time that could match more than
one case selection item, the tool will generate a run-time error mes-

sage.

In the following code snippet, a casez statement is used to allow
specific bits of the selection items to be excluded from the compar-
ison with the case expression. When specifying don’t care bits, it is
casy to inadvertently specify multiple case selection items that
could be true at the same time. In the example below, there are sev-
eral potential overlapping case selection items: the first and third
selection items could both be true, the first and fourth selection
items could both be true, the second and third selection items could
both be true, and the second and fourth selection items could both

be true.

always_comb
casez (select)

2'bl?: y = a + b;

2'b0?: y = b - b;

2'b?0: y a * b; // overlaps previous items

2'b?1: y = a / b; // overlaps previous items
endcase

In the preceding example, the casez statement will compile with-
out an error. If a case expression value could match more than one
case selection item, then only the first matching branch is executed.
No run-time error is generated to alert the designer or verification
engineer of a potential design error.

When the unique modifier is added, software tools will generate
an error any time a case expression matches multiple case items.

Chapter 6: SystemVerilog Procedural Statements 159

a unique case
must specify all
conditions

always_comb

unique casez (select)
2'bl?: vy = a + b;
2'b0?: y = b - b;
2'b?0: y = a * b; // ERROR due to overlap
2'b?1: y = a / b; // ERROR due to overlap
endcase

@ Software tools may report an overlap error in unique case
expression items at compile time, if the case items are all

constant expressions.

Detecting incomplete case selection lists

When a case, casex, or casez statement is specified as unique,
software tools will issue a run-time error if the value of the case
expression does not match any of the case selection items, and there
is no default case.

The following example will result in a run-time error if, during sim-
ulation, opcode has a value of 3, 5, 6 or 7:

bit [2:0] opcode; // 3-bit wide vector

always comb
unigue case (opcode)
3'b000: vy = a + b;

3'b001: y = a b;
3'b010: y = a * b;
3'b100: y = a / b;

endcase

Using unique case with always_comb

Both always_comb and unique case help ensure that the logic of
a procedural block can be realized as combinational logic. There
are differences in the checks that unique case performs and the
checks that always_comb performs. The use of both constructs
helps ensure that complex procedural blocks will synthesize as the
intended logic.

A unique case statement performs run-time checks to ensure that
every case expression value that occurs matches one and only one
case selection item, so that a branch of the case statement is exe-
cuted for every occurring case expression value. An advantage of

160

SystemVerilog for Design

6.8.2

a priority case
must evaluate in
order

a priority case
must specify all
conditions

run-time checking is that only the actual values that occur during
simulation will be checked for errors. A disadvantage of run-time
checking is that the quality of the error checking is dependent on
the thoroughness of the verification tests.

The always_comb procedural block has specific semantic rules to
ensure combinational logic behavior during simulation (refer to
sections 5.2.1 on page 108). Optionally, software tools can perform
additional compile-time analysis of the statements within an
always_comb procedural block to check that the statements con-
form to general guidelines for modeling combinational logic. Hav-
ing both the static checking of always_comb and the run-time
checking of unique case helps ensure that the designer’s intent
has been properly specified.

Priority case statements

The priority modifier indicates that the order of the case selec-
tion items is important. Software tools must maintain the priority of
the decision order. For example:

always_comb
priority case (1'bl)
irg0: irg = 4'b0001;
irgl: irg = 4'b0010;

irg2: irg = 4'b0100;
irg3: irqg = 4'b1000;
endcase

Because the model explicitly states that case selection items must
be evaluated in order, all software tools will maintain the inferred
priority encoding. Synthesis compilers will not try to optimize out
the priority encoding when the priority modifier is specified.

Preventing unintentional latched logic

When the priority modifier is specified with a case, casex, or
casez statement, all values of the case expression that occur during
run time must have at least one matching case selection item. If
there is no matching case selection item, a run-time error will
occur. This ensures that when the case statement is evaluated, one,
and only one, branch will be executed. The logic represented by the
case statement can be implemented as combinational logic, without

latches.

Chapter 6: SystemVerilog Procedural Statements 161

6.8.3 Unique and priority versus parallel_case and full_case

The IEEE 1364.1 synthesis standard! for Verilog specifies special
commands, referred to as pragmas, to modify the behavior of syn-
thesis compilers. The 1364.1 pragmas are specified using the Ver-
ilog attribute construct. Synthesis compilers also allow pragmas to
be hidden within Verilog comments.

synthesis One of the pragmas specified in the Verilog synthesis standard is
parallel_case parallel case. This instructs synthesis compilers to remove pri-
Pragma ority encoding, and evaluate all case selection items in parallel.

always_ comb
(* synthesis, parallel_case *)
case (opcode)

2'b00: y = a + b;

2'b01: y = a - b;

2'b10: y = a * b;

2'bl1l: y = a / b;
endcase

synthesis Another pragma is full case. This pragma instructs the synthesis

full_case compiler that, for all unspecified case expression values, the out-

pragma nuts assigned within the case statement are unused, and can be opti-
mized out by the synthesis compiler.

always comb
(* synthesis, full_case *)
case (State)

3'b001: NextState = 3‘b010;
3'b010: NextState = 3'b100;
3'bl00: NextState = 3/'b001;

endcase

unique and priority do more than synthesis pragmas

The SystemVerilog unique and priority decision modifiers do
more than the parallel case and full case pragmas. These
modifiers reduce the risk of mismatches between software tools,
and provide additional semantic checks that can catch potential
design problems much earlier in the design cycle.

1. 1364.1-2002 IEEE Standard for Verilog Register Transfer Level Synthesis. See page xxvii of
this book for details.

162

SystemVerilog for Design

unique case
enforces
semantic rules

priority case can
prevent
mismatches

The unique case modifier combines the functionality of both the
parallel case and full_case pragmas, plus added semantic
checking. The 1364.1 Verilog synthesis standard states that the
parallel case pragma will force a parallel evaluation, even if
more than one case selection item will evaluate as true. This could
result in more than one branch of a case statement executing at the
same time. A case statement modified with unique will generate
errors for overlapping case selection items. This ensures that a par-
allel evaluation of the case statement will execute only one branch
of the case statement. The unique modifier also performs run-time
checks to help ensure that all possible case expression values have a
matching case selection item. The parallel_case pragma does
not impose any checking on the case selection items.

The priority modifier provides the functionality of the
full case synthesis pragma, plus additional semantic checks.
When the full case pragma is used, no assignment is made to
the outputs of the case statement for the unspecified values of the
case expression. In RTL simulations, these outputs will be
unchanged, and reflect the value of previous assignments. In the
gate-level design created by synthesis, the outputs will be driven to
some optimized value. This driven value can be, and likely will be,
different than the value of the outputs in the RTL model. This dif-
ference can result in mismatches between pre-synthesis RTL simu-
lations and post-synthesis gate-level simulations, if an unspecified
case expression value is encountered. Equivalence checkers will
also see a difference in the two models.

The semantic checks provided by the unique and priority mod-
ifiers help ensure that the logic within a case, casex, Or casez
statement will behave consistent with the intent specified by the
designer. These restrictions can prevent subtle, difficult to detect
logic errors within a design.

The unique and priority modifiers are part of the language,
instead of being an informational synthesis pragma (which is an
attribute or comment). As part of the language, simulation, synthe-
sis compilers, formal verification tools, lint checkers and other soft-
ware tools can apply the same semantic rules, ensuring consistency
across various tools. Synthesis pragmas modify how synthesis
interprets the Verilog case statements, but they do not affect simu-
lation semantics and might not affect the behavior of other software
tools. This can lead to mismatches in how different tools interpret
the same case statement.

Chapter 6: SystemVerilog Procedural Statements 163

6.9AEnhanced if...else decisions

simulation and
synthesis might
interpret if...else
differently

6.9.1

a unique if...else
can be
evaluated in
parallel

SystemVerilog extends the unique and priority decision modi-
fiers to also work with if...else decisions. These modifiers can
also reduce ambiguities with this type of decision, and can trap
potential design errors early in the modeling phase of a design.

The Verilog if...else statement is often nested to create a series of
decisions. For example:

bit [2:0] sel;

always comb begin

if (sel == 3'b001) mux_out = a;

else if (sel == 3'b010) mux_out = b;

else if (sel == 3'b100) mux_out = c;
end

In simulation, a series of i £...else...i £ decisions will be evaluated
in the order in which the decisions are listed. To maintain the same
ordering in hardware implementation, priority encoded logic would
be required. Often, however, the specific order is not essential in
the desired logic. The order of the decisions is merely the way the
engineer happened to list them in the source code. Software tools
such as synthesis may try to infer whether or not the priority-
encoded logic is really necessary, and optimize the logic to parallel
evaluations when the software tool deems that evaluation order is
not essential to the logic functionality,

Unique if...else decisions

The unique modifier indicates that the order of the decisions is not
important. Software tools can optimize out the inferred priority of
the decision order. For example:

bit [2:0] sel;

always_comb begin

unique if (sel == 3'b001) mux_out = a;
else if (sel == 3’b010) mux_out = b;
else if (sel == 3'b100) mux_out = c;

end

164

SystemVerilog for Design

a unique if...else
cannot have
overlapping
conditions

a unique if...else
warns of
unspecified
conditions

Checking for unique conditions

Software tools will perform checking on a unique if decision
sequence to ensure that all decision conditions in a series of
if..else..if decisions are mutually exclusive. This allows the
decision series to be executed in parallel, without priority encoding.
A software tool will generate an error if it determines that more
than one condition is true, or can be true. This error message can
occur at either compile time or run-time. This additional checking
can help detect modeling errors early in the verification of the
model.

In the following example, there is an overlap in the decision condi-
tions. Any or all of the conditions for the first, second and third
decisions could be true at the same time. This means that the deci-
sions must be evaluated in the order listed, rather than in parallel.
Because the unique modifier was specified, software tools can
generate an error that the decision conditions are not mutually

exclusive.

bit [2:0] sel;

always_comb begin

unique if (sel[0]) mux_out = a;
else if (sel(1l]) mux_out = b;
else if (sel([2]) mux out = ¢;

end

Preventing unintentional latched logic

When the unique modifier is specified with an if decision, soft-
ware tools are required to generate a run-time warning if the if
statement is evaluated and no branch is executed. The following
example would generate a run-time warning if the unique
if..else..if sequence is entered and sel has any value other
than 1, 2 or 4.

always comb begin

unique if (sel == 3'b001) mux_out = a;
elgse if (sel == 3'b010) mux out = b;
else if (sel == 3’'b100) mux_out = c;

end

This run-time semantic check guarantees that all conditions in the
decision sequence that actually occur during run time have been

Chapter 6: SystemVerilog Procedural Statements 165

6.9.2

a priority if...else
must evaluate in
order

a priority if...else
must specify all
conditions

fully specified. When the decision sequence is evaluated, one
branch will be executed. This helps ensure that the logic repre-
sented by the decisions can be implemented as combinational logic,
without the need for latches.

Priority if decisions

The priority modifier indicates that the order of the decisions is
important. Software tools must maintain the order of the decision
sequence. For example:

always_comb begin

priority if (irq0) irqg = 4'b0001;
else if (irgl) irg = 4'b0010;
else if (irq2) irg = 4'b0100;
else if (irg3) irg = 4'b1000;

end

Because the model explicitly states that the decision sequence
above must be evaluated in order, all software tools will maintain
the inferred priority encoding. The priority modifier ensures
consistent behavior from software tools. Simulators, synthesis com-
pilers, equivalence checkers, and formal verification tools will all
interpret the decision sequence in the same way.

Preventing unintentional latched logic

As with the unique modifier, when the priority modifier is
specified with an if decision, software tools will perform run-time
checks that a branch is executed each time an if..else..if
sequence is evaluated. A run-time error will be generated if no
branch of a priority if..else...if decision sequence is exe-
cuted. This helps ensure that all conditions in the decision sequence
that actually occur during run time have been fully specified, and
that when the decision sequences are evaluated, one, and only one,
branch will be executed. The logic represented by the decision
sequence can be implemented as priority-encoded combinational
logic, without latches.

Synthesis guidelines

An if._.else..if decision sequence that is qualified with unique
or priority is synthesizable.

166 SystemVerilog for Design

6.10 Summary

A primary goal of SystemVerilog is to enable modeling large, com-
plex designs more concisely than was possible with Verilog. This
chapter presented enhancements to the procedural statements in
Verilog that help to achieve that goal. New operators, enhanced
for loops, bottom-testing loops, and unique/priority decision
modifiers all provide new ways to represent design logic with effi-
cient, intuitive code.

Chapter 7
Modeling Finite State
Machines with SystemVerilog

ystemVerilog enables modeling at a higher level of abstraction
S through the use of 2-state data types, enumerated types, and
user-defined types. These are complemented by new specialized
always procedural blocks, always comb, always ff and
always_latch. These and other new modeling constructs have
been discussed in the previous chapters of this book.

This chapter shows how to use these new levels of model abstrac-
tions to effectively model logic such as finite state machines, using
a combination of enumerated types and the procedural constructs
presented in the previous chapters. Using SystemVerilog, the cod-
ing of finite state machines can be simplified and made easier to
read and maintain. At the same time, the consistency of how differ-
ent software tools interpret the Verilog models can be increased.

This SystemVerilog features presented in this chapter include:

» Using enumerated types for modeling Finite State Machines
« Using enumerated types with FSM case statements
* Using always_comb with FSM case statements

* Modeling reset logic with enumerated types and 2-state data
types

168

SystemVerilog for Design

7.1 Modeling state machines with enumerated types

enumerated
types have
restricted values

enumerated
types allow
abstract FSM
models

Section 3.2 on page 52 introduced the enumerated type construct
that SystemVerilog adds to the Verilog language. This section pro-
vides additional guidelines on using enumerated types for modeling
hardware logic such as finite state machines.

Enumerated types provide a means for defining a variable that has a
restricted set of legal values. The values are represented with names
instead of digital logic values.

Enumerated types allow modeling at a higher level of abstraction,
and yet still represent accurate, synthesizable, hardware behavior.
Example 7-1 models a simple finite state machine (FSM), using a
typical three-procedural block modeling style: one procedural block
for incrementing the state machine, one procedural block to deter-
mine the next state, and one procedural block to set the state
machine output values. The example illustrates a simple traffic light
controller. The three possible states are represented as enumerated
type variables for the current state and the next state of the state
machine.

By using enumerated types, the only possible values of the State
and Next variables are the ones listed in their enumerated type lists.
The unique modifier to the case statements in the state machine
logic helps confirm that the case statements cover all possible val-
ues of the State and Next variables (unique case statements are
discussed in more detail in section 6.8.1 on page 157).

Example 7-1: A finite state machine modeled with enumerated types

module traffic_light (output bit green_light,

yellow_light,
red light,
input sensor,
input (15:0] green_downcnt,
yellow_downcent,
input clock, resetN);

enum {RED, GREEN, YELLOW} State, Next;

always ff @(posedge clock, negedge resetN)
if (!resetN) State <= RED; // reset to red light

else

State <= Next;

Chapter 7: Modeling Finite State Machines with SystemVerilog

169

always comb begin: set _next_state
Next = State; // the default for each branch below

unigue case (State)

RED: if (sensor) Next = GREEN;

GREEN: if (green_downcnt == 0) Next = YELLOW;

YELLOW: if (yellow_downcnt == 0) Next = RED;
endcase

end: set_next_state

always comb begin: set outputs
{green light, yellow light, red_light} = 3'b000;
unique case (State)
RED: red_light = 1'bl;
GREEN: green light 1'b1;
YELLOW: yellow light = 1'bl;
endcase
end: set_outputs

)}

endmodule

7.1.1 Representing state encoding with enumerated types

The preceding example does not define any specific binary logic
values for the names in the enumerated type list for State and
Next. This is one of the advantages of enumerated types. The logic
is represented at an abstract level, without having to specify imple-
mentation details.

enumerated SystemVerilog’s enumerated types also allow modeling at a lower
types can have level of abstraction, so that specific state machine architectures can
one-hot or other pe represented. The digital logic value of each name in an enumer-

encoding

ated type list can be specified. This allows explicitly representing
one-hot, one-cold, Gray code, or any other type of state sequence
encoding desired.

Example 7-2 modifies the preceding example to explicitly represent
one-hot encoding in the state sequencing. The only change between
example 7-1 and example 7-2 is the definition of the enumerated
type values. The rest of the state machine logic remains at an
abstract level, using the names of the enumerated values.

170 SystemVerilog for Design

Example 7-2: Specifying one-hot encoding with enumerated types

module traffic light (output bit green_light,
yellow_light,
red_light,
input sensor,
input [15:0] green downcnt,
yellow downcecnt,
input clock, resetN);

]

enum bit [2:0] {RED 3'b001,
GREEN = 3'Db010,
YELLOW = 3‘b100} State, Next;

always ff @(posedge clock, negedge resetN)
if (!resetN) State <= RED; // reset to red light
else State <= Next;

always_comb begin: set_next_state
Next = State; // the default for each branch below
unique case (State)

RED: if (sensor) Next = GREEN;

GREEN: if (green_downcnt == 0) Next = YELLOW;

YELLOW: if (yellow_downcnt == 0) Next = RED;
endcase

end: set_next_state

always_comb begin: set_outputs
{green_light, yellow_light, red_light} = 3'b000;
unique case (State)

RED: red_light = 1'bl;
GREEN: green_light = 1'Dbl;
YELLOW: yellow_light = 1’bl;
endcase
end: set_outputs
endmodule

7.1.2 Reversed case statements with enumerated types

The typical use of a case statement is to specify a variable as the
case expression, and then list explicit values to be matched as the
list of case selection items. This is the modeling style shown in the
previous two examples.

Chapter 7: Modeling Finite State Machines with SystemVerilog 171

one-hot state Another style for modeling one-hot state machines is the reversed
machines can case statement. In this style, the case expression and the case selec-
use reversed (ion items are reversed. The case expression is specified as the lit-
case statements eral value to be matched, which is a 1-bit value of 1 for one-hot
state machines. The case selection items are each bit of the state
variable. In some synthesis compilers, using the reversed case style
for one-hot state machines will yield more optimized synthesis

results than the standard style of case statements.

Example 7-3 illustrates using a reversed case statement style. In this
example, a second enumerated type variable is declared that repre-
sents the index number for each bit of the one-hot State register.
The name R_BIT, for example, has a value of 0, which corresponds
to bit 0 of the State variable (the bit that represents the RED state).

Example 7-3: One-hot encoding with reversed case statement style

module traffic_light (output bit green_light,
yellow_light,
red light,
input sensor,
input {15:0] green_downcnt,
yellow_downent,
input clock, resetN);

enum {R_BIT = 0, // index of RED state in State register

G _BIT = 1, // index of GREEN state in State register
Y BIT = 2} state bit;

enum {RED = 1<<R_BIT, // shift a 1 to that state’s bit
GREEN = 1l<<G_BIT,
YELLOW = 1<<Y_BIT} State, Next;

always_ff @(posedge clock, negedge resetN)
if (!resetN) State <= RED; // reset to red light
else State <= Next;

always_comb begin: set next_state
Next = State; // the default for each branch below
unique case (1'bl) // reversed case statement

State[R_BIT]: if (sensor) Next = GREEN;

State[G_BIT}: if (green_downcnt == 0} Next = YELLOW;

State[Y BIT}: if (yellow_downcnt == 0) Next = RED;
endcase

end: set_ next_state

172

SystemVerilog for Design

always_comb begin: set_outputs
{red_light, green_light, yellow light} = 3'b000;
unique case (1’'bl) // reversed case statement

State[R_BIT]: red_light = 1;
State[G_BIT]: green_ light = 1;
Statel[Y BIT}: yellow_light = 1;

endcase

end: set_outputs

endmodule

7.1.3 Enumerated types and unique case statements

unique case
reduces the
ambiguities of
case statements

The use of the unique modifier to the case statement in the preced-
ing example is important. Since a one-hot state machine only has
one bit of the state register set at a time, only one of the case selec-
tion items will match the literal value of 1 in the case expression.
The unique modifier to the case statement specifies three things.

First, unique case specifies that all case selection items should be
evaluated in parallel, without priority encoding. Software tools
such as synthesis compilers can optimize the decoding logic of the
case selection items to create smaller, more efficient implementa-
tions. This aspect of unique case is the same as synthesis

parallel case pragma.

Second, unique case specifies that there should be no overlap in
the case selection items. During the run-time execution of tools
such as simulation, if the value of the case expression satisfies two
or more case selection items, a run-time error will occur. This
semantic check can help trap design errors early in the design pro-
cess. The synthesis parallel case pragma does not provide this
important semantic check.

Third, unique case specifies that all values of the case expression
that occur during simulation must be covered by the case selection
items. This is similar to the full_case pragma for synthesis, but
the synthesis pragma does not require that other tools perform any
checking. With unique case, if a case expression value occurs
that does not cause a branch of the case statement to be executed, a
run-time error will occur. This semantic check can also help trap
design errors much earlier in the design cycle.

Chapter 7: Modeling Finite State Machines with SystemVerilog 173

7.1.4

standard data
types can have
unused values

a default
assignment of X
can cover
unused
conditions

assigning an X
can cause
mismatches

Specifying unused state values

As an enumerated type, the State variable has a restricted set of
values. Had a built-in data type, such as bit or logic, been used
for the State variable, many other values would have been possi-
ble. A finite state machine with three states requires a 3-bit state
register for one-hot encoding. This 3-bit register can contain 8§ pos-
sible values. A built-in data type variable such as bit or logic can
represent all 8 of these values. There are two common modeling
styles to indicate that some values of the case expression are not
used: specify a default case selection with a logic X assignment, or
specify a special synthesis full case pragma. These two styles
are discussed in more detail in the following paragraphs.

Using X as a default assignment

A common coding style with case statements is to specify a
default statement to cover all unused values of the case expres-
sion. This default statement assigns a logic X to the variables
representing the outputs of the case statement. In the FSM example
from above, the case expression is the current state variable,
State, and the output of the case statement is the next state vari-
able, Next.

// case statement without enumerated types
logic [2:0] State, Next;

case (State)
3'b001: Next 3'b010;
3'b010: Next = 3'bl00;
3'’bl00: Next = 3'b001;
default: Next = 3’'bXXX;
endcase

In simulation, should the current state variable become an unex-
pected value, the logic X assignment to the next state can serve as a
flag that something is wrong. Synthesis compilers recognize the
default assignment of logic X as an indication that any case expres-
sion value that falls into the default case is an unused value. The
logic for those unused values is optimized out of the synthesis
results.

Assigning a logic X as the default output value will appear as an X
value in RTL simulation. Synthesis compilers will treat the X
assignment as a don’t care and optimize out the unused state values.

174

SystemVerilog for Design

enumerated
lypes can
eliminate
unused
conditions

7.1.5

enumerated
types can only
be assigned
values in their
type set

Using logic X as a default assignment requires the use of 4-state
data types, such as reg or logic. 2-state data types such as bit
cannot store a logic X. Section 7.2.3 on page 180, discusses this in
more detail.

Enumerated types eliminate the need for using a logic X assign-
ment to show that not all case expression values are used. The enu-
merated type limits the values of its variables to just the values
listed in the enumerated value set. These are the only values that
need to be listed in the case statement. The defined set of values
that an enumerated type can hold, along with the additional unique
case semantic checking (discussed in section 7.1.3 on page 172)
help ensure that pre-synthesis RTL model and the post-synthesis
gate-level model are the same for both simulation and equivalence
checking.

As discussed in the preceding paragraphs, using unique case
combines the functionality of both the synthesis parallel_case
and full case pragmas. The unique case also provides seman-
tic checks to ensure that all values of an enumerated variable used
as a case expression truly meet the requirements to be implemented
as parallel, combinational logic. Any unintended or unexpected
case expression values will be trapped as run-time errors by a
unique case statement.

Assigning values to enumerated type variables

Enumerated types are strongly typed variables. They can only be
assigned a value that is a member of the type list of that enumerated
type. In example 7-2 on page 170, Next is first set to a default
value that is the same as the current State variable. Because
State and Next are of the same enumerated data type, it is legal to
assign one variable to the other. The case statement then changes
the default value of Next, if needed. The value assigned to Next is
one of the names from the enumerated type list of Next, which is
also a legal assignment.

Another common style when using one-hot state sequences is to
first clear the next state variable, and then set just the bit of Next
that indicates what the next state will be. This style will not work
with enumerated types. Consider the following code snippet:

Chapter 7: Modeling Finite State Machines with SystemVerilog 175

Example 7-4: Code snippet with illegal assignments to enumerated variables

enum {R BIT
G_BIT
Y BIT

enum {RED
GREEN
YELLOW

1]

il

0, // index of RED state in State register
1, // index of GREEN state in State register
2} state bit;

1<<R_BIT, // shift a 1 to that state’s bit
1l<<G_BIT,
l<<Y BIT} State, Next;

always comb begin: set next_state
Next = 3'b000; // clear Next - ERROR: ILLEGAL ASSIGNMENT

unique cas

e

(1'bl) // reversed case statement

// WARNING: FOLLOWING ASSIGNMENTS ARE POTENTIAL DESIGN ERRORS

State[R_BIT]: if (sensor == 1) Next [G_BIT] = 1;
State[G_BIT]: if (green_downcnt==0) Next[Y BIT] = 1;
State[Y_BIT]: if (yellow_downcnt==0) Next [R_BIT] = 1;

endcase

end: set_next state

There are two problems with the code snippet above. First, a default
assignment of all zeros is made to the Next variable. This value
does not exist in the enumerated list of values for Next, and will
therefore result in an error.

Second, within the case statements, assignments are made to indi-
vidual bits of the Next variable. Assigning to a discrete bit of an
enumerated variable may be allowed by compilers, but it is not a
good style when using enumerated types. By assigning to a bit of an
enumerated type variable, an illegal value could be created that is
not in the enumerated type list. This would result in design errors
that could be difficult to debug.

!e Assign an enumerated type variable a name from its enumerated
list, instead of a value.
TIP

Assignments to enumerated type variables should be from the list
of names for that type. Assigning literal values to an enumerated
type variable, or assigning to bit-selects or part-selects of an enu-
merated variable should be avoided. When assignments to bits of a

176

SystemVerilog for Design

variable are required, the variable should be declared as standard
type, such as bit or logic, instead of an enumerated type.

7.1.6 Performing operations on enumerated type variables

Enumerated types differ from most other Verilog data types in that
they are strongly typed variables. For example, it is illegal to
directly assign an integer value to an enumerated type. When an
operation is performed on an enumerated type variable, the value of
the variable is the data type of the names within the enumerated
type list. By default, this is an int data type, but can be explicitly
declared as other data types.

The following example will result in an error. The operation State
+ 1 will result in an int value. Directly assigning this int value to
the Next variable, which is an enumerated type variable, is illegal.

enum {RED, GREEN, YELLOW} State, Next;

Next = State + 1; // ILLEGAL ASSIGNMENT

This error can be overcome using type casting. SystemVerilog pro-
vides both a static cast operator and a dynamic cast system func-
tion.

typedef enum {RED, GREEN; YELLOW} states_t;
states_t State, Next;

Next = states_t’ (State + 1); // static cast
Scast (Next, State + 1); // dynamic cast

A static cast operation coerces an expression to a new data type
without performing any checking on whether the value coerced is a
valid value for the new data type. If, for example, the current value
of State were YELLOW, then State + 1 would result in an out-of-
bounds value. Using static casting, this out-of-bounds value would
not be trapped. The SystemVerilog standard allows software tools
to handle out-of-bounds assignments in a nondeterministic manner.
This means the new value of the Next variable in the preceding
static cast assignment could, and likely will, have different values
in different software tools.

A dynamic cast performs run-time checking on the value being
cast. If the value is out-of-range, then an error message is gener-

Chapter 7: Modeling Finite State Machines with SystemVerilog 177

ated, and the target variable is not changed. By using dynamic cast-
ing, inadvertent design errors can be trapped, and the design
corrected to prevent the out-of-bounds values.

SystemVerilog also provides a number of special enumerated type
methods for performing basic operations on enumerated type vari-
ables. These methods allow incrementing or decrementing a value
within the list of legal values for the enumerated type.

Next = State.next; // enumerated method

Section 3.2.8 on page 61 discusses the various enumerated methods
in more detail.

Each of these styles of changing an enumerated variable has advan-
tages. Assigning a value that is one of the names in the enumerated
type list is intuitive and requires no casting. The dynamic cast oper-
ator provides run-time errors for out-of-range values. Using the
enumerated type methods ensures the assigned value will always be
within the set of values in the enumerated type list. Static casting
does not perform any error checking, but can be resolved, and pos-
sibly optimized, at compile time.

7.2 Using 2-state data types in FSM models

7.2.1 2-state data type characteristics

SystemVerilog SystemVerilog adds several 2-state data types to the Verilog lan-
adds 2-state guage: bit (1-bit wide), byte (8-bits wide), shortint (16-bits
data types wide), int (32-bits wide) and longint (64-bits wide). These 2-
state types allow modeling designs at an abstract level, where tri-
state values are seldom required, and where circuit conditions that
can lead to unknown or unpredictable values—represented by a

logic X—rarely occur.

2-state and For the rare times that 4-state logic may be required at an abstract
4-state types modeling level, SystemVerilog allows freely mixing 2-state and 4-
can be mixed state data types within a module. This enables the designer to spec-
ify 2-state types for most of a design, where only 2-state based val-
ues are needed, and still use 4-state data types where tri-state buses

or other 4-state logic is required in the design.

178

SystemVerilog for Design

mapping 4-state
values to 2-state

Verilog is a loosely-typed language, and this characteristic is also
true for SystemVerilog’s 2-state data types. Thus, it is possible to
assign a 4-state value to a 2-state data type. When this occurs, the 4-
state value is mapped to 2-states as shown in the following table:

Table 7-1; Conversion of 4-state values to 2-state values

4-state Value Converts To
0 0
1 1
z 0
0

7.2.2 2-state data types versus 2-state simulation

tool-specific 2-
state modes

SystemVerilog
standardizes
mixing 2-state
and 4-state data
types

Some software tools, simulators in particular, offer a 2-state mode
for when the design models do not require the use of logic Z or X.
These 2-state modes allow simulators to optimize simulation data
structures and algorithms and can achieve faster simulation run
times. SystemVerilog’s 2-state data types permit software tools to
make the same types of optimizations. However, SystemVerilog’s
2-state data types have important advantages over 2-state simula-
tion modes.

The software tools that provide 2-state modes typically use an invo-
cation option to specify using the 2-state mode algorithms. Invoca-
tion options are often globally applied to all files listed in the
invocation command. This makes it difficult to have a mix of 2-
state logic and 4-state logic. Some software tools provide a more
flexible control, by allowing some modules to be compiled in 2-
state mode, and others in the normal 4-state mode. These tools may
also use tool-specific pragmas or other proprietary mechanisms to
allow specific variables within a module to be specified as using 2-
state or 4-state modes. All of these proprietary mechanisms are
tool-specific, and differ from one software tool to another. System-
Verilog’s 2-state data types give the designer a standard way to
specify which parts of a model should use 2-state logic and which
parts should use 4-state logic.

Chapter 7: Modeling Finite State Machines with SystemVerilog 179

SystemVerilog With 2-state simulation modes, the algorithm for how to map a
2-state to 4- logic Z or logic X value to a 2-state value is proprietary to the soft-
state mapping is ware tool, and is not standardized. Different simulators can, and do,
standardized map values differently. For example, some commercial simulators
will map a logic X to a 0, while others map a logic X to a 1. The dif-
ferent algorithms used by different software tools means that the
simulation results of the same model may not be the same. System-
Verilog’s 2-state data types have a standard mapping algorithm,

providing consistent results from all software tools.

SystemVerilog Another difference between 2-state modes and 2-state data types
2-state involves the initialization of a variable to its 2-state value. The
initialization is JEEE 1364 Verilog standard specifies that 4-state variables begin
standardized gimuylation with a logic X, indicating the variable has not been ini-
tialized. The first time the 4-state variable is initialized to a 0 or 1
will cause a simulation event, which can trigger other activity in the
design. Whether or not the event propagates to other parts of the
design depends in part on nondeterministic event ordering. Most of
the proprietary 2-state mode algorithms will change the initial value
of 4-state variables to be a logic 0 instead of a logic X, but there is
no standard on when the initialization occurs. Some simulators with
2-state modes will set the initial value of the variable without caus-
ing a simulation event. Other simulators will cause a simulation
event at time zero as the initial value is changed from X to 0, which
may propagate to other constructs sensitive to negative edge transi-
tions. The differences in these proprietary 2-state mode algorithms
can lead to differences in simulation results between different soft-
ware tools. The SystemVerilog 2-state variables are specifically
defined to begin simulation with a logic value of 0 without causing
a simulation event. This standard rule ensures consistent behavior
in all software tools.

SystemVerilog The Verilog casez and casex decision statements can be affected
2-state affects by 2-state simulation modes. The casez statement treats a logic Z
on casez and as a don'’t care value instead of high-impedance. The casex state-
casex is ment treats both a logic X and a logic Z as don’t care. When a pro-
standardized ietary 2-state mode algorithm is used, there is no standard to
define how casez and casex statements will be affected. Further-
more, since these simulation modes only change the 4-state behav-
ior within one particular tool, some other tool that might not have a
2-state mode might interpret the behavior of the same model differ-
ently. SystemVerilog’s standard 2-state data types have defined
semantics that provide deterministic behavior with all software

tools.

180

SystemVerilog for Design

7.2.3 Using 2-state types with case statements

At the abstract RTL level of modeling, logic X is often used as a
flag within a model to show an unexpected condition. For example,
a common modeling style with Verilog case statements is to make
the default branch assign outputs to a logic X, as illustrated in the
following code fragment:

case (State)
RESET: Next = WAIT;

WAIT: Next = LOAD;

LOAD: Next = DONE;

DONE: Next = WAIT;

default: Next = 4'bx; // unknown state
endcase

The default assignment of a logic X serves two purposes. Synthesis
treats the default logic X assignment as a special flag, indicating
that, for any condition not covered by the other case selection
items, the output value is “don’t care”. Synthesis will optimize the
decode logic for the case selection items, without concern for what
is decoded for case expression values that would fall into the
default branch. This can provide better optimizations for the explic-
itly defined case selection items, but at the expense of indetermi-
nate results, should an undefined case expression value occur.

Within simulation, the default assignment of logic X serves as an
obvious run-time error, should an unexpected case expression value
occur. This can help trap design errors in the RTL models. How-
ever, this advantage is lost after synthesis, as the post-synthesis
model will not output logic X values for unexpected case expres-
sion values.

Assigning a logic X to a 2-state variable is legal. However, the
assignment of a logic X to a variable will result in the variable hav-
ing a value of 0 instead of an X. If the State or Next variables are
2-state data types, and if a value of 0 is a legitimate value for State
or Next, then the advantage of using an X assignment to trap
design errors at the RTL level is lost. The default X assignment will
still allow synthesis compilers to optimize the decode logic for the
case selection items. This means that the post-synthesis behavior of
the design will not be the same, because the optimized decoding
will probably not result in a 0 for undefined case expression values.

Chapter 7: Modeling Finite State Machines with SystemVerilog 181

When enumerated types are used, an assignment of logic X to a
State or Next variable will only be legal if a value of all bits set to X
exists in the enumerated type list for the variable. Otherwise, the
assignment will be an out-of-bounds assignment, as discussed in
section 7.1.5 on page 174.

7.2.4 Resetting FSMs with 2-state and enumerated variables

At the beginning of simulation, 4-state data types are logic X.
Within a model such as a finite state machine, a logic X on 4-state
variables can serve as an indication that the model has not been
reset, or that the reset logic has not been properly modeled.

2-state data types begin simulation with a default value of logic 0
instead of an X. Since the typical action of reset is to set most vari-
ables to 0, it can appear that the model has been reset, even if there
is faulty reset logic.

Enumerated types begin simulation with a default value of the first
item in the enumerated list. If reset also sets enumerated values to
the first item in the list, then a similar situation can occur as with 2-
state variables. The design can appear to have been reset, even if
reset is never asserted, or if the reset logic has errors.

Asserting reset at the beginning of simulation

2-state variables and enumerated type variables begin simulation
with known values. A 2-state variable begins with a logic 0, and an
enumerated type variable begins with the first item in its enumera-
tion list. If a reset at the beginning of simulation sets these variables
to the same value as they begin simulation with, there will be no
transition to trigger other activity.

The following example will lock-up in the WAIT state. This is
because both the State and Next variables begin simulation with
the first value in their enumerated lists, which is WAIT. At every
positive edge of clock, State is assigned the value it already has,
and therefore no transition occurs. Since there is no transition, the
always @ (State) procedural block that decodes Next is not trig-
gered, and therefore Next is not changed from its initial value of
WAIT.

enum {WAIT, LOAD, STORE} State, Next;

182

SystemVerilog for Design

7.3 Summary

always @ (posedge clock, negedge resetN)
if (!lresetN) State <= WAIT;
else State <= Next;

always @(State)
case (State)

WAIT: Next = LOAD;

LOAD: Next = STORE;

STORE: Next = WAIT;
endcase

Applying reset does not fix this state lock-up problem. Reset
changes the State variable to WAIT, which is the same value that
State begins simulation with. Therefore there is no change to the
State variable and the next state decode logic is not triggered.
Next continues to keep its initial value, which is also WAIT.

This lock-up at the start of simulation can be fixed by replacing
always @(state) with the SystemVerilog always_comb proce-
dural block. An always_comb procedural block automatically exe-
cutes its statements once at simulation time zero, even if there were
no transitions on its inferred sensitivity list. By executing the
decode logic at time zero, the initial value of State will be
decoded, and the Next variable set accordingly. This fixes the start
of simulation lock-up problem.

This chapter has presented suggestions on modeling techniques
when representing hardware behavior at a more abstract level. Sys-
temVerilog provides several enhancements that enable accurately
modeling designs that simulate and synthesize correctly. These
enhancements help to ensure consistent model behavior across all
software tools, including lint checkers, simulators, synthesis com-
pilers, formal verifiers, and equivalence checkers.

Several ideas were presented in this section on how to properly
model finite state machines using these new abstract modeling con-
structs such as: 2-state date types, enumerated data types,
always_comb procedural blocks, and unique case statements.

Chapter 8
SystemVerilog

Design Hierarchy

his chapter presents the many enhancements to Verilog that
SystemVerilog adds for representing and working with design

hierarchy. The topics that are discussed include:

* Module prototypes

* Nested modules

+ Simplified netlists of module instances

* Netlist aliasing

* Passing values through module ports

* Port connections by reference

+ Enhanced port declarations

» Parameterized data types and polymorphism

» Variable declarations in blocks

184

SystemVerilog for Design

8.1 Module prototypes

module
instances need
more info to be
compiled

extern module
declarations

A module instance in Verilog is a straight-forward and simple
method of creating design hierarchy. For tool compilers, however,
it is difficult to compile a module instance, because the definition of
the module and its ports is in a different place than the module
instance. To complete the compilation process of a module
instance, the compiler must also at least parse the module definition
in order to determine the number of ports and the order of the ports
in the module definition.

SystemVerilog simplifies the compilation process by allowing
users to specify a prototype of the module being instantiated. The
prototype is defined using an extern keyword, followed by the
declaration of a module and its ports. Either the Verilog-1995 or the
Verilog-2001 style of module declarations can be used for the pro-
totype. The Verilog-1995 module declaration style is limited to
only defining the number of ports and port order of a module. The
Verilog-2001 module declaration style defines the number of ports,
the port order, the port vector sizes and the port data types. Verilog-
2001 style module declarations can also include a parameter list,
which allows parameterized ports. Examples of Verilog-1995 and
Verilog-2001 prototype declarations are:

// prototype using Verilog-1995 style
extern module counter (cnt, d, clock, resetN);

// prototype using Verilog-2001 style
extern module counter #(parameter N = 15)
(output logiec [N:0] cnt,
input wire [N:0] d,
input wire clock,
load
resetN) ;

Prototypes of a module definition also serve to document a design.
Large designs can be spread across dozens of source files. When
one file contains an instance of another module, some other file
needs to be examined to see the definition of the instantiated mod-
ule. A prototype of the module definition can be listed in the same
file in which the module is instantiated.

Chapter 8: SystemVerilog Design Hierarchy

185

prototypes are
local to the
containing
scope

8.1.1

prototype and
actual definition
must match

8.1.2

module
definition can
use .* shortcut

Extern module declaration visibility

The extern module declaration can be made in any module, at
any level of the design hierarchy. The declaration is only visible
within the scope in which it is defined. An external module declara-
tion that is made outside of any module boundary will be globally
visible. Any other module, anywhere in the design hierarchy can
instantiate the globally visible module.

In Verilog, modules can be instantiated before they are defined.
The prototype for a module is an alternative to the actual definition
in a compilation unit, and therefore uses a similar checking system.
It is not necessary for the extern declaration to be encountered
prior to an instance of the module.

Prototype and actual definition

SystemVerilog requires that the port list of an extern module dec-
laration exactly match the actual module definition, including the
order of the ports and the port sizes. It is a fatal error if there is any
mismatch in the port lists of the two definitions.

Avoiding port declaration redundancy

SystemVerilog provides a convenient shortcut to reduce source
code redundancy. If an extern module declaration exists for a
module, it is not necessary to repeat the port declarations as part of
the module definition. Instead, the actual module definition can
simply place the .* characters in the port list. Software tools will
automatically replace the .* with the ports defined in the extern
module prototype. This saves having to define the same port list
twice, once in the external module prototype, and again in the
actual module definition. For example:

extern module counter # (parameter N = 15)

(output logic [N:0] cnt,

input wire |[N:0] 4,

input wire clock,
load
resetN) ;

module counter (.*);
always @ (posedge clock, negedge resetN) begin
if (!resetN) cnt <= 0;

186

SystemVerilog for Design

else if (load) cnt <= d;
else cnt <= cnt + 1;
end
endmodule

In this example, using . * for the counter module definition infers
both the parameter list and the port list from the extern declara-
tion of the counter.

8.2 Named module end

A module is defined between the pair of keywords module and
endmodule. With the addition of nested modules, a parent module
can contain multiple endmodule declarations. This can make it dif-
ficult to read a large block of code, and determine visually which
endmodule is paired with which module declaration.

SystemVerilog allows a name to be specified with the endmodule
keyword, using the form:

endmodule : <module_ name>

The name specified with endmodule must be the same as the name
of the module with which it is paired.

Specifying a name with endmodule serves to make SystemVerilog
code self-documenting and easier to maintain. Several of the larger
SystemVerilog code examples in this book illustrate named module
ends.

SystemVerilog also allows an ending name to be specified with
other named blocks of code. These include the block pairs: inter-
face...endinterface, task..endtask, function..endfunc-
tion, begin..end, fork..join, fork..join_any and
fork...join_none.

Section 6.6 on page 153 discusses begin..end pairs and
fork...join pairs in more detail.

Chapter 8: SystemVerilog Design Hierarchy 187

8.3 Nested (local) module declarations

module names
are global

access to
module names
is not restricted

global names
can cause
conflicts

modules
declared within
modules

In Verilog, all module names, user-defined primitive (UDP) names,
and system task and system function names (declared using the
Verilog PLI) are placed in a global name scope. The names of these
objects can be referenced anywhere in the design hierarchy. This
global access to module names provides a simple yet powerful
mechanism for defining the design hierarchy. Any module can
instantiate any other module, without dependencies on file order
compilation.

However, Verilog’s global access to all elaborated module names
makes it impossible to limit access to specific modules. If a com-
plex Intellectual Property model, for example, contains its own
hierarchy tree, the module names within the IP model will become
globally accessible, allowing any other part of a design to directly
instantiate the submodules of the P model.

Verilog’s global access to all elaborated module names can also
result in naming conflicts. For example, if both the user’s design
and an IP mode! contained modules named FsM, there would be a
name collision in the global name scope. If multiple IP models are
used in the design, it is possible that a module name conflict will
occur between two or more IP models. A name conflict will require
that changes be made to either the IP model source code or the
design code.

Most software tools provide proprietary solutions for name scope
conflict. These solutions, however, usually require some level of
user input over the compilation and/or elaboration process. Verilog-
2001 adds a configuration construct to provide a standard solution
for allowing the same module name to be used multiple times, with-
out a conflict in the global module definition name scope. Configu-
rations, however, are verbose, and do not address the problems of
limiting where a module can be instantiated.

Nested (local) modules

SystemVerilog provides a simple and elegant solution for limiting
where module names can be instantiated, and avoiding potential
conflicts with other modules of the same name. The solution is to
allow a module definition to be nested within another module defi-

188

SystemVerilog for Design

nition. Nested modules are not visible outside of the hierarchy
scope in which they are declared. For example:

Example 8-1: Nested module declarations

module chip (input wire clock);
dreg il (clock);
ip_core i2 (clock);
endmodule: chip

module dreg (input wire clock);
endmodule: register
module ip core (input wire clock);
subl ul (...);
o)

sub2 u2 (
module subl(...);

I

endmodule: subl
module sub2(...);
endmodule: sub2

endmodule: ip_ core

// top level of design

// global module definition

// global module definition

// nested module definition

// nested module definition

The instantiated hierarchy tree for example 8-1 is:

chip

dreg

ip_core

sub1 sub2

Chapter 8: SystemVerilog Design Hierarchy 189

Nested module definitions can be in separate files

A very common modeling style with Verilog is to place the source
code for each module definition in a separate source file. Typically,
the file name is the same as the module name. This style, while not
a requirement of the Verilog language, is often used, because it
helps to develop and maintain the source code of large designs. If
several modules are contained in a single file, the source code
within that file can become unwieldy and difficult to work with.
Keeping each module in a separate file also facilitates the use of
revision control software as part of the design process. Revision
control tools allow specific users to check out specific files for
modification, and can track the revision history of that file. If many
modules are contained in the same file, revision control loses some
of its effectiveness.

!e- Use ‘include to avoid the convoluted code of multiple
TP modules in the same source code file.

Nesting module definitions can lead to the source code for the top-
level module spanning a large number of lines of code, with multi-
ple module definitions in a single file. In addition, a nested module
can become difficult to maintain, or to reuse in other designs, if the
source code of the nested module is buried within the top-level
module.

Using Verilog’s *include compiler directive with nested modules
can eliminate these potential drawbacks. The definition of each
nested module can be placed in a separate file, where it is easy to
maintain and to reuse. The top-level module can then include the
definitions of the nested module, using *include directives. This
helps make the top-level module more compact and easier to read.

For example:
module ip core (input bit clock);

‘include subl.v // subl is a nested module
‘include sub2.v // sub2 is a nested module

endmodule

190

SystemVerilog for Design

8.3.1

nested module
names are not
global

nested module
hierarchy paths

nested modules
can instantiate
other modules

module subl(...}); // stored in file subl.v

endmodule

module sub2{...)}; // stored in file sub2.v

endmodule

Nested module name visibility

The names of nested modules are not placed in the global module
definition name scope with other module names. Nested module
names exist in the name scope of the parent module. This means
that a nested module can have the same name as a module defined
elsewhere in a design, without any conflict in the global module
definition name scope.

Because the name of a nested module is only visible locally in the
parent module, the nested module name can only be instantiated by
the parent module, or the hierarchy tree below the nested module. A
nested module name cannot be instantiated anywhere else in a
design hierarchy. In example 8-1, above, the modules chip, dreg,
and ip_core are in the global name scope. These modules can be
instantiated by any other module, anywhere in the design hierarchy.
Modules subl and sub2 are nested within the definition of the
ip_core module. These module names are local names within
ip_core, and can only be instantiated in ip_core, or by the mod-
ules that are instantiated in ip_core.

Nested modules have a hierarchical scope name, the same as with
any module instance. Variables, nets, and other declarations within
a nested module can be referenced hierarchically for verification
purposes, just as with declarations in any other module in the
design.

Nested modules can instantiate other modules

A nested module can instantiate other modules. The definitions of
these modules can be in three name scopes: the global module defi-
nition name scope, the parent of the nested module, or within the
nested module (as another nested module definition).

Chapter 8: SystemVerilog Design Hierarchy 191

8.3.2 Instantiating nested modules

nested modules A nested module is instantiated in the same way as a regular mod-
are instantiated ule. Nested modules can be explicitly instantiated any number of
the same as times within its parent. It can also be instantiated anywhere in the
regular modules hjerarchy tree below the parent module. The only difference
between an instance of a nested module and a regular module is that
the nested module can only be instantiated in the hierarchy tree at
or below its parent module, whereas a regular module can be

instantiated anywhere in the design hierarchy.

In the following example, module ip core has three nested mod-
ule definitions: subl, sub2, and sub3. Even though the nested
module definitions are local to ip_core, hierarchically, these
nested modules are not all direct children of ip_core. In this
example, ip_core instantiates module subl, subl instantiates
sub2, and sub2 instantiates sub3,

Example 8-2: Hierarchy trees with nested modules

module ip core (input clock) ;

subl ul (...); // instance of nested module subl

module subl (...); // nested module definition
sub2 u2 ();

endmodule: subl

module sub2; // nested module definition
// sub2 does not have ports, but will look in its source
// code parent module (ip_core) for identifiers
sub3 u3 (...);

endmodule: sub2

module sub3 (...); // nested module definition

endmodule: sub3

endmodule: ip_core

192

SystemVerilog for Design

8.3.3

nested modules
have a local
scope

nested modules
can reference
names in their
parent module

modules that
are not nested
search upward
in the
instantiation tree

The instantiated hierarchy tree for example 8-2 is:

ip_core

sub1

sub2

sub3

Nested module name search rules

A nested module has its own name scope, just as with regular mod-
ules. Nested modules can be defined either with ports or without
ports. The port names of a nested module become local names
within the nested module. Any nets, variables, tasks, functions or
other declarations within a nested module are local to that module.

Nested modules have a different name search rule than regular
modules. Semantically, a nested module is similar to a Verilog task,
in that the nested module has visibility to the signals within its par-
ent. As with a task, if a name is referenced that is not in the local
scope of the nested module, that name will be searched for in the
parent module. If a name is referenced that is not local to the nested
module and also does not exist in the parent module, the compila-
tion-unit scope will be searched. This allows a nested module to
reference variables, constants, tasks, functions, and user-defined
types that are defined externally, in the compilation-unit.

It is important to note that the upward searching of a nested module
is different than the upward searching rules of modules that are not
nested. A module that is not nested is in the global module defini-
tion scope. There is no source code parent. When a module that is
defined in the global module definition scope references an identi-
fier (such as a variable name or function, that is not declared within
the module) the name search path uses the instantiation hierarchy
tree, including the compilation-unit scope.

Chapter 8: SystemVerilog Design Hierarchy 193

nested modules
search upward
in the source
code

A nested module definition, on the other hand, does have a source-
code parent. When an identifier is referenced within a nested mod-
ule that is not defined within the nested module, the search path is
to look in the parent module where the nested module is defined,
rather than where the module is instantiated.

§.4 Siﬂplliiﬁed netlists of module instances

netlists connect
module
instances
together

using port order
to connect
module
instances

A netlist is a list of module instances, with nets connecting the ports
of the instances together. Netlists are used at many levels of design,
from connecting major blocks together at a high-level of abstrac-
tion, to connecting together discrete components, such as ASIC
cells or gates at a detailed implementation level. Netlists are often
generated from software tools, such as synthesis compilers; but
netlists are also often defined by hand, such as when connecting
major design blocks together. Even at the block level, with abstract
high-level models, netlists can often be quite large, with a high
potential for connection errors that can be difficult to debug.

The Verilog language provides two syntax styles for connecting
module instances together: ordered port connections and named
port connections.

Ordered port connections connect a net or variable to a module
instance, using the position of the ports of each module definition.
For example, a net called data_bus might connect the fifth port of
one module instance to the fourteenth port of another module
instance. With ordered port connections, the names of each port do
not matter. It is the port position that is critical. This requires know-
ing the exact order of the ports for each module instance being con-
nected.

The requirement to know the exact position of each port of the
module being instantiated is a disadvantage. Unintentional design
errors can easily occur when using the port order connection syn-
tax. Modules in complex designs often have dozens of ports.
Should a net be connected to the wrong port position, the error will
not be obvious from just looking at the netlist. Another disadvan-
tage is that ordered port connections do not clearly document the
design intent. It is difficult to look at a module instance that is con-
nected by port order and determine to which port a net is intended
to be connected. Because of these disadvantages, many companies

SystemVerilog for Design

194
using port
names lo
connect module
instances

discourage the use of ordered port connections in their company
style guidelines.

The second style for connecting modules together in Verilog is to
specify the name of each port explicitly, along with the name of the
signal that is connected to that port. The basic syntax for each port
connection is:

.<port_name>(<net_or_variable_name>)

Using this named port connection style, it is not necessary to main-
tain the order of the ports for each module instance. By using
named port connections, the potential for inadvertent design errors
is reduced, since each port is explicitly connected to a specific net.

Example 8-3 shows a netlist for a small microprocessor, which rep-
resents a simplified model of a MicroChip PIC 8-bit processor.
Though it is a small design with just 6 module instances in the
netlist, the model illustrates using named port connections. Exam-
ples 8-4 and 8-5, which follow, show how SystemVerilog simpli-
fies Verilog netlists.

Example 8-3: Simple netlist using Verilog’s named port connections

module miniPIC (

wire [7:0] port_a pins,
wire [7:0] port_b pins,
wire [7:0] port_c_pins,
wire clk,

wire resetN

inout
inout
inout
input
input

)i

wire [1
wire [1
wire [

wire
wire
wire
wire

— e

1:

0

F W o

0]

: 0]
7

0]

: 0]
: 0]
: 0]

instruct_reg, program data;

program_counter, program_address;

tmr0_reg, status_reg, fsr_reg, w_reg, option_reg,
reg file out, port_a, port_b, port_c, trisa,
trisb, trisc, data_bus, alu_a, alu_b;

reg_file_ addr;

alu_opcode;

alu_a_sel, alu_b_sel;

reg_file_sel, special_reg_sel, reg_file_enable,
w_reg_enable, zero_enable, carry_enable, skip,
isoption, istris, polarity, carry, zero;

Chapter 8: SystemVerilog Design Hierarchy 195

pc_stack pcs (// module instance with named port connections
.program_counter (program_counter),
.program_address (program_address) ,
.clk(clk),
.resetN(resetN),
.instruct_reg(instruct_reg),
.data_bus (data_bus),
.status_reg(status_reg)
)i

prom prom
.dout (program_data),
.clk(clk),
.address (program_address)

)i

instruction_decode decoder (
.alu_opcode {(alu_opcode),
.alu_a _sel{alu_a_sel),
.alu_b _sel(alu_b_sel),
.w_reg_enable(w_reg_enable),
.reg_file_sel(reg_file_sel),
.zero_enable (zero_enable),
.carry_enable(carry_enable),
.polarity(polarity),
.option{isoption),
.tris(istris),
.instruct_reg(instruct_reg)

)i

register_files regs (
.dout (reg_file out),
.tmr0_reg (tmr0_reg),
.status_reg(status_reg),
.fsr_reg(fsr_reg),
.port_a(port_a),
.port_b(port_b),
.port_c(port_c),
.trisa(trisa),
.trisb(trisb},
.trisc(trisc),
.option_reg(option_reg),
.w_reg{w_reg),
.instruct_reg(instruct_reg),
.program_data {program_data),
.port_a pins(port_a_pins),
.data_bus (data_bus),
.address (reg_file_addr),

196

SystemVerilog for Design

);

.clk(clk),

.resetN(resetN),

.skip(skip},

.reg_file sel{reg file_sel),
.zero_enable (zero_enable),
.carry_enable(carry enable),
.w_reg_enable(w_reg_enable),
.reg_file enable(reg_file_enable),
.zero(zero),

.carry (carry),
.special_reg_sel(special_reg_sel),
.isoption{isoption),
.istris(istris)

alu alu (

)

.y (data_bus),

.carry_out (carry),
.zero_out (zero),
.alalu_a),

.b(alu_b),

.opcode {(alu_opcode) ,
.carry_in(status_reg{0])

glue_logic glue {

.port_b pins(port_b pins),
.port_c_pins(port_c_pins),
.alu_a(alu_a),

.alu _b(alu_b),

.expan_out (expan_out),

.expan_addr (expan_addr) ,
.reg_file_addr(reg_file_addr),
.reg_file enable(reg file_enable),
.special_reg_sel (special_reg_sel),
.expan_read (expan_read),
.expan_write (expan write),

.skip (skip),
.instruct_reg(instruct_reg),
.program_counter (program_counter),
.port_a(port_a)},

.port_b(port_b),

.port_c(port_c), -
.data_bus(data_bus),
.expan_in(expan_in),
.fsr_reg(fsr_reg),
.tmr0_reg(tmr0_reg) ,
.status_reg(status_reg),

Chapter 8: SystemVerilog Design Hierarchy 197

.w_reg(w_reg),

.reg_file out(reg_file out),
.alu_a_sel(alu_a_sel),
.alu_b sel(alu b sel),
.reg_file sel(reg file sel),
.polarity(polarity),

.zero (zero)

)i

endmodule

named port
connections are
a preferred style

named port
connections are
verbose

Named port connection advantages

An advantage of named port connections is that they reduce the risk
of an inadvertent design error because a net was connected to the
wrong port. In addition, the named port connections better docu-
ment the intent of the design. In the example above, it is very obvi-
ous which signal is intended to be connected to which port of the
flip-flop, without having to go look at the source code of each mod-
ule. Many companies have internal modeling guidelines that
require using the named port connection style in netlists, because of
these advantages.

Named port connection disadvantages

The disadvantage of the named port connection style is that it is
very verbose. Netlists can contain tens or hundreds of module
instances, and each instance can have dozens of ports. Both the
name of the port and the name of the net connected to the port must
be listed for each and every port connection in the netlist. Port and
net names can be up to 1024 characters long in most Verilog tools.
The IEEE Verilog standard states that tools should support a mini-
mum of 1024 characters, but can support longer names. When long,
descriptive port names and net names are used, and there are many
ports for each module name, the size and verbosity of a netlist using
named port connections can become excessively large and difficult
to maintain.

198

SystemVerilog for Design

8.4.1 Implicit .name port connections

.name is an
abbreviation of
named port
connections

.name simplifies
connections to
module
instances

.name infers a
connection of a
net and port of
the same name

.name can be
combined with
named port
connections

SystemVerilog provides three enhancements that greatly simplify
netlists: .name (pronounced “dot-name”) port connections, .*
(pronounced “dot-star”) port connections, and interfaces. The
.name and .* styles are discussed in the following subsections,
and interfaces are presented in Chapter 9.

The SystemVerilog .name port connection syntax combines the
advantages of both the conciseness of ordered port connections
with self-documenting code and order independence of named-port
connections, eliminating the disadvantages of each of the two Ver-
ilog styles. In many Verilog netlists, it is common to use the same
name for both the port name and the name of the net connected to
the port. For example, the module might have a port called data,
and the interconnected net is also called data.

Using Verilog’s named port connection style, it is necessary to
repeat the name twice in order to connect the net to the port, for
example: .data (data). SystemVerilog simplifies the named port
connection syntax by allowing just the port name to be specified.
When only the port name is given, SystemVerilog infers that a net
or variable of the same name will automatically be connected to the
port. This means the verbose Verilog style of .data (data) canbe
reduced to simply .data.

When the name of a net does not match the port to which it is to be
connected, the Verilog named port connection is used to explicitly
connect the net to the port. As with the Verilog named port connec-
tions, an unconnected port can be left either unspecified, or explic-
itly named with an empty parentheses set to show that there is no
connection.

Example 8-4 lists the simple processor model shown previously in
AP’ B, o WD HHTEIHINOE S Trome POTL THINHRKNS™
style for all nets that are the same name as the port. Compare this
example to example 8-3, to see how the .name syntax reduces the
verbosity of named port connections. Using the .name connection
style, the netlist is easier to read and to maintain.

Chapter 8: SystemVerilog Design Hierarchy

199

Example 8-4: Simple netlist using SystemVerilog’s .name port connections

module miniPIC (

)

inout wire {7:0]
inout wire [7:0]
inout wire [7:0]

input wire
input wire

port_a pins,
port_b pins,
port_c_pins,
clk,

resetN

wire [11:0] instruct_reg, program_data;

wire [10:0] program_counter, program_address;
wire [7:0] tmr0_reg, status_reg, fsr reg, w_reg,
reg_file out, port_a, port_b, port_c,
trisb, trisc, data_bus, alu_a, alu_b;

wire [6
wire [3
wire [1
wire

:0] reg file_addr;

:0] alu_opcode;

:0] alu_a_sel, alu b sel;
reg_file_sel, special_reg_sel, reg_file_enable,

option_reg,
trisa,

w_reg_enable, zero_enable, carry_enable, skip,
isoption, istris, polarity, carry, zero;

pc_stack pcs |

)

.clk,

.resetN,
.instruct_reg,
.data_bus,
.status_reg

prom prom (
.dout (program_data),

)i

.clk,

.address (program_address)

instruction_decode decoder (

.alu_opcode,
.alu_a_sel,
.alu_b sel,
.w_reg_enable,
.reg_file_sel,
.zero_enable,
.carry_enable,
.polarity,

// module instance with .name port connections

.program_counter,
.program_address,

200

SystemVerilog for Design

)i

.option(isoption),
.tris(istris),
.instruct_reg

register files regs

)i

alu alu

.y (data_bus),
.carry_out (carry),
.zero_out (zero),
.a(alu_a),
.b(alu_b),

.opcode (alu_opcode} ,
.carry_in(status_reg{0])

{

.dout (reg_file out),
.tmr0_reg,
.status_reg,
.fsr_reg,
.port_a,
.port_b,
.port_c,
.trisa,
.trisb,
.trisc,
.option_reg,
.w_reg,
.instruct_reg,
.program_data,
.port_a_pins,
.data_bus,
.address (reg_file_addr),
.clk,

.resetN,

.skip,
.reg_file_sel,
.zero_enable,
.carry_enable,
.w_reg_enable,
.reg_file_enable,
.Zero,

.carry,
.special_reg_sel,
.isoption,
.istris

Chapter 8: SystemVerilog Design Hierarchy

201

glue_logic glue (

)i

.port_b pins,
.port_c_pins,
.alu_a,

.alu_b,
.reg_file_addr,
.reg_file_enable,
.special_reg_sel,
.skip,
.instruct_reg,
.program_counter,
.port_a,

.port b,

.port_c,

.data_ bus,
.fsr_reg,
.tmr0_reg,
.status_regqg,
.w_reg,
.reg_file_ out,
.alu_a_sel,
.alu_b_sel,
.reg_file_sel,
.polarity,

.zero

endmodule

.name In order to infer a connection to a named port, the net or variable
connection must match both the port name and the port vector size. In addition,
inference rules the data types on each side of the port must be compatible. Incom-
patible data types are any port connections that would result in a
warning or error if a net or variable is explicitly connected to the
port. The rules for what connections will result in errors or warn-
ings are defined in the IEEE 1364-2001 Verilog standard, in section
12.3.10'. For example, a tril pullup net connected to a trio pull-
down net through a module port will result in a warning, per the
Verilog standard. Such a connection will not be inferred by

the .name syntax.

1. IEEE Std 1364-2001, Language Reference Manual (LRM). See page xxvii of this book for
details.

202

SystemVerilog for Design

8.4.2

infers
connections of
all nets and
ports of the
same name

These restrictions reduce the risk of unintentional connections
being inferred by the .name connection style. Any mismatch in
vector sizes and/or data types can still be forced, using the full
named port connection style, if that is the intent of the designer.
Such mismatches must be explicitly specified, however. They will
not be inferred from the .name syntax.

Implicit .* port connection

SystemVerilog provides an additional short cut to simplify the
specification of large netlists. The .* syntax indicates that all
ports and nets (or variables) of the same name should automatically
be connected together for that module instance. As with the .name
syntax, for a connection to be inferred, the name and vector size
must match exactly, and the data types connected together must be
compatible. Any connections that cannot be inferred by .* must
be explicitly connected together, using Verilog’s named port con-
nection syntax.

Example 8-5 illustrates the use of SystemVerilog’s .* port con-
nection syntax.

Example 8-5: Simple netlist using SystemVerilog’s .* port connections

module miniPIC (

wire [7:0] port_a pins,
wire (7:0] port_b pins,
wire [7:0] port_c pins,
wire clk,

wire resetN

inout

inout

inout

input

input
)i

wire [11:
wire [10:
wire [7:

wire
wire
wire
wire

e e

W o

0]
0]
0]

:0]
: 0]
: 0]

instruct_reg, program data;
program_counter, program address;

tmr0_reg, status_reg, fsr_reg, w_reg, option_regq,
reg_file_out, port_a, port_b, port c, trisa,
trisb, trisc, data_bus, alu_a, alu_b;
reg_file_addr;

alu_opcode;

alu_a sel, alu b_sel;

reg_file_sel, special_reg sel, reg_file_enable,
w_reg enable, zero_enable, carry enable, skip,
isoption, istris, polarity, carry, zero;

Chapter 8: SystemVerilog Design Hierarchy 203

pc_stack pcs (// module instance with .* port connections
*

)i

prom prom

*
LI

(

.dout (program_data),
.address (program_address)

)i

instruction_ decode decoder (

*
LI

.option(isoption),
.tris(istris)

)i

register files regs (

*
. 1

.dout (reg_file_out),
.address (reg_file_addr)

)i

alu alu

{

.y (data_bus),
.carry out (carry),

.zero_out (zero),

.a(alu_a),
.blalu b),
.opcode (alu_opcode) ,

.carry in(status_reg[0])

)i

glue_logic glue (

L *

)

endmodule

>

SystemVerilog adds two new types of hierarchy blocks that can
also have ports, interfaces (see Chapter 9), and programs (refer
to the forthcoming companion book, SystemVerilog for
Verification). Instances of these new blocks can also use
the .name and .* inferred port connections. SystemVerilog
also allows calls to functions and tasks to use named
connections, including the .name and .* shortcuts. This is
covered in section 5.3.6 on page 123.

204

SystemVerilog for Design

8.5 Net aliasing

an alias creates
two or more
names for the
same net

an alias is not
an assignment

changes on any
aliased net
affect all aliased
nets

SystemVerilog adds an alias statement that allows two different
names to reference the same net. For example:

wire clock;
wire clk;

alias clk = clock;

The net clk is an alias for clock, and clock is an alias for clk.
Both names refer to the same logical net.

Defining an alias for a net does not copy the value of one net to
some other net. In the preceding example, clk is not a copy of
clock. Rather, clk is clock, just referenced by a different name.
Any value changes on clock will be seen by clk, since they are
the same net. Conversely, any value changes made to c1k will be
seen by clock, since they are the same net.

alias versus assign

The alias statement is not the same as the assign continuous
assignment. An assign statement continuously copies an expres-
sion on the right-hand side of the assignment to a net or variable on
the left-hand side. This is a one-way copy. The net or variable on
the left-hand side reflects any changes to the expression on the
right-hand side. But, if the value of the net or variable on the left-
hand side is changed, the change is not reflected back to the expres-
sion on the right-hand side.

An alias works both ways, instead of one way. Any value
changes to the net name on either side of the alias statement will be
reflected on the net name on the other side. This is because an alias
is effectively one net with two different names.

Multiple aliases

Several nets can be aliased together. A change on any of the net
names will be reflected on all of the nets that are aliased together.

wire reset, rst, resetN, rstN;

alias rst = reset;

Chapter 8: SystemVerilog Design Hierarchy 205

alias reset = resetN;
alias resetN = rstN;

The previous set of aliases can also be abbreviated to a single state-
ment containing a series of aliases, as follows:

alias rst = reset = resetN = rstN;

aliases are not The order in which nets are listed in an alias statement does not
order dependent matter. An alias is not an assignment of values, it is a list of net
names that, in essence, refer to the same object.

8.5.1 Alias rules

SystemVerilog imposes several restrictions on what signals can be
aliased to another name.

only net types * Only the net data types can be aliased. Variables, structures, user-

can be aliased defined types and other data types cannot be aliased. Verilog’s
nethatypesan:wire,wand,wor,tri,triand,trior,trim
tril, and trireg.

only nets of the « The aliased data type must be the same net data type as the net to

same type can which it is aliased. A wire type can be aliased to a wire type,

be aliased ,nd a wand type can be aliased to a wand type. It is an error, how-
ever, to alias a wire to a wand or any other data type.

only nets of the + The aliased net and the net to which it is aliased must be the same

same S/Z? can vector size. Note, however, that bit and part selects of nets can be

be aliased aliased, so long as the vector size of the left-hand side and right-
hand side of the alias statement are the same.

The following examples are all legal aliases of one net to another:
wire [31:0] nil;
wire [3:0](7:0] n2;

alias n2 = nl; // both nl and n2 are 32 bits

wire [39:0] d_in;
wire [7:0] crc;
wire [31:0] data;

d_in[31:0]; // 32 bit nets
d in[39:32]; // 8 bit nets

alias data
alias crc

1]

206

SystemVerilog for Design

85.2

implicit nets can
be inferred from
an alias

Implicit net declarations

An alias statement can infer net declarations. It is not necessary to
first explicitly declare each of the nets in the alias. Implicit nets are
inferred, following the same rules as in Verilog for inferring an
implicit net when an undeclared identifier is connected to a port of
a module instance. In brief, these rules are:

* An undeclared identifier name on either side of an alias statement
will infer a net data type.

 The default implicit net type is wire. This can be changed with
the ‘default_nettype compiler directive.

+ If the net name is listed as a port of the containing module, the
implicit net will be the same vector size as the port.

+ If the net name is not listed in the containing module’s port list,
then a 1-bit net is inferred.

The following example infers single bit nets called reset and
rstN, and 64 bit nets called g and d:

module register (output [63:0] q,
input [63:0] d,
input clock, reset);

wire [63:0] out, in;

alias in = d; // infers d is a 64-bit wire
alias out = gq; // infers g is a 64-bit wire
alias rstN = reset; // infers 1-bit wires

8.5.3 Using aliases with .name and .*

The alias statement enables greater usage of the .name and .*
shortcuts for modeling netlists. These shortcuts are used to connect
a module port and net of the same name together, without the ver-
bosity of Verilog’s named port connection syntax. In the following
example, however, these shortcuts cannot be fully utilized to con-
nect the clock signals together, because the port names are not the
same in each of the modules.

Chapter 8: SystemVerilog Design Hierarchy

207

Figure 8-1: Diagram of a simple netlist

clk

master_clock

clock

reset_n

|

master_reset

|

address
ROM program address
count reg
next_address
address next_address — next_addr
new_address |
data = jump_address current_addr

clk
rstN

Example 8-6: Netlist using SystemVerilog’s .* port connections without aliases

module chip (input wire master_clock,
input wire master_reset,

)

wire [31:0] address, new_address, next_address;

ROM

i1 (.*,

// infers

.data (new_address),
.clk(master_clock));

program_count i2 (.*,

address_reg

endmodule

i3

.clock (master_clock),
.reset_n(master_reset));

(.*,

.next_addr (next_address),
.current addr (address),
.clk (master_clock),
.rstN(master_reset));

module ROM (output wire [31:0] data,
input wire ([31:0] address,
input wire

endmodule

clk) ;

.address (address)

// no connections can be inferred

// infers .next_address (next_address)
.jump_address (new_address),

208

SystemVerilog for Design

[31:
[31:

(output logic
input wire
input wire

module program_count

endmodule
module address_reg (output wire [31:0]
input wire [31:0]

input wire

endmodule

0] next_address,
0] jump_address,
clock, reset_n);

current_addr,
next_addr,
clk, rstN);

using aliases The master clock in chip should be connected to all three mod-
can simplify ules in the netlist. However, the clock input ports in the modules are

netlists

not called master_clock. In order for the master_clock net in

the top-level chip module to be connected to the clock ports of the
other modules, all of the different clock port names must be aliased
to master_clock. Similar aliases can be used to connect all reset
ports to the master_ reset net, and to connect other ports together

that do not have the same name.

Example 8-7 adds these alias statements, which allow the netlist to

take full advantage of the

.* shortcut to connect all modules

together. In this example, wires for the vectors are explicitly
declared, and wires for the different clock and reset names are
implicitly declared from the alias statement.

Example 8-7: Netlist using SystemVerilog’s .* connections along with net aliases

module chip (input wire master_clock,
input wire master_reset,

L)

wire (31:0] address, data, new_address, jump_address,

next_address, next_addr,

current_addr;

alias clk = clock = master_clock;

alias rstN = reset_n = master_reset;
alias data = new_address = jump_address;
alias next_address = next_addr;

alias current_addr = address;

ROM i1 |

program_count i2 (

L *
*
. r

)i
)

Chapter 8: SystemVerilog Design Hierarchy

209

address_reg i3 (.*)5

endmodule

module ROM (output wire [31:0] data,
address,
clk) ;

input wire [31:0]
input wire

endmodule

module program_count (output logic
input wire
input wire

endmodule

[31:0] next_address,
[31:0] new_count,
clock, reset_n);

module address_reg (output wire [31:0] address,
input wire [31:0] next_address,
input wire

endmodule

clk, rstN);

In this example, the . * shortcuts infer the following connections to
the module ports of the module instances:

ROM

program_count i2 (.
.jump_address (jump_address),
.clock(clock),
.reset n(reset_n));

address_reg i3

i1

{

(.
.next_addr (next_addr) ,
.clk(clk),

.rstN(rstN));

.data(data),
.address (address)
.clk(clk));

next_address (next_address),

current_addr (current_addr),

Even though different net names are connected to different module
instances, such as clk to the RoM module and clock to the
program_count module, the alias statements make them the same
net, and make those nets the same as master_clock.

210

SystemVerilog for Design

8.6 Passing values through module ports

Verilog
restrictions on
module ports

The Verilog language places a number of restrictions on what types
of values can be passed through the ports of a module. These
restrictions affect both the definition of the module and any
instances of the module. The following bullets give a brief sum-
mary of the Verilog restrictions on module ports:

» Only net data types, such as the wire type, can be used on the
receiving side of the port. It is illegal to connect any type of vari-
able, such as reg or integer types, to the receiving side of a
module port.

* Only net, reg, and integer data types, or a literal integer value
can be used on the transmitting side of the port.

« Itis illegal to pass the real data type through module ports with-
out first converting it to a vector using the $realtobits system
function, and then converting it back to a real number, after pass-
ing through the port with the $bitstoreal system function.

« It is illegal to pass unpacked arrays of any number of dimensions
through module ports.

8.6.1 All data types can be passed through ports

SystemVerilog
removes most
port restrictions

SystemVerilog removes nearly all restrictions on the types of val-
ues that can be passed through module ports. With SystemVerilog:

+ Values of any data type can be used on both the receiving and
transmitting sides of module ports, including real values.

» Packed and unpacked arrays of any number of dimensions can be
passed through ports.

+ SystemVerilog structures and unions can be passed through mod-
ule ports.

@ SystemVerilog adds two new types of hierarchy blocks that can
also have ports, interfaces (see Chapter 9), and programs (refer

to the forthcoming companion book, SystemVerilog for
Verification). These new blocks have the same port connection
rules as modules.

The following example illustrates the flexibility of passing values
through module ports in SystemVerilog. In this example, variables

Chapter 8: SystemVerilog Design Hierarchy 211

are used on both sides of some ports, a structure is passed through a
port, and a small memory array, representing a look-up table, is
passed through a port.

Example 8-8: Passing values through module ports

typedef struct packed {
byte opcode;
int operand;
bit carry, zero;

} instruction_t;

module decoder {(output logic [23:0] microcode,
input instruction_t instruction,
input logic [23:0] LUT ([255:0]
)i

always @(instruction)
microcode = LUT[instruction];

endmodule
module DSP (input clk, resetN);

logic [23:0] microcode;
instruction_t instruction;

logic [23:0] LUT [255:0]; // look-up table
decoder il (.microcode, .instruction, .LUT);

initial
$readmemb ("microcode.dat", LUT); // load the look-up table

endmodule

8.6.2 Module port restrictions in SystemVerilog

SystemVerilog does place two restrictions on the values that are
passed through module ports. These restrictions are intuitive, and
help ensure that the module ports accurately represent the behavior
of hardware.

212

SystemVerilog for Design

variables can
only be
connected to a
single driver

unpacked
values must
have matching
layouts

The first restriction is that a variable data type can only have a sin-
gle source, or driver, of the variable. A driver can be:

» a module output or inout port
* a primitive output or inout port
* acontinuous assignment

+ or any number of procedural assignments

The reason for this single driver restriction is that variables simply
store the last value written into them. If there were multiple drivers,
the variable would only reflect the value of the last driver to
change. Actual hardware behavior is different. In hardware, multi-
ple drivers are merged together, based on the hardware technology.
Some technologies merge values based on the strength of the driv-
ers, some technologies logically-and multiple drivers together, and
others logically-or multiple drivers together. This implementation
detail of hardware behavior is represented with Verilog net data
types, such as wire, wand, and wor. Therefore, SystemVerilog
requires that a net data type be used when a signal has multiple
drivers. An error will occur if a variable is connected to two drivers.

The second restriction SystemVerilog places on values passed
through module ports is that unpacked data types must be identical
in layout on both sides of a module port. SystemVerilog allows
structures, unions, and arrays to be specified as either packed or
unpacked (see sections 4.1.3 on page 70, 4.2.2 on page 75, and
4.3.1 on page 80, respectively). When arrays, structures or unions
are unpacked, the connections must match exactly on each side of
the port.

For unpacked arrays, an exact match on each side of the port is
when there are the same number of dimensions in the array, each
dimension is the same size, and each element of the array is the
same size.

For unpacked structures and unions, an exact match on each side of
the port means that each side is declared using the same typedef
definition. In the following example, the structure connection to the
output port of the buffer is illegal. Even though the port and the
connection to it are both declared as structures, and the structures
have the same declarations within, the two structures are not
declared from the same user-defined data type, and therefore are an
exact match. The two structures cannot be connected through a

Chapter 8: SystemVerilog Design Hierarchy 213

module port. In this same example, however, the structure passed
through the input port is legal. Both the port and the structure con-
nected to it are declared using the same user-defined type defini-
tion. These two structures are exactly the same.

typedef struct { // unpacked structure
int i_data;
real r_data;

} data_t;

module buffer (input data_t in,
output data_t out);

endmodule

module chip (...);
data_t dint; // unpacked structure
struct { // unpacked structure

int i_data;
real r_data;

} dout;
buffer i1 (.in(din), // legal connection
.out (dout) // illegal connection
)
endmodule

Packed and unpacked arrays, structures, and unions are discussed in
more detail in Chapter 4.

Packed values are stored as contiguous bits, are analogous to a vec-
tor of bits, and are passed through module ports as vectors. If the
array, structure, or union are different sizes on each side of the port,
Verilog’s standard rules are followed for a mismatch in vector
sizes.

Unpacked values allow software tools to add padding between the
fields that make up the array, structure, or union. This allows a soft-
ware tool to optimize the storage of information, based on operating
systems or other criteria. Since the padding between values may
differ, unpacked values cannot be treated as a simple vector when
passed through a module port. To ensure portability, SystemVer-
ilog requires that the layout of unpacked values be identical on both

214

SystemVerilog for Design

8.7 Reference ports

sides of a module port, in order to pass the value through the port.
An unpacked array must be exactly the same data types on both
sides of a port. An unpacked structure or union must be exactly the
same type on both sides of the port.

a ref port passes
a hierarchical
reference
through a port

Verilog modules can have input, output and bidirectional inout
ports. These port types are used to pass a value of a net or variable
from one module instance to another.

SystemVerilog adds a fourth port type, called a ref port. A ref
port passes a hierarchical reference to a variable through a port,
instead of passing the value of the variable. The name of the port
becomes an alias to the source variable. Any references to that port
name directly reference the actual source.

A reference to a variable of any type can be passed through a ref
port. This includes all built-in variable types, structures, unions,
enumerated types, and other user-defined types. To pass a reference
to a variable through a port, the port direction is declared as ref,
instead of an input, output, or inout. The data type of a ref
port must be the same data type as the variable connected to the

port.

The following example passes an array into a module, using a ref
port.

Example 8-9: Passing an array into a module instance by reference

typedef struct packed {
byte opcode;
int operand;

bit carry,

Zero;

} instruction_t;

module decoder (output logic [23:0] wmicrocode,

input instruction_t instruction,
ref logic [23:0] TABLE [255:0]

)i

always @ (instruction)

microcode

= TABLE [instruction];

Chapter 8: SystemVerilog Design Hierarchy 215

endmodule

module DSP (input clk, resetN);

logic [23:0] microcode;
instruction_t instruction;

logic [23:0]) LUT [255:0]; // Look Up Table

decoder il

initial

(.*, .TABLE(LUT)); // instance of the decoder

‘

$readmemb ("microcode.dat", LUT); // load the look-up table

endmodule

8.7.1 Reference ports as shared variables

@ Passing variables through ports by reference creates shared
variables, which do not behave like hardware.

Passing a reference to a variable to another module makes it possi-
ble for more than one module to write to the same variable. This
effectively defines a single variable that can be shared by multiple
modules. That is, procedural blocks in more than one module could
potentially write values into the same variable.

It is important to understand that a variable that is written to by
more than one procedural block does not behave the same as a net
with multiple sources (drivers). Net data types have resolution
functionality that continuously merge multiple sources into a single
value. A wire net, for example, resolves multiple drivers, based on
strength levels. A wand net resolves multiple drivers by performing
a bit-wise AND operation. Variables do not have multiple driver
resolution. Variables simply store the last value deposited. When
multiple modules share the same variable through ref ports, the
value of the variable at any given time will be the last value written,
which could have come from any of the modules that share the vari-
able.

216

SystemVerilog for Design

8.8 Enhanced port declarations

8.7.2 Synthesis guidelines

@ Passing references through ports is not synthesizable.

Passing references to variables through module ports is not synthe-
sizable. It is recommended that the use of ref ports should be
reserved for abstract modeling levels where synthesis is not a con-
sideration.

8.8.1 Verilog-1995 port declarations

Verilog-1995 Verilog-1995 required a verbose set of declarations to fully declare
port declaration a module’s ports. The module statement contains a port list which
style is verbose defines the names of the ports and the order of the ports. Following

the module statement, one or more separate statements are required
to declare the direction of the ports. Following the port direction
declarations, additional optional statements are required to declare
the data types of the internal signals represented by the ports. If the
data types are not specified, the Verilog-1995 syntax infers a net
data type, which, by default, is the wire data type. This default data
type can be changed, using the ‘default_nettype compiler
directive.

module accum (data, result, co, a, b, ci);
inout [31:0] data;
output [31:0] 7result;

output co;
input [31:0}] a, b;
input ci;
wire [31:0] data;
reg [31:0] result;
reg co;
tril ci;

endmodule

Chapter 8: SystemVerilog Design Hierarchy 217

8.8.2

Verilog-2001
port declaration
style is more
concise

Verilog-2001
ports have a
direction, data
type and size

in Verilog, all
ports must have
a direction
declared

Verilog-2001 port declarations

Verilog-2001 introduced ANSI-C style module port declarations,
which allow the port names, port size, port direction, and data type
declarations to be combined in the port list.

module accum (inout wire [31:0] data,
output reg [31:0] result,

output reg co,
input [31:0] a, b,
input tril ci);

endmodule

With the Verilog-2001 port declaration syntax, the port direction is
followed by an optional data type declaration, and then an optional
vector size declaration. If the optional data type is not specified, a
default type is inferred, which is the wire type, unless changed by
the ‘default_nettype compiler directive. If the optional vector
size is not specified, the port defaults to the default width of the
data type. Following the optional width declaration is a comma-
separated list of one or more port names. Each port in the list will
be of the direction, type, and size specified.

Verilog-2001’s ANSI-C style port declarations greatly simplify the
Verilog-1995 syntax for module port declarations. There are, how-
ever, three limitations to the Verilog-2001 port declaration syntax:

« All ports must have a direction explicitly declared.

» The data type cannot be changed for a subsequent port without
re-specifying the port direction.

+ The vector size of the port cannot be changed for a subsequent
port without re-specifying the port direction and optional data

type.

In the preceding example, the optional data type is specified for all
but the a and b input ports. These two ports will automatically infer
the default data type. The optional vector size is specified for the
data, result, a, and b ports; but not for the co and ci ports. The
unsized ports will default to the default size of their respective data
types, which are both 1 bit wide. The vector sizes for result and
co are different. In order to change the size declaration for co, it is
necessary to re-specify the port direction and data type of co. Also,
in the preceding example, input ports a and b do not have a data

218

SystemVerilog for Design

8.8.3

first port defaults
to inout

subsequent
ports default to
direction of
previous port

type defined, and therefore default to a wire data type. In order to
change the data type for the ci input port, the port direction must
be re-specified, even though it is the same direction as the preced-
ing ports.

SystemVerilog port declarations

SystemVerilog simplifies the declaration of module ports in several
ways.

First, SystemVerilog specifies a default port direction of inout
(bidirectional). Therefore, it is no longer required to specify a port
direction, unless the direction is different than the default.

Secondly, if the next port in the port list has a data type defined, but
no direction is specified, the direction defaults to the direction of
the previous port in the list. This allows the data type specification
to be changed without re-stating the port direction.

Using SystemVerilog, the Verilog-2001 module declaration for an
accumulator shown on the previous page can be simplified to:

module accum (wire [31:0] data,
output reg [31:0] result, reg co,
input [31:0] a, b, tril ci);

endmodule

The first port in the list, data, has a data type, but no explicit port
direction. Therefore, this port defaults to the direction of inout.
Port co also has a data type, but no port direction. This port defaults
to the direction of the previous port in the list, which is output.
Ports a and b have a port direction declared, but no data type. As
with Verilog-2001 and Verilog-1995, an implicit net data type will
be inferred, which by default is the type wire. Finally, port ci has
a data type declared, but no port direction. This port will inherit the
direction of the previous port in the list, which is input.

@ SystemVerilog adds two new types of hierarchy blocks that can
also have ports, interfaces (see Chapter 9), and programs (refer

to the forthcoming companion book on SystemVerilog for
Verification). These new blocks have the same port declaration
rules as modules.

Chapter 8: SystemVerilog Design Hierarchy 219

Backward compatibility

SystemVerilog remains fully backward compatible with Verilog by
adding a rule that, if the first port has no direction and no data type
specified, then the Verilog 1995 port list syntax is inferred, and no
other port in the list can have a direction or data type specified
within the port list.

module accum (data, result, ...);
// Verilog-1995 style because first port has
// no direction and no data type

module accum (data, wire {31:0] result, ...);
// ERROR: cannot mix Verilog-1995 style with
// Verilog-2001 or SystemVerilog style

8.9 Parameterized data types

parameterized
modules

polymorphic
modules using

Verilog provides the ability to define parameter and
localparam constants, and then use those constants to calculate
the vector widths of module ports or other declarations. A parame-
ter is a run-time constant, that can be redefined at elaboration time
for each instance of a module. Modules that can be redefined using
parameters are often referred to as parameterized modules.

SystemVerilog adds a significant extension to the concept of rede-
finable, parameterized modules. With SystemVerilog the data types

parameterized of a module can be parameterized. Parameterized data types are

data types

declared using the parameter type pair of keywords.

As with other parameters, parameterized data types can be rede-
fined for each instance of a module. This capability introduces an
additional level of polymorphism to Verilog models. With Verilog,
parameter redefinition can be used to change vector sizes and other
constant characteristics for each instance of a model. With System-
Verilog, the behavior of a module can be changed based on the data
types of a module instance.

Parameterized data types are synthesizable, provided the default or
redefined data types are synthesizable types.

220

SystemVerilog for Design

In the following example, the data type used by an adder is parame-
terized. By default, the data type is shortint. Module big_chip
contains three instances of the adder. Instance i1 uses the adder’s
default data type, making it a 16-bit signed adder. Instance 12 rede-
fines the data type to int, making this instance a 32-bit signed
adder. Instance i3 redefines the data type to int unsigned,
which makes this third instance a 32-bit unsigned adder.

Example 8-10: Polymorphic adder using parameterized data types

module adder #(parameter type ADDERTYPE = shortint)

(input ADDERTYPE a, b, // uses redefinable
output ADDERTYPE sum, // data types
output bit carry) ;

ADDERTYPE temp; // local variable with redefinable type

always @(a, b)
temp = a + b;
assign sum = temp;

endmodule

module big chip(...);
shortint a, b, ri;
int c, d, r2;

int unsigned e, f, r3;

adder

il (a, b, rl); // 16-bit

adder #(.ADDERTYPE(int)) i2 (e, d, x2); // 32-bit signed adder
adder #(.ADDERTYPE (int unsigned)) i3 (e, £, r3); // unsigned

endmodule

// adder

8.10 Variable declarations in blocks

local variables in Verilog allows local variables to be declared in named begin...end
named blocks or fork...join blocks. A common usage of local variable declara-

tions is to declare a temporary variable for controlling a loop. The
local variable prevents the inadvertent access to a variable at the
module level of the same name, but with a different usage. The fol-
lowing code fragment has declarations for two variables, both
named i. The f£or loop in the named begin block will use the local
variable i that is declared in that named block, and not touch the
variable named i declared at the module level.

Chapter 8: SystemVerilog Design Hierarchy 221

module chip (input clock);
integer i; // declaration at module level

always @ (posedge clock)
begin: loop // named block
integer 1i; // local variable
for (i=0; i<=127; i=i+1) begin

end
end
endmodule

hierarchical A variable declared in a named block can be referenced with a hier-
references to archical path name that includes the name of the block. Typically,
local variables only a testbench or other verification routine would reference a
variable using a hierarchical path. Hierarchical references are not
synthesizable, and do not represent hardware behavior. The hierar-
chy path to the variable within the named block can also be used by
VCD (Value Change Dump) files, proprietary waveform displays,
or other debug tools, in order to reference the locally declared vari-
able. The following testbench fragment uses hierarchy paths to
print the value of both the variables named i in the preceding exam-

ple:

module test;
reg clock;
chip chip (.clock(clock));

always #5 clock = ~clock;

initial begin
clock = 0;
repeat (5) @(negedge clock) ;
$display("chip.i = %04", chip.i);
$display("chip.loop.i = %$0d", chip.loop.i);
$finish;

end

endmodule

8.10.1 Local variables in unnamed blocks

local variables in SystemVerilog extends Verilog to allow local variables to be
unnamed blocks declared in unnamed blocks. The syntax is identical to declarations
in named blocks, as illustrated below:

222

SystemVerilog for Design

local variables in
unnamed blocks
have no
hierarchy path

named blocks
protect local
variables

inferred
hierarchy paths
fro debugging

module chip (input clock);
integer i; // declaration at module level

always @ (posedge clock)
begin // unnamed block
integer i; // local variable
for (i=0; 1<=127; 1i=i+1l) begin

end
end
endmodule

Hierarchal references to variables in unnamed blocks

Since there is no name to the block, local variables in an unnamed
block cannot be referenced hierarchically. A testbench or a VCD
file cannot reference the local variable, because there is no hierar-
chy path to the variable.

Declaring variables in unnamed blocks can serve as a means of pro-
tecting the local variables from external, cross-module references.
Without a hierarchy path, the local variable cannot be referenced
from anywhere outside of the local scope.

This extension of allowing a variable to be declared in an unnamed
scope is not unique to SystemVerilog. The Verilog language has a
similar situation. User-defined primitives (UDPs) can have a vari-
able declared internally, but the Verilog language does not require
that an instance name be assigned to primitive instances. This also
creates a variable in an unnamed scope. Software tools will infer an
instance name in this situation, in order to allow the variable within
the UDP to be referenced in the tool’s debug utilities. Software
tools may also assign an inferred name to an unnamed block, in
order to allow the tool’s waveform display or debug utilities to ref-
erence the local variables in that unnamed block. The SystemVer-
ilog standard neither requires nor prohibits a tool inferring a scope
name for unnamed blocks, just as the Verilog standard neither
requires nor prohibits the inference of instance names for unnamed
primitive instances.

Section 6.6 on page 153 also discusses named blocks; and section
6.7 on page 156 introduces statement names, which can also be
used to provide a scope name for local variables.

Chapter 8: SystemVerilog Design Hierarchy 223

8.11 Summary

This chapter has presented a number of important extensions to the
Verilog language that allow modeling the very large netlists that
occur in multi-million gate designs. Constructs such as .name and
.* port connections reduce the verbosity and redundancy in
netlists. net aliasing, simplified port declarations, port connections
by reference, and relaxed rules on the types of values that can be
passed through ports all make representing complex design hierar-
chy easier to model and maintain.

The next chapter presents SystemVerilog interfaces, which is
another powerful construct for simplifying large netlists.

Chapter 9
SystemVerilog Interfaces

ystemVerilog extends the Verilog language with a powerful
S interface construct. Interfaces offer a new paradigm for model-
ing abstraction. The use of interfaces can simplify the task of mod-
eling and verifying large, complex designs.

This chapter contains a number of small examples, each one show-
ing specific features of interfaces. These examples have been pur-
posely kept relatively small and simple, in order to focus on
specific features of interfaces. Chapter 10 then presents a larger
example that uses interfaces in the context of a more complete
design.

The concepts covered in this chapter are:

+ Interface declarations

» Connecting interfaces to module ports

« Differences between interfaces and modules
* Interface ports and directions

+ Tasks and functions in interfaces

¢ Using interface methods

¢+ Procedural blocks in interfaces

e Parameterized interfaces

226

SystemVerilog for Design

9.1 Interface concepts

The Verilog language connects modules together through module
ports. This is a detailed method of representing the connections
between blocks of a design that maps directly to the physical con-
nections that will be in the actual hardware. For large designs, how-
ever, using module ports to connect blocks of a design together can
become tedious and redundant. Consider the following example
that connects five blocks of a design together using a rudimentary
bus architecture called main_bus, plus some additional connec-
tions between some of the design blocks. Figure 9-1 shows the
block diagram for this simple design, and example 9-1 lists the Ver-
ilog source code for the module declarations involved.

Figure 9-1: Block diagram of a simple design

Master
Processor

Internal
Memory

Test Slave
Generator Processor

Example 9-1: Verilog module interconnections for a simple design

[ZEXETESEEET SRS R R R R RN - 1 dd ek kg gk g ok kok ok ok ok ok ok ok ok ok ok
Top-level Netlist

module top (input wire clock, resetN, test_mode);

wire
wire
wire
wire
wire
wire
wire

[15:0] data, address, program_address,
[7:0] instruction, next_instruction;
[3:0] slave_instruction;

jump_address;

slave_request, slave_ready;
bus_request, bus_grant;
mem_read, mem_write;
data_ready;

Chapter 9: SystemVerilog Interfaces

227

processor procl (

)i

// main bus ports

.data(data),

.address (address) ,
.slave_instruction(slave_instruction),
.slave_request (slave_request),
.bus_grant (bus_grant) ,
.mem_read{mem_read),
.mem_write(mem_write},

.bus_request (bus_request),
.slave_ready(slave_ready),

// other ports

.jump_address (jump_address) ,
.instruction(instruction),
.clock(clock),
.regetN(resetN),

.test_mode (test_mode)

slave slavel (

)i

// main_bus ports
.data(data),

.address (address) ,
.bus_request (bus_request),
.slave_ready(slave_ready),
.mem_read (mem_read),
.mem_write(mem write),
.slave_instruction(slave_instruction),
.slave_request (slave_request),
.bus_grant (bus_grant) ,

.data_ready (data_ready), |
// other ports

.clock(clock),

.resetN(resetN)

dual_port_ram ram (

// main_bus ports

.data(data),

.data_ready (data_ready),

.address (address),

.mem_read (mem_read) ,
.mem_write(mem write),

// other ports

.program_address (program_address) ,
.data_b(next_instruction)

signals for main_bus must
be individually connected
to each module instance

228 SystemVerilog for Design

test_generator test_gen(
// main_bus ports
.data(data),

.address (address) ,
.mem_read (mem_read) ,
.mem_write (mem_write),
// other ports
.clock(clock),
.resetN(resetN),
.test_mode (test_mode)

)i

instruction_reg ir (
.program_address (program_address) ,
.instruction({instruction),
.jump_address (jump_address) ,
.next_instruction(next_instruction),
.clock (clock},
.resetN(resetN)

)

endmodule

/********************* Module Definitions ********************/
module processor (

// main bus ports

inout wire [15:0] data,

output reg [15:0] address,

output reg [3:0] slave_instruction,

ports for main_bus must

output re slave_request, e .

P g -red be individually declared in
output reg bus grant, .

. = each module definition

output wire mem_read,
output wire mem_write,
input wire bus_request,
input wire slave_ready,

// other ports
output reg [15:0] jump_address,
input wire [7:0] instruction,

input wire clock,
input wire resetN,
input wire test _mode

)i
// module functionality code

endmodule

Chapter 9: SystemVerilog Interfaces

229

module slave (

)i

module dual port_ram (

)i

endmodule

module test_generator (

) ;

// main_bus ports
inout wire [15:0]
inout wire [15:0]
output reg

output reg

output wire
output wire

input wire [3:0]
input wire

input wire

input wire

// other ports
input wire

input wire

data,

address,
bus_request,
slave_ready,
mem_read,

mem write,
slave_instruction,
slave_request,
bus_grant,
data_ready,

clock,
resetN

// module functionality code
endmodule

// main_bus ports
inout wire [15:0]
output wire

input wire [15:0]
input tri0

input trio

// other ports
input wire [15:0]
output reg [7:0]

data,
data_ready,
address,
mem_read,
mem write,

program_address,
data_b

// module functionality code

// main_bus ports
output wire [15:0]
output reg [15:0]
output reg

output reg

// other ports
input wire

input wire

input wire

data,
address,
mem_read,
mem_write,

clock,
resetN,
test_mode

// module functionality code
endmodule

—

230

SystemVerilog for Design

module instruction_reg (
output reg [15:0] program_address,
output reg [7:0] instruction,
input wire [15:0] jump_address,
input wire [7:0] next_instruction,
input wire clock,
input wire resetN

)i

// module functionality code

endmodule

9.1.1 Disadvantages of Verilog’s module ports

connecting
modules in a
netlist requires
redundant port
declarations

Verilog’s module ports provide a simple and intuitive way of
describing the interconnections between the blocks of a design. In
large, complex designs, however, Verilog’s module ports have sev-
eral shortcomings. Some of these are:

« Declarations must be duplicated in multiple modules.
« Communication protocols must be duplicated in several modules.
« There is a risk of mismatched declarations in different modules.

« A change in the design specification can require modifications in
multiple modules.

One disadvantage of using Verilog’s module ports to connect major
blocks of a design together is readily apparent in the example code
above. The signals that make up main_bus in the preceding exam-
ple must be declared in each module that uses the bus, as well as in
the top-level netlist that connects the design together. In this simple
example, there are only a handful of signals in main_bus, so the
redundant declarations are mostly just an inconvenience. In a large,
complex design, however, this redundancy becomes much more
that an inconvenience. A large design could have dozens of mod-
ules connected to the same bus, with dozens of duplicated declara-
tions in each module. If the ports of one module should
inadvertently be declared differently than the rest of the design, a
functional error can occur that may be difficult to find.

The replicated port declarations also mean that, should the specifi-
cation of the bus change during the design process, or in a next gen-
eration of the design, then each and every module that shares the

Chapter 9: SystemVerilog Interfaces 231

protocols must
be duplicated in
each module

module ports
inhibit abstract
top-down design

9.1.2

an interface is
an abstract port

type

bus must be changed. All netlists used to connect the modules using
the bus must also be changed. This wide-spread affect of a change
is counter to good coding styles. One goal of coding is to structure
the code in such a way that a small change in one place should not
require changing other areas of the code. A weakness in the Verilog
language is that a change to the ports in one module will usually
require changes in other modules.

Another disadvantage of Verilog’s module ports is that communi-
cation protocols must be duplicated in each module that utilize the
interconnecting signals between modules. If, for example, three
modules read and write from a shared memory device, then the read
and write control logic must be duplicated in each of these modules.

Yet another disadvantage of using module ports to connect the
blocks of a design together is that detailed interconnections for the
design must be determined very early in the design cycle. This is
counter to the top-down design paradigm, where models are first
written at an abstract level without extensive design detail. At an
abstract level, an interconnecting bus should not require defining
each and every signal that makes up the bus. Indeed, very early in
the design specification, all that might be known is that the blocks
of the design will share certain information. In the block diagram
shown in Figure 9-1 on page 226, the main bus is represented as a
single connection. Using Verilog’s module ports to connect the
design blocks together, however, does not allow modeling at that
same level of abstraction. Before any block of the design can be
modeled, the bus must first be broken down to individual signals.

Advantages of SystemVerilog interfaces

SystemVerilog adds a powerful new port type to Verilog, called an
interface. An interface allows a number of signals to be grouped
together and represented as a single port. The declarations of the
signals that make up the interface are contained in a single location.
Each module that uses these signals then has as a single port of the
interface type, instead of many ports with the discrete signals.

Example 9-2 shows how SystemVerilog’s interfaces can reduce the
amount of code required to model the simple design shown in Fig-
ure 9-1. By encapsulating the signals that make up main_bus as an
interface, the redundant declarations for the these signals within
each module are eliminated.

232 SystemVerilog for Design

Example 9-2: SystemVerilog module interconnections using interfaces

/******************* Interface Definitions *******************/
interface main_bus;

wire [15:0] data, address;]
logic [7:0] slave_instruction;
logic slave_request;
logic bus_grant; signals for main_bus are
logic bus_request; defined in just one place
logic slave_ready;
logic data_ready;
logic mem_read;
logic mem_write;
endinterface —

/********************** Top_level Netlist ********************/
module top (input wire clock, resetN, test_mode);

wire [15:0] program_address, jump_address;

wire [7:0] instruction, next_instruction;

main _bus bus (); // instance of an interface
// (instance name is bus)

processor procl {
// main bus porFs . each module instance has a
.bus(bus), // interface connectlon:l single connection for main_bus
// other ports -
.jump_address (jump_address) ,
.instruction(instruction),
.clock(clock),
.resetN{resetN),
.test_mode (test_mode)

)

slave slavel (
// main bus ports
.bus(bus), // interface connection:]
// other ports
.clock(clock),
.resetN{(resetN)

)i

dual port_ram ram (
// main bus ports
.bus (bus), // interface connection:]
// other ports
.program_address (program_address) ,

Chapter 9: SystemVerilog Interfaces 233

.data_b(next_instruction)

)

test_generator test_gen(
// main_bus ports
.bus(bus), // interface connection:]
// other ports
.clock (clock),
.resetN(resetN)},
.test_mode (test_mode)
) ;

instruction_reg ir (
.program_address (program_address) ,
.instruction(instruction),
.jump_address (jump_address) ,
.next_instruction(next_instruction),
.clock(clock),
.resetN(resetN)

)

endmodule

[Hrhkkkkkkhkknnrxkkkxxk Module Definitions ****xksxkskkkkrhhdkrskx/
module processor {
/1 'main_bus interféce port each module definition has a
main_bus bus, // interface port :] single port for main_bus
// other ports -
output reg [15:0] jump_address,
input wire [7:0] instruction,

input wire clock,
input wire resetN,
input wire test_mode

)i
// module functionality code
endmodule

module slave (

// main_bus interface port

main_bus bus, // interface port :]

// other ports

input wire clock,

input wire resetN

);
// module functionality code

endmodule

234

SystemVerilog for Design

module dual_port_ram (

)i

main_bus bus, // interface port
// other ports

input wire [15:0] program_address,
output reg [7:0] data_ b

// main bus interface port :]

// module functionality code

endmodule

module test_generator (

)i

endmodule

// main bus interface port
main_bus bus, // interface port :]
// other ports

input wire clock,
input wire resetN,
input wire test_mode

// module functionality code

module instruction_reg (

)

output reg [15:0] program_address,
output reg [7:0] instruction,
input wire [15:0] jump_address,
input wire [7:0] next_instruction,
input wire clock,

input wire resetN

// module functionality code

endmodule

In example 9-2, above, all the signals that are in common between
the major blocks of the design have been encapsulated into a single
location—the interface declaration called main_bus. The top-level
module and all modules that make up these blocks do not repeti-
tively declare these common signals. Instead, these modules simply
use the interface as the connection between them.

Encapsulating common signals into a single location completely
removes the redundant declarations of Verilog modules. Indeed, in
the preceding example, since clock and resetN are also common
to all modules, these signals could have also been brought into the

Chapter 9: SystemVerilog Interfaces 235

9.1.3

interfaces can
contain
functionality

interfaces
eliminate
redundant
declarations

9.1.4

Interfaces are
not the same as
modules

interface. This further simplification is shown later in this chapter,
in example 9-3 on page 236.

SystemVerilog interface contents

SystemVerilog interfaces are far more than just a bundle of wires.
Interfaces can encapsulate the full details of the communication
between the blocks of a design. Using interfaces:

» The discrete signal and ports for communication can be defined
in one location, the interface.

» Communication protocols can be defined in the interface.

* Protocol checking and other verification routines can be built
directly into the interface.

With Verilog, the communication details must be duplicated in
each module that shares a bus or other communication architecture.
SystemVerilog allows all the information about 2 communication
architecture and the usage of the architecture to be defined in a sin-
gle, common location. An interface can contain data type declara-
tions, tasks, functions, procedural blocks, program blocks, and
assertions. SystemVerilog interfaces also allow multiple views of
the interface to be defined. For example, for each module con-
nected to the interface, the data_bus signal can be defined to be an
input, output or bidirectional port.

All of these capabilities of SystemVerilog interfaces are described
in more detail in the following sections of this chapter.

Differences between modules and interfaces

There are three fundamental differences that make an interface dif-
fer from a module. First, an interface cannot contain design hierar-
chy. Unlike a module, an interface cannot contain instances of
modules or primitives that would create a new level of implementa-
tion hierarchy. Second, an interface can be used as a module port,
which is what allows interfaces to represent communication chan-
nels between modules. It is illegal to use a module in a port list.
Third, an interface can contain modports, which allow each module
connected to the interface to see the interface differently. Modports
are described in detail in section 9.6 on page 243.

236

SystemVerilog for Design

9.2 Interface declarations

interfaces are
defined in a
similar way as
modules

Syntactically, the definition of an interface is very similar to the
definition of a module. An interface can have ports, just as a mod-
ule does. This allows signals that are external to the interface, such
as a clock or reset line, to be brought into the interface and become
part of the bundle of signals represented by the interface. Interfaces
can also contain declarations of any Verilog or SystemVerilog data
type, including all variable types, all net types and user-defined

types.

Example 9-3 shows a definition for an interface called main_bus,
with three external signals coming into the interface: clock,
resetN and test_mode. These external signals can now be con-
nected to each module through the interface, without having to
explicitly connect the signals to each module.

Notice in this example how the instance of interface main_bus has
the clock, resetN and test_mode signals connected to it, using
the same syntax as connecting signals to an instance of a module.

Example 9-3: The interface definition for main_bus, with external inputs

/******************* Interface Definitions *******************/
interface main bus (input wire clock, resetN, test_mode);

wire [15:0] data, address;

logic [7:0] slave_instruction;

logic
logic
logic
logic
logic
logic
logic
endinterface

slave_request;
bus_grant;
bus_request;
slave_ready;
data_ready;
mem_read;
mem_write;

/********************** Top_level Netlist ********************/
module top (input wire clock, resetN, test_mode) ;

wire {15:0] program_address, jump_address;

wire [7:0] instruction, next_instruction;

main bus bus (// instance of an interface
.clock(clock) ,
.resetN(resetN),
.test_mode (test_mode)

);

Chapter 9: SystemVerilog Interfaces 237

processor procl (
// main_bus ports
.bus(bus), // interface connection
// other ports
.jump_address (jump_address),
.instruction (instruction)

)

/*** remainder of netlist and module definitions are not ***/
/*** listed — they are the same as in example 9-2. *ok k[

interface The SystemVerilog simplified port connection styles of .name and
instances can « can also be used with interface port connections. These con-
use .name and gircts are covered in section 8.4 on page 193. The previous exam-
.* connections . e
ples can be made even more concise by combining the use of
interfaces with the use of . * port connections. This is illustrated in
example 9-4, which follows.

Example 9-4: Using interfaces with . * connections to simplify complex netlists

JrEkxkxkkrkkkkkxkkkkk* Interface Definitionsg **xxkkkkkkskkhrdikxk /
interface main_bus (input wire clock, resetN, test_mode);

wire [15:0] data, address;

logic [7:0] slave_instruction;

logic slave_request;
logic bus_grant;
logic bus_request;
logic slave_ready;
logic data_ready;
logic mem_read;
logic mem_write;

endinterface

238

SystemVerilog for Design

/********************** Top_level Netllst ********************/
module top (input wire clock, resetN, test_mode};

wire [15:0] program_address, jump_address;

wire [7:0} instruction, next_instruction;

main_bus bus (.*);

processor procl (.*); The * port connection can
slave slavel (.*); significantly reduce a netlist (compare
dual_port_ram ram (.*); to netlist in example 9-2 on page 232).
instruction_reg ir (.*);

test_generator test_gen(.*);

endmodule

/*** module definitions are not listed — they are the *xk [

/*** gsame as

in example 9-2. * k% /

SystemVerilog
greatly simplifies
netlists

9.2.1

an interface
name can be
used before its
definition

9.2.2

interfaces can
be global
declarations

In the Verilog version of this simple example, which was listed in
example 9-1 on page 226, the top-level netlist, module top,
required 65 lines of code, excluding blank lines and comments.
Using SystemVerilog interfaces along with .*, example 9-4,
above, requires just 10 lines of code, excluding blank lines and
comments, to model the same connectivity.

Source code declaration order

The name of an interface can be referenced in two contexts: in a
port of a module, and in an instance of the interface. Interfaces can
be used as module ports without concern for file order dependen-
cies. Just as with modules, the name of an interface can be refer-
enced before the source code containing the interface definition has
been read in by the software tool. This means any module can use
an interface as a module port, without concern for the order in
which the source code is compiled.

Global and local interface definitions

An interface can be defined separately from module definitions,
using the keywords interface and endinterface. The name of
the interface will be in the global module definition name scope,
just as with module names. This allows an interface definition to be
used as a port by any module, anywhere in the design hierarchy.

Chapter 9: SystemVerilog Interfaces 239

interfaces can An interface definition can be nested within a module, making the
be limited to name of the interface local to that module. Only the containing
specific odule can instantiate a locally declared interface. This allows the
hierarchy
scopes US€ of an interface to be limited to just one portion of the design
hierarchy, such as to just within an IP model.

9.3 Using interfaces as module ports

With SystemVerilog, a port of a module can be declared as an inter-
face type, instead of the Verilog input, output or inout port

types.

9.3.1 Explicitly named interface ports

a module port A module port can be explicitly declared as a specific type of inter-

can be the name face. This is done by using the name of an interface as the port type.
of an interface The syntax is:

module <module name> (<interface name> <port_names>);

For example:
interface chip bus;

endinterface

module CACHE (chip bus pins, // interface port
input clock) ;

endmodule

An explicitly named interface port can only be connected to an
interface of the same name. An error will occur if any other inter-
face definition is connected to the port. Explicitly named interface
ports ensure that a wrong interface can never be inadvertently con-
nected to the port. Explicitly naming the interface type that can be
connected to the port also serves to document directly within the
port declaration exactly how the port is intended to be used.

240 SystemVerilog for Design

9.3.2 Generic interface ports

aportcanbe A generic interface port defines the port type using the keyword
declared using interface, instead of a using the name of a specific interface

the interface .
keyword type. The syntax is:

module <module name> (interface <port_name>);

When the module is instantiated, any interface can be connected to
the generic interface port. This provides flexibility in that the same
module can be used in multiple ways, with different interfaces con-
nected to the module. In the following example, module RAM is
defined with a generic interface port:

module RAM (interface pins,
input clock) ;

endmodule

9.3.3 Synthesis guidelines

Both styles of connecting an interface to a module are synthesiz-
able.

9.4 Instantiating and connecting interfaces

interfaces are An instance of an interface is connected to a port of a module

instantiated the instance using a port connection, just as a discrete net would be

sam‘fn‘gzy /as connected to a port of a module instance. This requires that both the
YIS interface and the modules to which it is connected be instantiated.

The syntax for an interface instance is the same as for a module
instance. If the definition of the interface has ports, then signals can
be connected to the interface instance, using either the port order
connection style or the named port connection style, just as with a
module instance.

Interface connection rules

@ It is illegal to leave an interface port unconnected.

Chapter 9: SystemVerilog Interfaces 241

interface ports
must be
connected

the port of an
interface can
connect to
another
interface

A module input, output or inout port can be left unconnected
on a module instance. This is not the case for an interface port. A
port that is declared as an interface, whether generic or explicit,
must be connected to an interface instance or another interface port.
An error will occur if an interface port is left unconnected.

On a module instance, a port that has been declared as an interface
type must be connected to an interface instance, or another interface
port that is higher up in the hierarchy. If a port declaration has an
explicitly named interface type, then it must be connected to an
interface instance of the identical type. If a port declaration has a
generic interface type, then it can be connected to an interface

instance of any type.

The SystemVerilog .name and .* port connection styles can also
be used with interface instances, as is illustrated in example 9-4 on
page 237. These port connection styles are discussed in section 8.4
on page 193.

Interfaces connected to interface instances

A port of an interface can also be defined as an interface. This capa-
bility allows one interface to be connected to another interface. The
main bus of a design, for example might have one or more sub-bus-
ses. Both the main bus and its sub-busses can be modeled as inter-
faces. The sub-bus interfaces can be represented as ports of the
main interface.

9.5 Referencing signals within an interface

signals in an
interface are
referenced
using a relative
hierarchy path

Within a module that has an interface port, the signals inside the
interface can be accessed using a relative hierarchy path name. This
path name is formed using the syntax:

<port_names>.<internal_interface_signal_name>

In example 9-3 on page 236, the interface definition for main_bus
contains declarations for clock and resetN. Module slave has
an interface port, with the port name of bus. The slave model can
access the clock variable within the interface by referencing it as
bus.clock. For example:

242 SystemVerilog for Design

always @(posedge bus.clock, negedge bus.resetN)

Example 9-5 lists the partial source code for module slave. The
model contains several references to signals within the main_bus
interface.

Example 9-5: Referencing signals within an interface

module slave (
// main_bus interface port
main_bus bus
// other ports

)

// internal signals

logic [15:0] slave_data, slave_address;
bit [15:0] operand A, operand_ B;

bit mem_select, read, write;

assign bus.address = mem_select? slave_address: 'z;
assign bus.data = bus.slave_ready? slave_data: 'z;

enum {RESET, START, REQ DATA, EXECUTE, DONE} State, NextState;

always ff @(posedge bus.clock, negedge bus.resetN) begin: FSM
if (!bus.resetN) State <= START;
else State <= NextState;

end

always_comb begin : FSM_decode
unigue case (State)
START: if (!bus.slave_request) begin
bus.bus_request = 0;
NextState = State;

end

else begin
operand_A = bus.data;
slave address = bus.address;
bus.bus_request = 1;
NextState = REQ DATA;

end

// decode other states

endcase
end: FSM_decode
endmodule

Chapter 9: SystemVerilog Interfaces 243

Use short names for the names of interface ports.

TP

Since signals within an interface are accessed by prepending the
interface port name to the signal name, it is convenient to use short
names for interface port names. This keeps the hierarchy path short
and easy to read. The names within the interface can be descriptive
and meaningful, as within any Verilog module.

9.6 Interface modports

modports define
interface
connections
from the
perspective of
the module

Interfaces provide a practical and straightforward way to simplify
connections between modules. However, each module connected to
an interface may need to see a slightly different view of the connec-
tions within the interface. For example, to a slave on a bus, an
interrupt_ request signal might be an output from the slave,
whereas to a processor on the same bus, interrupt request
would be an input.

SystemVerilog interfaces provide a means to define different views
of the interface signals that each module sees on its interface port.
The definition is made within the interface, using the modport key-
word. Modport is an abbreviation for module port. A modport defi-
nition describes the module ports that are represented by the
interface. An interface can have any number of modport defini-
tions, each describing how one or more other modules view the sig-
nals within the interface.

A modport defines the port direction that the module sees for the
signals in the interface. Examples of two modpoxrt declarations are:

interface chip_bus (input wire clock, resetN);
logic interrupt request, grant, ready;
logic [31:0] address;
wire [63:0] data;

modport master (input interrupt_request,
input address,
output grant, ready,
inout data,
input clock, resetN);

244

SystemVerilog for Design

modport slave (output interrupt_ request,
output address,
input grant, ready,
inout data,
input clock, resetN);
endinterface

The modport definitions do not contain vector sizes or data types.
This information is defined as part of the signal data type declara-
tions in the interface. The modport declaration only defines whether
the connecting module sees a signal as an input, output, bidirec-
tional inout, or ref port.

9.6.1 Specifying which modport view to use

the modport can
be selected in
the module
instance

SystemVerilog provides two methods for specifying which mod-
port view a module interface port should use:

+ As part of the interface connection to a module instance

+ As part of the module port declaration in the module definition

Both of these specification styles are synthesizable.

Selecting the modport in the module instance

When a module is instantiated and an instance of an interface is
connected to a module instance port, the specific modport of the
interface can be specified. The connection to the modport is speci-
fied as:

<interface_instance_name>.<modport_name>

For example:

chip bus bus; // instance of an interface
primary il (bus.master); // use master modport

The following code snippet illustrates connecting two modules
together with an interface called chip_bus. The module called
primary is connected to the master view of the interface, and the
module called secondary is connected to the slave view of the
same interface:

Chapter 9: SystemVerilog Interfaces 245

Example 9-6: Selecting the modport to use at the module instance

interface chip_bus (input wire clock, resetN);
modport master {...);
modport slave (...);

endinterface

module primary (interface pins); // generic interface port
enaﬁédule

module secondary (chip_bus pins); // specific interface port
enéﬁédule

module chip (input wire clock, resetN);

chip bus bus (clock, resetN); // instance of an interface

primary il (bus.master); // use the master modport view

secondary i2 (bus.slave); // use the slave modport view
endmodule

When the modport to be used is specified in the module instance,
the module definition can use either a generic interface port type or
an explicitly named interface port type, as discussed in sections
9.3.2 on page 240, and 9.3.1 on page 239. The preceding example
shows a generic interface port definition for primary module, and
an explicitly named port type for secondary module.

Selecting the modport in the module port declaration

the modport can The specific modport of an interface to be used can be specified
be selected in directly as part of the module port declaration. The modport to be

the module ,nnected to the interface is specified as:
definition

<interface names>.<modport_name>

For example:

module secondary {chip_bus.slave pins);

endmodule

246 SystemVerilog for Design

The explicit interface name must be specified in the port type when
the modport to be used is specified as part of the module definition.
The instance of the module simply connects an instance of the
interface to the module port, without specifying the name of a mod-

port.
The following code snippet shows a more complete context of

specifying which modport is to be connected to a module, as part of
the definition of the module.

Example 9-7: Selecting the modport to use at the module definition

interface chip_bus (input wire clock, resetN);

modport master (...);

modport slave (...);
endinterface
module primary (chip_bus.master pins); // use master modport
endmodule
module secondary (chip_ bus.slave pins); // use slave modport
endmodule

module chip (input wire clock, resetN);

chip_bus bus (clock, resetN); // instance of an interface

primary il (bus); // will use the master modport view

secondary i2 (bus); // will use the slave modport view
endmodule

@ A modport can be selected in either the module instance or the
module definition, but not both.

The modport view that a module is to use can only be specified in
one place, either on the module instance or as part of the module
definition. It is an error to select which modport is to be used in
both places.

Chapter 9: SystemVerilog Interfaces 247

when no
modport is used,
nets are
bidirectional,
and variables
are references

Connecting to interfaces without specifying a modport

Even when an interface is defined with modports, modules can still
be connected to the complete interface, without specifying a spe-
cific modport. However, the port directions of signals within an
interface are only defined as part of a modport view. When no mod-
port is specified as part of the connection to the interface, all nets in
the interface are assumed to have a bidirectional inout direction,
and all variables in the interface are assumed to be of type ref. A
ref port passes values by reference, rather than by copy. This
allows the module to access the variable in the interface, rather than
a copy of the variable. Module reference ports are covered in sec-
tion 8.7 on page 214.

Synthesis considerations

Synthesis supports both styles of specifying which modport is to be
used with a module. The synthesis process will expand the interface
port of a module into the individual ports represented in the mod-
port definition. The following code snippets show the pre- and post-
synthesis module definitions of a module using an interface with
modports.

Pre-synthesis model, with an interface port:
module primary (chip bus.master pins);
endmodule

interface chip bus (input wire clock, resetN);
logic interrupt_request, grant, ready;
logic [31:0] address;
wire ([63:0] data;

modport master (input interrupt_request,
input address,
output grant, ready,
inout data,
input clock, resetN);
endinterface

248

SystemVerilog for Design

Post-synthesis model:

module primary {(interrupt_request, address,
grant, ready, data,
clock, resetN);
input interrupt_request,
input [31:0] address,
output grant, ready,
inout ([63:0] data,
input clock, resetN);
// synthesized model functionality
endmodule

If no modport is specified when the model is synthesized, then all
signals within the interface become bidirectional inout ports on
the synthesized module.

9.6.2 Using modports to define different sets of connections

modports limit
access to the
contents of an
interface

In a more complex interface between several different modules, it
may be that not every module needs to see the same set of signals
within the interface. Modports make it possible to create a custom-
ized view of the interface for each module connected.

Restricting module access to interface signals

A module can only directly access the signals listed in its modport
definition. This makes it possible to have some signals within the
interface completely hidden from view to certain modules. For
example, the interface might contain a net called test_clock that
is only used by modules connected to the interface through the
master modport, and not by modules connected through the
slave modport.

A modport does not prohibit the use of a full hierarchy path to
access any object in an interface. However, full hierarchy paths are
not synthesizable, and are primarily used for verification.

It is also possible to have internal signals within an interface that
are not visible through any of the modport views. These internal
signals might be used by protocol checkers or other functionality
contained within the interface, as discussed later in this chapter. If a
module is connected to the interface without specifying a modport,
the module will have access to all signals defined in the interface.

Chapter 9: SystemVerilog Interfaces 249

Example 9-8 adds modports to the main_bus interface example.
The processor module, the slave module and the RAM module
all use different modports within the main_bus interface, and the
signals within the interface that can be accessed by each of these
modules are different. The test block is connected to the main_bus
without specifying a modport, giving the test block complete, unre-
stricted access to all signals within the interface.

Example 9-8: A simple design using an interface with modports

JEExx xR A Rx xRk xkx*kx*x% Interface Definitions *******************/
interface main_bus (input wire clock, resetN, test_mode);

wire [15:0] data, address;

logic [7:0] slave_instruction;

logic slave_request;
logic bus grant;
logic bus_request;
logic slave_ready;
logic data_ready;
logic mem_read;
logic mem_write;

modport master (inout data,
output address,
output slave_instruction,
output slave_request,
output bus_grant,
output mem_read,
output mem write,
input bus request,
input slave_ready,
input data ready,
input clock,
input resetN,
input test_mode
);

modport slave (inout data,
inout address,
output mem_read,
output mem_write,
output bus_request,
output slave_ready,
input slave_instruction,
input slave_request,
input bus _grant,
input data_ready,

250 SystemVerilog for Design

input clock,
input resetN

) ;

modport mem (inout data,
output data_ready,
input address,
input mem_read,
input mem write
)i
endinterface

/********************** Top_level Netlist ********************/
module top (input wire clock, resetN, test_mode);

wire [15:0] program_address, jump_address;

wire [7:0] instruction, next_instruction;

main_bus bus (.*); // instance of an interface
processor procl (.bus(bus.master), .*);
slave slavel (.bus{(bus.slave));
dual_port_ram ram (.bus(bus.mem), .*);
instruction reg ir (.*);
test_generator test_gen{(.bus (bus));

endmodule

/*** module definitions are not listed — they are the ***/
/*** same as in example 9-2 on page 232. *kk)

9.7 Using tasks and functions in interfaces

interfaces can Interfaces can encapsulate the full details of the communication
contain protocol between modules. For instance, the main_bus protocol in
functionality he previous example includes handshaking signals between the
master processor and the slave processor. In regular Verilog, the
master processor module would need to contain the procedural
code to assert and de-assert its handshake signals at the appropriate
time, and to monitor the slave handshake inputs. Conversely, the
slave processor would need to contain the procedural code to assert
and de-assert its handshake signals, and to monitor the handshake

inputs coming from the master processor or the RAM.

Chapter 9: SystemVerilog Interfaces 251

9.7.1

an interface
method is a task
or function

methods
encapsulate
functionality in
one place

9.7.2

modules can
import interface
methods

Describing the bus protocol within each module that uses a bus
leads to duplicated code. If any change needs to be made to the bus
protocol, the code for the protocol must be changed in each and
every module that shares the bus.

Interface methods

SystemVerilog allows tasks and functions to be declared within an
interface. These tasks and functions are referred to as interface
methods.

A task or function that is defined within an interface is written
using the same syntax as if it had been within a module, and can
contain the same types of statements as within a module. These
interface methods can operate on any signals within the interface.
Values can be passed in to interface methods from outside the inter-
face as input arguments. Values can be written back from interface
methods as output arguments or function returns.

Interface methods offer several advantages for modeling large
designs. Using interface methods, the details of communication
from one module to another can be moved to the interface. The
code for communicating between modules does not need to be rep-
licated in each module. Instead, the code is only written once, as
interface methods, and shared by each module connected using the
interface. Within each module, the interface methods are called,
instead of implementing the communication protocol functionality
within the module. Thus, an interface can be used not only to
encapsulate the data connecting modules, but also the communica-
tion protocols between the modules.

Importing interface methods

Interface methods (tasks and functions) can be called from modules
that are connected to the interface by using the relative hierarchical
name. If the interface is connected via a modport, the method must
be specified using the import keyword. The import definition is
specified within the interface, as part of a modport definition. Mod-
ports specify interface information from the perspective of the
module. Hence, an import declaration within a modport indicates
that the module is importing the task or function.

The import declaration can be used in two ways:

252

SystemVerilog for Design

 Import using just the task or function name

+ Import using a full prototype of the task or function

Import using a task or function name

The simplest form of importing a task or function is to simply spec-
ify the name of the task or function. The basic syntax is:

modport (import <task_function_name>);

An example of using this style is:

modport in (import Read,
import parity gen,
input clock, resetN);

Import using a task or function prototype

The second style of an import declaration is to specify a full proto-
type of the task or function arguments. This style requires that the
keyword task or function follow the import keyword. It also
requires that the task or function name be followed by a set of
parentheses, which contain the formal arguments of the task or fun-
citon. The basic syntax of this style of import declarations is:

modport (import task <task names(<task_formal_arguments));

modport

(import function <function_name>

(<function_formal arguments>));

For example:

modport in (import task Read
(input [63:0] data,
output [31:0] address),
import function parity gen
(input [63:0] data),
input clock, resetN);

A full prototype can serve to document the arguments of the task or
function directly as part of the modport declaration. The full proto-
type is only required when the task or function has been exported
from another module (explained in section 9.7.4 on page 255), or

Chapter 9: SystemVerilog Interfaces 253

imported
methods are
accessed with a
relative
hierarchy path

interfaces can
contain alternate
methods

when a function has been externally defined using SystemVerilog’s
Direct Programming Interface (not covered in this book).

Calling imported interface methods

Importing a task or function through a modport gives the module
using the modport access to the interface method. The task or func-
tion is called by prepending the interface port name to the task or
function name, the same as when a signal within an interface is
accessed.

<interface_port_name>.<method_ name>

Alternate methods within interfaces

Modports provide a way to use different methods and protocols
within the same interface. The interface can contain a variety of dif-
ferent methods, each using different protocols or data types.

The following code snippet example illustrates an interface called
math bus. Within the interface, different read methods are
defined, which retrieve either integer data or floating point data
through an interface. Two modules are defined, called
integer math unit and floating point_unit, both of
which use the same math_bus interface. Each module will access
different types of information, based on the modport used in the
instantiation of the module.

Example 9-9: Using modports to select alternate methods within an interface

JRx*k*kRkkk XKk *kk**k*x* Interface Definitions Hhkkkkhkkkkkkkkkxkkhk /
interface math_bus (input wire clock, resetN);

int a_int, b_int, result_int;

real a_real, b_real, result_real;

task IntegerRead (output int a_int, b_int);
// do handshaking to fetch a and b values

endtask

task FloatingPointRead (output real a_real, b_real);
// do handshaking to fetch a and b values

endtask

254 SystemVerilog for Design

modport int_io (import IntegerRead,
input clock, resetN,
output ref result_int);

modport fp_io (import FloatingPointRead,
input clock, resetN,
output ref result_real);

endinterface

/********************** Top_level Netlist ********************/

module top;
math _bus bus_a; // 1lst instance of the math_bus interface

math_bus bus_b; // 2nd instance of the math_bus interface

integer_math_unit il (bus_a.int_io);
// connect to interface using integer data types

floating point_unit i2 (bus_b.fp_io);

// connect to interface using real data types
endmodule

[REFE xR F kxR KKKk Kk kkkkkk Module Definitions ****¥«kkkkkhkhhkhkkrrkh* /

module integer math_unit (interface 1io);
int a_reg, b_reg;

always @ (posedge clock)

begin
io.IntegerRead{a reg, b_reg); // call method in
// interface
// process math operation
end
endmodule

module floating point_unit (interface 1io);
real a_reg, b_reg;

always @ (posedge clock)

begin
io.FloatingPointRead(a_reg, b_reg); // call method in
// interface
// process math operation
end

endmodule

Chapter 9: SystemVerilog Interfaces 255

9.7.3

9.74

modules can
export methods
into an interface

exported
methods are not
synthesizable

Synthesis guidelines for interface methods

Modules that use tasks or functions imported from interfaces are
synthesizable. Synthesis will infer a local copy of the imported task
or function within the module. The post-synthesis version of the
module will contain the logic of the task or functions; it will no
longer look to the interface for that functionality.

@ Imported tasks or functions must be declared as automatic
and not contain static declarations in order to be

synthesized.

An automatic task or function allocates new storage each time it is
called. When a module calls an imported task or function, a new
copy is allocated. This allows synthesis to treat the task or function
as if were a local copy within the module.

Exporting tasks and functions

SystemVerilog interfaces and modports provide a mechanism to
define a task or function in one module, and then export the task or
function through an interface to other modules.

@ Exporting tasks and functions is not synthesizable.

Exporting tasks or functions into an interface is not synthesizable.
This modeling style should be reserved for abstract models that are
not intended to be synthesized.

An export declaration in an interface modport does not require a
full prototype of the task or function arguments. Only the task or
function name needs to be listed in the modport declaration.

An import declaration of an exported task or function must have a
complete prototype of the task/function arguments. The prototype
must match the arguments as they are defined in the declaration of
the task or function.

The code fragments in example 9-10 show a function called check
that is declared in module cPU. The function is exported from the
CPU through the master modport of the chip_bus interface. The

256 SystemVerilog for Design

same function is imported into any modules that use the slave
modport of the interface. To any module connected to the slave
modport, the check function appears to be part of the interface, just
like any other function imported from an interface. Modules using
the slave modport do not need to know the actual location of the

check function definition.

Example 9-10; Exporting a function from a module through an interface modport

interface chip bus (input wire clock, resetN);
bit request, grant, ready;
logic [63:0] address, data;

modport master (output request,
export check);

modport slave (input request,
import check (input bit parity,
input [63:0] logic data));
endinterface
module CPU (chip_bus.master io);
function check (input bit parity, input [63:0] logic data);
endfunction

endmodule

Exporting a task or function to the entire interface

The export declaration allows a module to export a task or func-
tion to an interface through a specific modport of the interface. A
task or function can also be exported to an interface without using a
modport. This is done by declaring an extern prototype of the task

or function within the interface. For example:

Chapter 9: SystemVerilog Interfaces 257

Example 9-11: Exporting a function from a module into an interface

interface chip_bus (input bit clock);

bit

request, grant, ready;

logic [63:0] address, data;

extern function check(input bit parity,

input [63:0] logic data);

modport master (output reguest, ...);

modport slave (input request,

endinterface

import function check
(input bit parity,
input [63:0] logic data));

module CPU (chip_bus.master io);

function check (input bit parity, input [63:0] logic data);

endfunction

endmodule

restrictions on
exporting
functions

restrictions on
exporting tasks

Restrictions on exporting tasks and functions

@ It is illegal to export the same function name from multiple
instances of a module. It is legal, however, to export a task name

from multiple instances, using an extern forkjoin
declaration.

SystemVerilog places a restriction on exporting functions through
interfaces. It is illegal to export the same function name from two
different modules, or two instances of the same module, into the
same interface. For example, module A and module B cannot both
export a function called check into the same interface.

SystemVerilog places a restriction on exporting tasks through inter-
faces. It is illegal to export the same task name from two different
modules, or two instances of the same module, into the same inter-
face, unless an extern forkjoin declaration is used. The multi-
ple export of a task corresponds to a multiple response to a

258

SystemVerilog for Design

extern forkjoin
allows multiple

instances of
exported tasks

9.8 Using procedural blocks in interfaces

broadcast. Tasks can execute concurrently, each taking a different
amount of time to execute statements, and each call returning dif-
ferent values through its outputs. The concurrent response of mod-
ules A and B containing a call to a task called task1 is conceptually

modeled by:

fork
<hierarchical name_of module_A>.taskl(qg, r);
<hierarchical name_of module B>.taskl(qg, r);
join

Because an interface should not contain the hierarchical names of
the modules to which it is connected, the task is declared as
extern forkjoin, which infers the behavior of the fork...join
block above. If the task contains outputs, it is the last instance of the
task to finish that determines the final output value, just as in the
fork...jein block above.

This construct can be useful for abstract, non-synthesizable transac-
tion level models of busses that have slaves, where each slave
determines its own response to broadcast signals (see example 11-2
on page 297 for an example). The extern forkjoin can also be
used for configuration purposes, such as counting the number of
modules connected to an interface. Each module would export the
same task, name which increments a counter in the interface.

interfaces can
contain protocol
checkers and
other
functionality

In addition to methods (tasks and functions), interfaces can contain
Verilog procedural blocks and continuous assignments. This allows
an interface to contain functionality that can be described using
initial, always or £inal procedural blocks, and assign state-
ments. An interface can also contain verification program blocks.

One usage of procedural blocks within interfaces is to facilitate ver-
ification of a design. One application of using procedural state-
ments within an interface is to build protocol checkers into the
interface. Each time modules pass values through the interface, the
built-in protocol checkers can verify that the design protocols are
being met. Examples of using procedural code within interfaces are
presented in the forthcoming companion book, SystemVerilog for
Verification.

Chapter 9: SystemVerilog Interfaces

259

9.9 Reconfigurable interfaces

Interfaces can use parameter redefinition and generate statements,
in the same way as modules. This allows interface models to be
defined that can be reconfigured each time an interface is instanti-

ated.

Parameterized interfaces

interfaces can Parameters can be used in interfaces to make vector sizes and other
use parameters, declarations within the interface reconfigurable using Verilog’s
the same as parameter redefinition constructs. SystemVerilog also adds the

modules

on page 46.

ability to parameterize data types, which is covered in section 2.11

Example 9-12, below, adds parameters to example 9-9 on page 253
shown earlier, which uses different modports to pass either integer
data or real data through the same interface. In this example, the
data types of the interface are parameterized, so that each instance
of the interface can be configured to use integer or real data types.

Example 9-12: Using parameters in an interface

interface math_bus #{(parameter type DTYPE = int)
(input bit clock);

DTYPE a, b, result; // parameterized data types

task Read (output DTYPE a, b);
// do handshaking to fetch a and b values

endtask

modport int_io (import Read (output DTYPE a, b),
input bit clock,
output DTYPE result);

modport fp_io (import Read (output DTYPE a, b)j,
input bit clock,
output int result);
endinterface

module top;

math_bus bus_a; // interface uses

int data

math_bus (#.DTYPE(real)) bus_b; // interface uses real data

integer_math_unit il (bus_a.int_io);

260

SystemVerilog for Design

// connect to interface using integer data types

floating point_unit i2 (bus_b.fp_io);
// connect to interface using real data types

endmodule //

end of module top

interfaces can
use generate
blocks

9.10 Verification with interfaces

The preceding example uses the Verilog-2001 style for declaring
parameters within a module and for parameter redefinition. The
older Verilog-1995 style of declaring parameters and doing param-
eter redefinition can also be used with interfaces.

Using generate blocks

The Verilog-2001 generate statement can also be used to create
reconfigurable interfaces. Generate blocks can be used to replicate
continuous assignment statements or procedural blocks any number
of times.

communication
protocols can be
verified before a
design is
modeled

Using only Verilog-style module ports, without interfaces, a typical
design and verification paradigm is to develop and test each module
of a design, independent of other modules in the design. After each
module is independently verified, the modules are connected
together to test the communication between modules. If there is a
problem with the communication protocols, it may be necessary to
make design changes to multiple modules.

Interfaces can enable a different paradigm for verification. With
interfaces, the communication channels can be developed as inter-
faces independently from other modules. Since an interface can
contain methods for the communication protocols, the interface can
be tested and verified independent of the rest of the design. Mod-
ules that use the interface can be written knowing that the commu-
nication between modules has already been verified.

Verification of designs that use interfaces is covered in much
greater detail in the forthcoming companion book, SystemVerilog

for Verification.

Chapter 9: SystemVerilog Interfaces 261

9.11 Summary

This chapter has presented one of most powerful additions to the
Verilog language for modeling very large designs: interfaces. An
interface encapsulates the communication between major blocks of
a design. Using interfaces, the detailed and redundant module port
and netlist declarations are greatly simplified. The details are
moved to one modeling block, where they are defined once, instead
of in many different modules. An interface can be defined globally,
so it can be used by any module anywhere in the design hierarchy.
An interface can also be defined to be local to one hierarchy scope,
so that only that scope can use the interface.

Interfaces do more than provide a way to bundle signals together.
The interface modport definition provides a simple yet powerful
way to customize the interface for each module that it is connected
to. The ability to incorporate methods (tasks and functions) and
procedural code within an interface make it possible instrument and
drive the simulation model in one convenient location.

Chapter 10
A Complete Design

Modeled with SystemVerilog

his chapter brings together the many concepts presented in

previous chapters of this book, and shows how the SystemVer-
ilog enhancements to Verilog can be used to model large designs
much more efficiently than with the standard Verilog HDL. The
example presented in this chapter shows how SystemVerilog can be
used to model at a much higher level of data abstraction than Ver-
ilog, and yet be fully synthesizable.

10.1 SystemVerilog ATM example

The design used as an example for this chapter is based upon an
example from Janick Bergeron’s Verification Guild!. The original
example is a non-synthesizable behavioral model written in Verilog
(using the Verilog-1995 standard). The example is a description of
a quad Asynchronous Transfer Mode (ATM) user-to-network inter-
face and forwarding node. For this book, this example has been
modified in three significant ways. First, the code has been re-writ-
ten in order to use many SystemVerilog constructs. Second, the
non-synthesizable behavioral models have been rewritten using the
SystemVerilog synthesizable subset. Third, the model has been
made configurable, so that it can be easily scaled from a 4x4 quad
switch to a 16x16 switch, or any other desired configuration.

1. The Verification Guild is an independent e-mail newsletter and moderated discussion forum
on hardware verification. Information on the Verification Guild example used as a basis for
the example in this chapter can be found at www janick.bergeron.com/guild/project.html.

264

SystemVerilog for Design

The example in this chapter illustrates how the use of SystemVer-
ilog structures, unions, and arrays significantly simplifies the repre-
sentation of complex design data. The use of interfaces and
interface methods further simplifies the communication of complex
data between the blocks of a design.

The SystemVerilog coding style used in this example also shows
how the design can be automatically sized and configured from a
single source. Using +define invocation options, the architecture
of the design can be configured as an NxP port forwarding node,
where N and P can be any positive value. Rather than producing a
fixed 4x4 design, as was the case in the original Verilog-1995
example, this SystemVerilog version can produce a 128x128,
16x128, 128x16, or any other configuration imaginable. The sizing
and instantiation of the module and data declarations is handled
implicitly (including the relatively simple testbench used with this
example).

The SystemVerilog version presented here has been simulated
using the Synopsys VCS simulator, and synthesized using the Syn-
opsys Design Compiler.

10.2 Data abstraction

SystemVerilog allows the designer to raise the level of abstraction
for the data representation. In Verilog, the data type set is rather
limited in comparison to SystemVerilog. What is needed is a set of
data types that reflects the nature of the design.

The two ATM formats used in this ATM design are the UNT format
and the NNT format.

Chapter 10: A Complete Design Modeled with SystemVerilog

265

Figure 10-1: UNI and NNI cell formats

GFC
VPl3o

VPl
VChis.12
VClyq.4
T B
HEC
Payload O

PT

Payload 47

UNI Cell Format

VPly14
l VClys.12
VCly14
gl
o
HEC
Payload 0

Payload 47

VPl

VCla.g PT

NNI Cell Format

An ATM cell simply consists of 53 bytes of data. This can be mod-
eled as an array of bytes in Verilog, but the meaning of those bytes
within the cell is lost when modeled in this manner. Using packed
structure definitions for the two different formats is easy in System-
Verilog, and makes each cell member easily identifiable:

GFC;
VPI;
VCI;
CLP;

T;

HEC;
Payload;

UNI Cell Structure

typedef struct packed {
bit [3:0]
bit [7:0]
bit [15:0])
bit
bit [2:0]
bit [7:0]
bit [0:47] [7:0]

} uniType;

NNI Cell Structure

typedef struct packed {

bit

bit

bit

bit

bit

bit {0:47]
} nniType;

[11:0]
[15:0]

[2:0]
[7:0]
[7:0]

VPI;
VCI;
CLP;

PT;

HEC;
Payload;

266

SystemVerilog for Design

An important advantage of this level of data abstraction is that the
53 byte array of data can now be easily treated as though it were
either of these formats, or as a simple array of bytes. This can be
done by using a packed union of the two data packet formats:

Union of UNI/ NNI / byte stream

typedef union packed {
uniType uni;
nniType nni;
bit [0:52] [7:0] Mem;
} ATMCellType;

When an object is declared of type ATMCe11Type, its members can
be accessed as though it were either a uniType cell, or an nniType
cell, depending upon which fields need to be accessed.

A useful extension to this abstract data representation is to use data
tagging as part of the testbench. For either type of cell (UNI or
NNI), the last 48 bytes of data are the payload, which is user
defined. These fields can be used as part of the test procedures, in
order to carry part of the test data through the switch. In this partic-
ular example, the payload can be used to record at which input port
the data arrived, and what was its sequence in all packets arriving at
that port. This is easily done by defining another structure, that is
only used by the testbench:

Test view cell format (payload section)

typedef struct packed {
bit [0:4] [7:0] Header;
bit [0:3] [7:0] PortID;
bit [0:3] [7:0] PacketID;
bit [0:39] [7:0] Padding;
} tstType;

All 5 bytes of the UNI/NNI header are encapsulated in a single field
called Header. The fields that are used for the data tagging are the
portID and PacketID fields, which form part of the payload for
the UNI/NNI ATM cells. This third abstract representation of the
53 bytes of data can be added to the packed union.

Chapter 10: A Complete Design Modeled with SystemVerilog 267

Union of UNI/NNI / test view / byte stream

typedef union packed
uniType uni;
nniType nni;
tstType tst;
bit [0:52] [7:0] Mem;
} ATMCellType;

The 53 bytes of data can now be easily configured in four different
ways:

+ as a UNI cell

+ as an NNI cell

* as a testbench tagged packet

+ as an array of 53 bytes of data

Because the array, union, and structures are packed, the mapping of

the corresponding bits are guaranteed when data is written using
one format, and read in another format.

10.3 Interface encapsulation

The example in this chapter is based on the UTOPIA interface
specifications from the ATM Forum Technical Committee!. This
interface has been encapsulated in a SystemVerilog interface defi-
nition called Utopia. This definition contains the signals of the
interface, an instance of an ATMCel1Type (described above), a set
of modports (indicating dataflow direction), and a nested interface
called Method, which is an instance of UtopiaMethod.

The nested UtopiaMethod interface contains the testbench trans-
action level interface routines, and is not synthesizable. By separat-
ing it from the rest of the interface, it does not clutter the design.
The instance of this testbench interface can easily be excluded from
synthesis using synthesis off/on pragmas.

1. ATM Forum Technical Committee, UTOPIA Specification Level 1, Version 2.01, Document
af-phy-0017.000, March 21, 1994 (available at ftp://ftp.atmforum.com/pub/approved-specs/
af-phy-0017.000.pdf) and ATM Forum Technical Committee, UTOPIA Level 2, Version
1.0, Document af-phy-0039.000, June 1995 (available at ftp://ftp.atmforum.com/pub/ap-
proved-specs/af-phy-0039.000.pdf).

268 SystemVerilog for Design

Example 10-1: Utopia ATM interface, modeled as a SystemVerilog interface

interface Utopia;
parameter int IfWidth = 8;

bit clk_in;

bit clk_out;

logic [Ifwidth-1:0] data;
bit soc;

bit en;

bit clav;

bit valid;

bit ready;

bit reset;

bit selected;

ATMCellType ATMcell; // union of structures for ATM cells

modport TopReceive (
input clk_in, data, soc, clav, ready, reset,
output clk_out, en, ATMcell, valid);

modport TopTransmit (
input clk_in, clav, ATMcell, valid, reset,
output clk out, data, soc, en, ready);

modport CoreReceive (
input «c¢lk_in, data, soc, clav, ready, reset,
output clk_out, en, ATMcell, valid);

modport CoreTransmit (
input clk_in, clav, ATMcell, valid, reset,
output clk _out, data, soc, en, ready) ;

“ifndef SYNTHESIS // synthesis ignores this code
UtopiaMethod Method; // interface with testing methods
“endif
endinterface

In addition to the Utopia interface, there is a management intet-
face, called cpu, and a look-up table interface, called Lookup-
Table. The LookupTable interface is used in the core of the
device called squat, in order to provide a latch-based read/write
look-up table. The storage data type of this look-up table is defined
through a type parameter called dType, which means it can be

Chapter 10: A Complete Design Modeled with SystemVerilog 269

instantiated to store any built-in or user-defined data type (as will
be shown later).

Example 10-2: Cell rewriting and forwarding configuration

typedef struct packed {
bit ["TxPorts-1:0] FWD;
bit [11:0] VPI;

} CellCfgType;

interface CPU;

logic BusMode;
logic {11:0] Addr;
logic Sel;

CellCfgType Dataln;
CellCfgType DataOut;

logic RA_DS;
logic Wr_ RW;
logic Rdy Dtack;

modport Peripheral (
input BusMode, Addr, Sel, Dataln, Rd_DS, Wr_RW,
output DataOut, Rdy Dtack

)

“ifndef SYNTHESIS // synthesis ignores this code
CPUMethod Method; // interface with testing methods
“endif
endinterface

interface LookupTable;
parameter int Asize = 8;
parameter int Arange = l<<Asize;
parameter type dType bit;

dType Mem [0:Arange-1];

// Function to perform write
function void write (input [Asize-1:0] addr,
input dType data };
Mem[addr] = data;
endfunction

// Function to perform read
function dType read (input bit [Asize-1:0] addr);
return (Mem[addr]);
endfunction
endinterface

270

SystemVerilog for Design

10.4 Design top level: squat

All the above definitions are contained in a file called defini-
tions.sv, which is guarded as follows:

“ifndef _INCL_DEFINITIONS
“define _INCL_DEFINITIONS

“endif // _INCL_DEFINITIONS

The conditional compilation guard allows the definitions.sv file to
be included in multiple files without producing an error when mul-
tiple files are compiled at the same time.

The top level of the design is called squat. This module can pro-
cess an array of receiver and transmitter Utopia interfaces, and
provide a programmable CPU interface.

Figure 10-2: Design top-level structural diagram
) Rx Tx)
Utopia) Utopia
—> Rewrite >
! - Cell —> '
> Utopia Utopia [~
¢) Mgmt o| Register
I/F File

The number of Utopia Receive interfaces is defined by a module
parameter called NumRx, and the number of Utopia Transmit inter-
faces is defined by a module parameter called NumTx.

An instance of the interface LookupTable uses the user defined
data type CellcfgType as the storage data type dType. The
LookupTable interface is written to by an always_latch block
which, given a write condition, calls the method lut.write,
which is the write method in the interface LookupTable.

Chapter 10: A Complete Design Modeled with SystemVerilog 271

The same interface is read from an always comb block that, given
a read condition, calls the method lut.read, which is the read
method in the interface LookupTable.

Generate blocks are used to iterate across the number of Utopia
Receive and Transmit interfaces, connecting the interfaces to gen-
erated instances of utopia receive and transmit modules respec-
tively.

The rst reset input is synchronized to the clock, in order to remove
possible design race conditions.

A state variable SquatState in the squat module is defined using
an enumerated type, followed by a variable of that type. The width
of the variable is constrained by a range which is used during syn-
thesis for register sizing.

typedef enum bit [0:1] {
wait_rx valid,
wait_rx not_valid,
wait_tx ready,
wait tx not ready } StateType;
StateType SquatState;

This variable is used to store the state of the machine when process-
ing incoming port packets (processed by utopia receive modules),
prior to transmit (via utopia transmit modules). The state machine
uses a round robin indicator to balance the precedence of incoming
packets, which ensures each input port has equal priority for being
serviced by the forwarding routine.

Example 10-3: ATM squat top-level module

“include "definitions.sv"

module squat
(parameter int NumRx = 4, parameter int NumTx = 4)
(// NumRx x Level 1 Utopia ATM layer Rx Interfaces
Utopia /* .TopReceive */ Rx[0:NumRx-1],

// NumTx x Level 1 Utopia ATM layer Tx Interfaces
Utopia /* .TopTransmit */ Tx[0:NumTx-1],

// Utopia Level 2 parallel management interface
// Intel-style Utopia parallel management interface
CPU.Peripheral mif,

272 SystemVerilog for Design

// Miscellaneous control interfaces
input wire rst, clk,
)i

// Register file
LookupTable #(.Asize(8), .dType(CellCfgType))} lut();

//

// Hardware reset

//

logic reset;

always_ff @(posedge clk) begin
reset <= rst;

end

const bit [2:0] WriteCycle = 3'b010;
const bit [2:0] ReadCycle = 3'b001;
always_latch begin // configure look-up table
if (mif.BusMode == 1'bl) begin
unique case ({mif.Sel, mif.RA_DS, mif.Wr_RW})
WriteCycle: lut.write(mif.Addr, mif.Dataln);
endcase
end
end

always_comb begin
mif.Rdy Dtack <= 1'bz;
mif.Datalut <= 8'hzz;
if (mif.BusMode == 1'bl) begin
unique case ({mif.Sel, mif.Rd_DS, mif.Wr_RW})
WriteCycle: mif.Rdy_Dtack <= 1'b0;
ReadCycle: begin
mif.Rdy Dtack <= 1'bO0;
mif.DataOut <= lut.read(mif.Addr);
end
endcase
end
end

//

// ATM-layer Utopia interface receivers
/7
genvar RxIter;

generate
for (RxIter=0; RxIter<NumRx; RxIter+=1) begin: RxGen

assign Rx[RxIter].clk_in = clk;
assign Rx[RxIter] .reset = reset;

Chapter 10: A Complete Design Modeled with SystemVerilog 273

utopial atm_rx atm_rx(Rx[RxIter].CoreReceive) ;
end
endgenerate

//

// ATM-layer Utopia interface transmitters
//
genvar TxIter;
generate
for (TxIter=0; TxIter<NumTx; TxIter+=1) begin: TxGen
assign Tx[TxIter].clk in = clk;
assign Tx[TxIter] .reset = reset;
utopial_atm_tx atm_tx(Tx[TxIter].CoreTransmit) ;
end
endgenerate

1/

// Function to compute the HEC value

//

function bit [7:0] hec (input bit [31:0] hdr);
bit {7:0] syndrom[0:255];
bit [7:0] RtnCode;
bit [7:0] sndrm;

// Generate the CRC-8 syndrom table
for (int unsigned i=0; i<256; i+=1) begin
sndrm = i;
repeat (8) begin
if (sndrm[7] == 1'bl)
sndrm = (sndrm << 1) * 8'h07;
else
sndrm = sndrm << 1;
end
syndrom[i] = sndrm;
end

RtnCode = 8'h00;

repeat (4) begin
RtnCode = syndrom[RtnCode * hdr(31:24]];
hdr = hdr << 8;

end

RtnCode = RtnCode * 8'h55;

return RtnCode;

endfunction

/7

// Rewriting and forwarding process

//

274

SystemVerilog for Design

logic [0:NumTx-1] forward;

typedef enum bit [0:1]

{wait_rx_valid,

wait_rx not_valid,
wait_tx_ready,
wait_tx_not_ready } StateType;

StateType SquatState;

Txvalid;
Txready;
Txsel_in;
Txsel _out;
Rxvalid;
Rxready;
RoundRobin;

:NumTx-1]
:NumTx-1]
:NumTx-1]
:NumTx-1]
:NumRx-1]
:NumRx-1]
:NumRx-1]

bit
bit
bit
bit
bit
bit
bit

{o
[0
[0
[0
fo
o
{o

ATMCellType [0:NumRx-1] RxATMcell;
ATMCellType [0:NumTx-1] TxATMcell;

generate
for (TxIter=0; TxIter<NumTx;
assign Tx{TxIter].valid
assign Txready[TxIter]
assign Txsel in[TxIter]
assign Tx[TxIter] .selected
assign Tx[TxIter] .ATMcell
end
endgenerate
generate
for (RxIter=0; RxIter<NumRXx;
assign Rxvalid[RxIter] =
assign Rx[RxIter].ready =
assign RxATMcell [RxIter] =
end
endgenerate

ATMCellType ATMcell;

TxIter+=1) begin: GenTx
= Txvalid[TxlIter];

Tx [TxIter] .ready;

= Tx[TxIter] .selected;
= Txsel out[TxIter];

= TxATMcell [TxIter];

RxIter+=1) begin: GenRx
Rx [RxIter] .valid;
Rxready [RxIter];

Rx [RxIter] .ATMcell;

always_ ff @(posedge clock, posedge reset) begin: FSM

bit breakVar;

if (reset) begin: reset_logic

Rxready <= '1l;
Txvalid <= '0;
Txsel out <= '0;

SquatState
forward <= 0;
RoundRobin = 1;

end: reset_logic

else begin: FSM_sequencer

<= wait_rx valid;

Chapter 10: A Complete Design Modeled with SystemVerilog 275

unique case (SquatState)

wait_rx valid: begin: rx_valid_state
Rxready <= '1;
breakVar = 1;
for (int j=0; j<NumRx; j+=1) begin: loopl
for (int i=0; i<NumRx; i+=1) begin: loop2
if (Rxvalid[i] && RoundRobin[i] && breakVar)
begin: match
ATMcell <= RxATMcell({i];
Rxready [i] <= 0;
SquatState <= wait_rx _not_valid;
breakvar = 0;
end: match
end: loop2
if (breakVar)
RoundRobin={RoundRobin[1:$bits (RoundRobin) -1],
RoundRobin[0] };
end: loopl
end: rx valid_state

wait_rx not_valid: begin: rx_not_valid_state
if (ATMcell.uni.HEC != hec(ATMcell.Mem[0:3])) begin

SquatState <= wait_rx_valid;

“ifndef SYNTHESIS // synthesis ignores this code
Swrite("Bad HEC: ATMcell.uni.HEC(0x%x) != ");
Sdisplay ("ATMcell .Mem[0:3] (0x%x)",

ATMcell.uni.HEC, hec(ATMcell.Mem{0:31));

“endif

end
else begin

// Get the forward ports & new VPI

{forward, ATMcell.nni.VPI} <=
lut.read (ATMcell.uni.VPI) ;

// Recompute the HEC

ATMcell.nni.HEC <= hec(ATMcell.Mem[0:3]);

SquatState <= wait_tx_ready;

end
end: rx not_valid_state

wait_tx ready: begin: tx_valid_state
if (forward) begin
for (int i=0; i<NumTx; i+=1) begin
if (forward[i] && Txready{i]) begin
TxATMcell [1] <= ATMcell;
Txvalid[i] <= 1;
Txsel out[i] <= 1;
end
end

276 SystemVerilog for Design

SquatState <= wait_tx not_ready;
end
else begin
SquatState <= wait_rx valid;
end
end: tx _valid_state

wait_tx not_ready: begin: tx not_valid_state
for (int i=0; i<NumTx; i+=1) begin
if (forward[i] && !Txreadyl[i] && Txsel_in(i]) begin
Txvalid{i] <= 0;
Txsel _out[i] <= 0;
forward([i] <= 0;
end
end
if (forward)
SquatState <= wait_tx_ready;
else
SquatState <= wait_rx_valid;
end: tx not_valid state

default: begin: unknown_state
SquatState <= wait_rx_valid;
“ifndef SYNTHESIS // synthesis ignores this code

$display("Unknown condition"); $finish();

“endif

end: unknown_state

endcase
end: FSM_sequencer
end: FSM
endmodule

Chapter 10: A Complete Design Modeled with SystemVerilog 277

10.5 Rec_eivers and transmitters

10.5.1 Receiver state machine

The receiver in the generate loop has a state machine with 8 states.

Figure 10-3: Receiver state flow diagram

IRx.ready

Rx.clav &&
Payloadindex == 47

Rx.soc &&
Rx.clav

Rx.clav &&
Payloadindex |= 47

Payload

Rx.clav Rx.clav

Rx.clav

Rx.clav

Example 10-4: Utopia ATM receiver

module utopial_atm_rx (Utopia.CoreReceive Rx };

// 25MHz Rx clk out
assign Rx.clk_out = Rx.clk_in;

// Listen to the interface, collecting byte.

// A complete cell is then copied to the cell buffer

bit [0:5] PayloadIndex;

enum bit [0:2] { reset, soc, vpi_vci, veci, vei_clp pt, hec,
payload, ack } UtopiaStatus;

278 SystemVerilog for Design

always_ ff @(posedge Rx.clk_in, posedge Rx.reset) begin: FSM
if (Rx.reset) begin
Rx.valid <= 0;
Rx.en <= 1;
UtopiaStatus <= reset;
end
else begin: FSM_sequencer
unique case (UtopiaStatus)
reset: begin: reset_state
if (Rx.ready) begin
UtopiaStatus <= soc;
Rx.en <= 0;
end
end: reset_state

soc: begin: soc_state
if (Rx.soc && Rx.clav) begin
{Rx.ATMcell .uni.GFC,
Rx.ATMcell.uni.VPI[7:4]} <= Rx.data;
UtopiaStatus <= vpi_vci;
end
end: soc_state

vpi_vci: begin: vpi_vci_state
if (Rx.clav) begin
{Rx.ATMcell .uni.VPI[3:0],
Rx.ATMcell.uni.VCI[15:12]} <= Rx.data;
UtopiaStatus <= vci;
end
end: vpi_vci_state

vci: begin: vci_state
if (Rx.clav) begin
Rx.ATMcell.uni.VCI[11:4] <= Rx.data;
UtopiaStatus <= vci_clp pt;
end
end: vci_state

veci_clp pt: begin: veci_clp_pt_state
if (Rx.clav) begin
{Rx.ATMcell.uni.VCI[3:0], Rx.ATMcell.uni.CLP,
Rx.ATMcell.uni.PT} <= Rx.data;
UtopiaStatus <= hec;
end
end: vci_clp_pt_state

hec: begin: hec_state
if (Rx.clav) begin
Rx.ATMcell .uni.HEC <= Rx.data;
UtopiaStatus <= payload;

Chapter 10: A Complete Design Modeled with SystemVerilog 279

PayloadIndex = 0; /* Blocking Assignment, due to
blocking increment in
payload state */

end
end: hec_state

payload: begin: payload_state
if (Rx.clav) begin
Rx.ATMcell.uni.Payload[PayloadIndex] <= Rx.data;
if (PayloadIndex==47) begin
UtopiaStatus <= ack;
Rx.valid <= 1;
Rx.en <= 1;
end
PayloadIndex++;
end
end: payload state

ack: begin: ack_state
if (!Rx.ready) begin
UtopiaStatus <= reset;
Rx.valid <= 0;
end
end: ack state

default: UtopiaStatus <= reset;
endcase
end: FSM_sequencer
end: FSM
endmodule

280 SystemVerilog for Design

10.5.2 Transmitter state machine

The transmitter in the generate loop has a state machine with 9
states.

Figure 10-4: Transmitter state flow diagram

1Tx.valid

Tx.valid Tx.clav

Tx.clav &&

Payloadindex == 47 Tx.clav

Tx.clav &&
Payloadindex |= 47

Payload

Tx.clav

Tx.clav

Example 10-5: Utopia ATM transmitter

module utopial_atm_tx (Utopia.CoreTransmit Tx);

assign Tx.clk out = Tx.clk_in;

logic [0:5] PayloadIndex; // 0 to 47
enum bit [0:3] { reset, soc, vpi_veci, vci, veci_clp_pt, hec,
payload, ack, done } UtopiaStatus;

Chapter 10: A Complete Design Modeled with SystemVerilog 281

always ff @(posedge Tx.clk_in, posedge Tx.reset) begin: F3SM
if (Tx.reset) begin
Tx.s80c <= 0;
Tx.en <= 1;
Tx.ready <= 1;
UtopiaStatus <= reset;
end
else begin: FSM_sequencer
unique case (UtopiaStatus)
reset: begin: reset_state
Tx.en <= 1;
Tx.ready <= 1;
if (Tx.valid) begin
Tx.ready <= 0;
UtopiaStatus <= soc;
end
end: reset_state

soc: begin: soc_state
if (Tx.clav) begin
Tx.s0C <= 1;
Tx.data <= Tx.ATMcell.nni.VPI[11:4];
UtopiaStatus <= vpi_vci;
end
Tx.en <= ITx.clav;
end: soc_state

vpi_vci: begin: vpi_vci_state
Tx.soc <= 0;
if (Tx.clav) begin
Tx.data <= {Tx.ATMcell.nni.VPI[3:0],
Tx.ATMcell.nni.VCI{15:12]};
UtopiaStatus <= vci;
end
Tx.en <= !Tx.clav;
end: vpi_vci_state

vei: begin: vci_state
if (Tx.clav) begin
Tx.data <= Tx.ATMcell.nni.VvCI[11:4];
UtopiaStatus <= vci_clp_pt;
end
Tx.en <= ITx.clav;
end: vci_state

vei_clp_pt: begin: vci_clp pt_state
if (Tx.clav) begin
Tx.data <= {Tx.ATMcell.nni.VCI[3:0],
Tx.ATMcell .nni.CLP, Tx.ATMcell.nni.PT};

UtopiaStatus <= hec;

282

SystemVerilog for Design

end
Tx.en <= !Tx.clav;
end: vci_clp pt_state

hec: begin: hec_state
if (Tx.clav) begin
Tx.data <= Tx.ATMcell.nni.HEC;
UtopiaStatus <= paylocad;
PayloadIndex = 0;
end
Tx.en <= !Tx.clav;
end: hec_state

payload: begin: payload_state
if (Tx.clav) begin
Tx.data <= Tx.ATMcell.nni.Payload{PayloadIndex] ;
if (PayloadIndex==47) UtopiaStatus <= ack;
PayloadIndex++;
end
Tx.en <= !Tx.clav;
end: payload_state

ack: begin: ack state
Tx.en <= 1;
if (!Tx.valid) begin
Tx.ready <= 1;
UtopiaStatus <= done;
end
end: ack_state

done: begin: done_state
if (!Tx.valid) begin
Tx.ready <= 0;
UtopiaStatus <= reset;
end
end: done_state

endcase
end: FSM_sequencer

end: FSM
endmodule

Chapter 10: A Complete Design Modeled with SystemVerilog 283

10.6 Testbench

The testbench send and receive methods for the Utopia interface are
encapsulated in the UtopiaMethod interface.

Example 10-6: UtopiaMethod interface for encapsulating test methods

interface UtopiaMethod;
task automatic Initialise ();
endtask

task automatic Send (input ATMCellType Pkt, input int PortID);
static int PacketID;
PacketID++;

Pkt.tst.PortID = PortlID;
Pkt.tst.PacketID = PacketID;

// iterate through bytes of packet, deasserting
// Start Of Cell indicater
@ (negedge Utopia.clk_out);
Utopia.clav <= 1;
for (int i=0; i<=52; i++) begin
// If not enabled, loop
while (Utopia.en === 1'bl) @(negedge Utopia.clk_out);

// Assert Start Of Cell indicater, assert enable,
// send byte 0 (i==0)
Utopia.soc <= (i==0) ? 1'bl : 1'bO;
Utopia.data <= Pkt.Mem[i];
@ (negedge Utopia.clk out);

end

Utopia.data <= 8'bx;

Utopia.clav <= 0O;

endtask

task automatic Receive (input int PortID);
ATMCellType Pkt;

Utopia.clav = 1;
while (Utopia.soc!==1'bl && Utopia.enl!==1'b0)
@ (negedge Utopia.clk_out);
for (int i=0; i1<=52; i++) begin
// If not enabled, loop
while (Utopia.en!==1'b0) @(negedge Utopia.clk_out);

Pkt.Mem([i] = Utopia.data;
@ (negedge Utopia.clk_out);
end

284 SystemVerilog for Design

Utopia.clav = 0;
// Write Rxed data to logfile
“ifdef verbose
$write ("Received packet at port %0d from port %04
PKT (%0d) \n",
PortID, Pkt.tst.PortID, Pkt.tst.PacketID);
//PortID, Pkt.nni.Payload[0], Pkt.nni.Payload[l:4]);
“endif
endtask
endinterface

The testbench HostWrite and HostRead methods for the CpU
interface are encapsulated in the CPUMethod interface.

Example 10-7: CPUMethod interface for encapsulating test methods

interface CPUMethod;

task automatic Initialise_Host ();
CPU.BusMode <= 1;
CPU.Addr <= 0;
CPU.DatalIn <= 0;
CPU.Sel <= 1;
CPU.Rd DS <= 1;
CPU.Wr_RW <= 1;

endtask

task automatic HostWrite (int a, CellCfgType d); // configure
#10 CPU.Addr <= a; CPU.Dataln <= d; CPU.Sel <= 0;
#10 CPU.Wr_RW <= 0;
while (CPU.Rdy Dtack!==0) #10;
#10 CPU.Wr_RW <= 1; CPU.Sel <= 1;
while (CPU.Rdy Dtack==0) #10;
endtask

task automatic HostRead (int a, output CellCfgType d);
#10 CPU.Addr <= a; CPU.Sel <= 0;
#10 CPU.RdA_DS <= 0;
while (CPU.Rdy Dtack!==0) #10;
#10 4 = CPU.DataOut; CPU.RA DS <= 1; CPU.8el <= 1;
while (CPU.Rdy Dtack==0) #10;

endtask

endinterface

Chapter 10: A Complete Design Modeled with SystemVerilog

285

The main testbench module uses the encapsulated methods listed

above.

Example 10-8: Utopia ATM testbench

“include "definitions.sv"
“include "methods.sv"

module test;
parameter int NumRx = “RxPorts;
parameter int NumTx = ~TxPorts;

// NumRx x Level 1 Utopia Rx Interfaces
Utopia Rx[0:NumRx-1];

// NumTx x Level 1 Utopia Tx Interfaces
Utopia Tx[0:NumTx-1];

// Intel-style Utopia parallel management interface

CPU mif;

// Miscellaneous control interfaces
logic rst;

logic clk;

logic Initialised;

“include "./testbench_instance.sv"

task automatic RandomPkt (inout ATMCellType Pkt,

Pkt .uni.GFC $random(seed) ;

Pkt .uni.VPI = $random(seed) & 8'hff;
Pkt.uni.VCI = S$random(seed) ;

Pkt .uni.CLP = Srandom(seed);
Pkt.uni.PT = S$Srandom(seed);

Pkt .uni.HEC = hec(Pkt.Mem{0:3]);

for (int i=0; i<=47; i++) begin

n

Pkt.uni.Payload[i] = 47-1i; //$random(seed);

end
endtask

logic [7:0] syndrom[0:255];
initial begin: gen_syndrom
int i;
logic [7:0] sndrm;
for (i = 0; 1 < 256; 1 =i + 1) begin
sndrm = 1i;
repeat (8) begin
if (sndrm(7] === 1'bl)

inout seed);

286 SystemVerilog for Design

sndrm = (sndrm << 1) * 8'h07;
else
sndrm = sndrm << 1;
end
syndrom[i] = sndrm;
end

end

// Function to compute the HEC value

function automatic bit [7:0] hec (bit [31:0] hdr);
bit [7:0] rtn;
rtn = 8'h00;
repeat (4) begin

rtn = syndrom[rtn * hdr([31:24]];
hdr = hdr << 8;
end

rtn = rtn * 8'h55;
return rtn;
endfunction

// System Clock and Reset
initial begin
#0 rst = 0; clk = 0;
#5 rst = 1;
#5 clk 1;
#5 rst = 0; clk
forever begin

1]
o

#5 clk = 1;
#5 clk = 0;
end

end
CellCfgType lockup [255:0]; // copy of look-up table

function bit [0:NumTx-1] find (bit [11:0] VPI);
for (int i=0; i<=255; i++) begin
if (lookup[i] .VPI == VPI) begin
return lookup[i] .FWD;
end
end
return 0;
endfunction

// Stimulus

initial begin
automatic int seed=1;
CellCfgType CellFwd;

Chapter 10: A Complete Design Modeled with SystemVerilog 287

$display("Configuration RxPorts=%0d TxPorts=%0d",
"RxPorts, “TxPorts);
mif.Method.Initialise Host({();

// Configure through Host interface
repeat (10) @ (negedge clk);
$display ("Loading Memory") ;
for (int i=0; i<=255; i++) begin
CellFwd.FWD = i;
“ifdef FWDALL
CellFwd.FWD = '1;
“endif
CellFwd.VPI = i;
mif.Method.HostWrite (i, CellFwd);
lookup[i] = CellFwd;
end

// Verify memory
$display ("Verifying Memory");
for (int 1i=0; i<=255; i++) begin
mif.Method.HostRead (i, CellFwd);
if (lookup([i] != CellFwd) begin
$display("Error, Mem Location 0x%x contains 0x%x,
expected 0Ox%x",
i, lookupfi]l, CellFwd);
$stop;
end
end
Sdisplay ("Memory Verified");

Initialised=1;
repeat (5000000) @(negedge clk);
$display ("Error Timeout");
$finish;

end

int TxPktCtr [0:NumTx-1];
bit [0:NumRx-1] RxGenInProgress;
genvar RxIter;
genvar TxIter;
generate // replicate access to ports
for (RxIter=0; RxIter<NumRx; RxIter++) begin: RxGen
initial begin: Sender
int seed;
bit [0:NumTx-1] TxPortTarget;
ATMCellType Pkt;

Rx[RxIter] .data=0;

288 SystemVerilog for Design

Rx [RxIter] .soc=0;
Rx [RxIter] .en=1;

Rx [RxIter] .clav=0;
Rx [RxIter] .ready=0;

RxGenInProgress [RxIter]
wait (Initialised === 1'bl);
seed=RxIter+l;
Rx[RxIter] .Method.Initialise();
repeat (200) begin
RandomPkt (Pkt, seed);
TxPortTarget = find(Pkt.uni.VPI);

// Increment counter if output packet expected
for (int i=0; i<NumTx; i++) begin
if (TxPortTarget([i]) begin
TxPKECLr [1] ++;
//Ssdisplay("port %04 ->> %0d4", RxIter, 1i);
end
end

Rx [RxIter] .Method.Send (Pkt, RxIter);
//$display ("Port %d sent packet", RxIter);
repeat (Srandom(seed)$%200) @(negedge clk);

end

RxGenInProgress [RxIter] = 0;

end
end
endgenerate

// Response - open files for response
generate
for (TxIter=0; TxIter<NumTx; TxIter++) begin: TxGen
initial begin: Receiver
wait (Tx[TxIter] .reset===1)
wait (Tx[TxIter].reset===0)
forever begin
Tx [TxIter] .Method.Receive (TxIter) ;
TxPktCtr [TxIter]--;
end
end
end
endgenerate

.
7

// Check for all detected packets
bit [0:NumTx-1] TxDetectEnd;

generate
for (TxIter=0; TxIter<NumTx; TxIter++) begin: TxDetect

Chapter 10: A Complete Design Modeled with SystemVerilog 289

initial begin
TxDetectEnd[TxIter] = 1'bl;

wait (Initialised === 1'bl});

wait (RxGenInProgress === 0);

wait (TxPktCtr([TxIter] == 0)
TxDetectEnd [TxIter] = 1'b0;
$display ("TxPktCtr[%0d] == %d4d",

TxIter, TxPktCtr[TxIter]);
end
end
endgenerate

initial begin
wait (Initialised === 1'bl);

wait
wait

(RxGenInProgress ==
(TxDetectEnd === 0);

$finish;

end

endmodule

The testbench instance of the design is contained in a separate file,
so that pre-and post-synthesis versions can be used.

squat # (NumRx, NumTx) squat (Rx, Tx, mif, rst, clk);

10.7 Summary

This chapter has presented a larger example, modeled using the
SystemVerilog extensions to the Verilog HDL. Structures are used
to encapsulate all the variables related to NNI and UNI packets. This
allows these many individual signals to be referenced using the
structure names, instead of having to reference each signal individ-
ually. This encapsulation simplifies the amount of code required to
represent complex sets of information. The concise code is easier to
read, to test, and to maintain.

These NNI and UNI structures are grouped together as a union,
which allows a single piece of storage to represent either type of
packet. Because the union is packed, a value can be stored as one
packet type, and retrieved as the other packet type. This further

290

SystemVerilog for Design

simplifies the code required to transfer a packet from one format to
another.

The communication between the major blocks of the design is
encapsulated into interfaces. This moves the declarations of the
several ports of each module in the design to a central location. The
port declarations within each module are minimized to a single
interface port. The redundancy of declaring the same ports in sev-
eral modules is eliminated.

SystemVerilog constructs are also used to simplify the code
required to verify the design. The same union used to store the NNT
and UNT packets is used to store test values as an array of bytes. The
testbench can load the union variable using bytes, and the value can
be read by the design as an NNI or UNT packet. It is not necessary to
copy test values into each variable that makes up a packet.

SystemVerilog includes a large number of additional enhancements
for verification that are not illustrated in this example. These
enhancements are covered in the forthcoming companion book,
SystemVerilog for Verification.

Chapter 11

Behavioral and Transaction
Level Modeling

his chapter defines Transaction Level Modeling (TLM) as an
adjunct to behavioral modeling. The chapter explains how
TLM can be used, and shows how SystemVerilog is suited to TLM.

Behavioral modeling can be used to provide a high level executable
specification for development of both RTL code and the testbench.
Transaction level modeling allows the system executable specifica-
tion to be partitioned into executable specifications of the sub-
systems.

The executable specifications shown in this chapter are generally
not considered synthesizable. However, there are some tools called
“high level” or “behavioral” synthesis tools which are able to han-
dle particular categories of behavioral or transaction level model-

ing.
The topics covered in this chapter include:

¢ Definition of a transaction

* Transaction level model of a bus

+ Multiple slaves

* Arbitration between multiple masters

* Semaphores

» Interfacing transaction level with register transfer level models

292 SystemVerilog for Design

11.1 Behavioral modeling

Behavioral modeling (or behavior level modeling) is a style where
the state machines of the control logic are not explicitly coded.

An implicit state machine is an always block which has more than
one event control in it. For instance, the following code generates a
1 pulse after the reset falls:

always begin
do @(posedge clock) while (reset);
@ (posedge clock) a = 1;
@ (posedge clock) a = 0;

end

An RTL description would have an explicit state register, as fol-
lows:

logic [1:0] state;

always_ff @(posedge clock)
if (reset) state = 0;

else if (state == 0)

begin state = 1; a = 1; end
else if (state == 1)

begin state = 2; a = 0; end

else state = 0;

Note that there is an even more abstract style of behavioral model-
ing that is not cycle-accurate, and therefore can be used before the
detailed scheduling of the design as an executable specification. An
example is an image processing algorithm that is to be implemented
in hardware.

11.2 What is a transaction?

In everyday life, a transaction is an interaction between two people
or organizations to transfer information, money, etc. In a digital
system, a transaction is a transfer of data and control between two
subsystems. This normally means a request and a response. A trans-
action has attributes such as type, data, start time, duration, and sta-
tus. It may also contain sub-transactions.

Chapter 11: Behavioral and Transaction Level Modeling 293

A key concept of TLMSs is the suppressing of uninteresting parts of
the communication. For example, if a customer has to pay $20 for a
book in a shop, he can perform the transaction at many levels.

Lowest level—20 transactions of $1 each
“$20 please”
“Here is $17, hands over the $1 bill
“Thanks”
“Here is $1”, hands over the $1 bill
“Thanks”
“Here is $17, hands over the $1 bill
“Thanks”
... (17 more $1 transactions)
“QOK that’s $20, here is the book”
“Thanks”

Slightly higher level—4 transactions of $5 each

“$20 please”

“Here is $5”, hands over the $3 bill
“Thanks”

“Here is $5”, hands over the $5 bill
“Thanks”

“Here is $57, hands over the $5 bill
“Thanks”

“Here is $5”, hands over the $5 bill
“OK that’s $20, here is the book”

“Thanks”

Higher level—1 transaction of $20

“$20 please”
“Here is $207, hands over the $20 bill

294

SystemVerilog for Design

11.3 Transaction level modeling in SystemVerilog

“OK that’s $20, here is the book”
“Thanks”

This illustrates a key benefit of TLMs, that of efficiency. Engineers
only need to model the level that they are interested in. One of the
key motivators in the use of TLMs is the hiding of the detail such
that the caller does not know the details of the transactions. This
provides a much higher level representation of the interface
between blocks.

Note that it is not just the abstracting of the data (e.g. using the $20
total), but also the removal of the control (less low level communi-
cation), that increases the TLM abstraction and potential simulation
performance. At the highest level, the book buyer is only interested
in paying the $20, and does not really care whether it is in $1s or
$5s or a $20. Hiding detail allows different implementations of a
protocol to exist without the caller knowing, or needing to know,
which level is being used, and then being able to switch in and out
different TLMs as needed. Switching in and out different TLMs
may be done for efficiency reasons, to use a less detailed more effi-
cient TLM, or maybe during the life of a project, where in the
beginning only high level details are defined, and then. more details
are added over the life of the project.

Whereas behavior level modeling raises the abstraction of the block
functionality, transaction level modeling raises the abstraction level
of communication between blocks and subsystems, by hiding the
details of both control and data flow across interfaces.

In SystemVerilog, a key use of the interface construct is to be
able to separate the descriptions of the functionality of modules and
the communication between them.

Transaction level modeling is a concept, and not a feature of a spe-
cific language, though there are certain language constructs that are

useful for writing transaction level models (TLMs). These include:

* Structural hierarchy

Chapter 11: Behavioral and Transaction Level Modeling 295

» Function and task calls across hierarchy boundaries
 Records or structures

+ The ability to package data with function/task calls

The ability to parallelize and serialize data

+ Semaphores to control shared resources

A fundamental capability that is needed for TLM:s is to be able to
encapsulate the lower level details of information exchange into
function and task calls across an interface. The caller only needs to
know what data is sent and returned, with the details of the trans-
mission being hidden in the function/task call.

The transaction request is made by calling the task or function
across the interface/module boundary. Using SystemVerilog’s
interface and function/task calling mechanisms makes creating
TLMs in SystemVerilog extremely simple. The term method is
used to describe such function/task calls, since they are similar to
methods in object-oriented languages.

11.3.1 Memory subsystem example

Example 11-1 illustrates a simple memory subsystem, Initially this
is coded as read and write tasks called by a single testbench. The
testbench tries a range of addresses, and tests the error flag.

Example 11-1: Simple memory subsystem with read and write tasks

module TopTasks;

logic [20:
logic [15:

logic
parameter
parameter

logic [15:

0] A;

0] D;
E;
LOWER = 20'h00000;
UPPER = 20'h7ffff;

0] Mem [LOWER:UPPER] ;

task ReadMem (input 1logic [19:0] Address,

output logic [15:0] Data,
output bit Error) ;

if (Address >= LOWER && Address <= UPPER) begin

Data
Exrror
end

Mem [Address] ;
= 0;

296 SystemVerilog for Design

else Error = 1;
endtask

task WriteMem{input logic [19:0] Address,
input logic [15:0] Data,
output bit Error) ;
if (Address >= LOWER && Address <= UPPER) begin
Mem [Address] = Data;
Error = 0;
end
else Error = 1;
endtask

initial begin
for (A = 0; A < 21'h100000; (A = A + 21'h40000)) begin

fork
#1000;
WriteMem(A[19:0], 0, E);

join

if (E) $display ("%t bus error on write %h", S$time, A);
else sdisplay ("%t write OK %h", S$time, A);

fork
#1000;
ReadMem(A[19:0], D, E);

join

if (E) S$display ("%t bus error on read %h", $time, A);
else s$display ("%t read OK %h", $time, A);

end
end

endmodule : TopTasks

This example gives the following display output:

1000 write OK 000000

2000 read OK 000000

3000 write OK 040000

4000 read OK 040000

5000 bus error on write 080000
6000 bus errcor on read 080000

7000 bus error on write 0c0000
8000 bus error on read 0c0000

Chapter 11: Behavioral and Transaction Level Modeling 297

11.4 Transaction level models via interfaces

The next example partitions the memory subsystem into three mod-
ules, two memory units and a testbench. The modules are con-
nected by an interface. In this design, the address regions are wired
into the memory units. One, and only one, memory should respond
to each read or write. If no unit responds, there is a bus error.

This broadcast request with single response can be conveniently
modeled with the extexrn forkjoin task construct in SystemVer-
ilog interfaces. This behaves like a fork...join containing multi-
ple task calls. The difference is that the number of calls is not
defined, which allows the same interface code to be used for any
number of memory units. The output values are written to the actual
arguments for each task call, and the valid task call delays its
response so that it overwrites the invalid ones.

Example 11-2: Two memory subsystems connected by an interface

module TopTLM;

Membus Mbus () ;
Tester T (Mbus);
Memory #(.Lo(20'h00000), .Hi(20'h3ffff))

M1

(Mbus); // lower addrs

Memory #(.Lo(20'h40000), .Hi(20'h7£fff))

M2

endmodule

(Mbus); // higher addrs

TopTLM

// Interface header
interface Membus;

extern forkjoin task ReadMem(input logic [19:0],

output logic [15:0],
bit) ;

extern forkjoin task WriteMem(input 1logic [19:0],

input logiec [15:0],
output bit});

extern task Request();
extern task Relinguish();

endinterface

298

SystemVerilog for Design

module Tester (interface Bus);

logic [15:0]
logic E;

D;

int A;

initial begin

for (A = 0; A < 21'h100000; A = A + 21'h40000) begin
fork
#1000;
Bus.WriteMem({(A[19:0], 0, E);
join
if (E) $display ("%t bus error on write %h", S$time, A);
else $display ("%t write OK %h", $time, A);
fork
#1000;
Bus.ReadMem(A[19:0], D, E);
join
if (E) $display ("%t bus error on read %h", $time, A);
else $display ("%t read OK %h", S$time, A);
end
end
endmodule

// Memory Modules

// forkjoin task model delays if OK
module Memory (interface Bus);

parameter Lo = 20'h00000;
parameter Hi = 20'h3ffff;
logic [15:0] Mem[Lo:Hi];

task Bus.ReadMem(input 1logic
output logic [15:0]
output bit

(last wins)

[19:0] Address,
Data,
Error) ;

if (Address >= Lo && Address <= Hi) begin
#100 Data = Mem[Address];
Error = 0;

end

else Error
endtask

1;

Chapter 11: Behavioral and Transaction Level Modeling 299

task Bus.WriteMem(input 1logic ([19:0] Address,

input logic [15:0] Data,
output bit Error) ;

if (Address >= Lo && Address <= Hi) begin
#100 Mem[Address] = Data;
Exror = 0;

end

else Error = 1;

endtask

endmodule

This example gives the following display output:

1000 write OK 000000

2000 read OK 000000

3000 write OK 040000

4000 read OK 040000

5000 bus error on write 080000
6000 bus error on read 080000
7000 bus error on write 0c0000
8000 bus error on read 0c0000

11.5 Bus arbitration

If there are two bus masters, it is necessary to prevent both masters
from accessing the bus at the same time. The abstract mechanism
for modeling such a resource sharing is the semaphore. SystemVer-
ilog includes a built-in semaphore class object. In this chapter,
however, an interface model is used. This illustrates how the class
behavior can be described, using interfaces and interface methods.

The Semaphore interface in the following example has a number
of keys, corresponding to resources. The default is one. The get
task waits for the key(s) to be available, and then removes them.
The put task replaces the key(s).

The model below has an arbiter module containing the sema-
phore. An alternative would be to put the semaphore in the inter-
face, but this would differ from the RTL implementation hierarchy.

300 SystemVerilog for Design

Example 11-3: TLM model with bus arbitration using semaphores

module TopArbTLM;

Membus Mbus () ;

Tester T1(Mbus);

Tester T2 (Mbus);

Arbiter A (Mbus);

Memory #(.Lo(20'h00000), .Hi(20'h3ffff)) M1 (Mbus);
Memory #(.Lo(20'h40000), .Hi(20'h7ffff)) M2 (Mbus) ;

endmodule : TopArbTLM

interface Membus; // repeated from previous example

extern forkjoin task ReadMem(input logic [19:0],
output logic [15:0],
bit) ;

extern forkjoin task WriteMem(imput logic [19:0],
input logic [15:0],
output bit);

extern task Request();
extern task Relingquish();

endinterface

interface Semaphore #(parameter int unsigned initial keys = 1;);
int unsigned keys = initial_keys;

task get (int unsigned n = 1);
wait (n <= keys);
keys -= n;

endtask

task put (int unsigned n = 1);
keys += n;
endtask
endinterface

module Arbiter (interface Bus);
Semaphore g; // built-in type would use semaphore s = new;

Chapter 11: Behavioral and Transaction Level Modeling 301

task Bus.Request ();
s.get ();
endtask

task Bus.Relinquish{();
s.put () ;
endtask

endmodule

module TesterArb (interface Bus);
logic [15:0] D;
logic E;
int A;

initial begin : test_block
for (A = 0; A < 21'h100000; A = A + 21'h40000)
begin : loop
fork
#1000;
begin
Bus.Request;
Bus.WriteMem(A[19:0], 0, E);
if (E) $display ("%t bus error on write $%$h", $time, A);
else $display ("%t write OK %h", S$time, A);
Bus.Relinquish;
end
join
fork
#1000;
begin
Bus.Request;
Bus.ReadMem(A[19:0], D, E);
if (E) $display ("%t bus error on read %$h", $time, A);
elgse $display ("%t read OK %h", Stime, A);
Bus.Relinquish;
end
join
end : loop
end : test_block

endmodule

302 SystemVerilog for Design

// Memory Modules
// forkjoin task model delays if OK (last wins)
module Memory (interface Bus); // repeated from previous example

parameter Lo = 20'h00000;
parameter Hi = 20'h3ffff;
logic [15:0] Mem[Lo:Hi];

task Bus.ReadMem (input logic [19:0] Address,
output logic [15:0] Data,
output bit Error) ;

if (Address >= Lo && Address <= Hi) begin
#100 Data = Mem[Address];
Error = 0;
end
else Error = 1;
endtask

task Bus.WriteMem(input 1logic [19:0] Address,
input 1logic [15:0] Data,
output bit Exrror) ;

if (Address >= Lo && Address <= Hi) begin
#100 Mem[Address] = Data;
Error = 0;
end
else Error = 1;
endtask

endmodule

This example gives the following output:

100 write OK 00000000

200 write OK 00000000

1100 read OK 00000000

1200 read OK 00000000

2100 write OK 00040000

2200 write OK 00040000

3100 read OK 00040000

3200 read OK 00040000

4000 bus error on write 00080000
4000 bus error on write 00080000
5000 bus error on read 00080000

Chapter 11: Behavioral and Transaction Level Modeling 303

5000 bus error on read 00080000
6000 bus error on write 000c0000
6000 bus error on write 000c0000
7000 bus error on read 000c0000
7000 bus error on read 000c0000

11.6 Transactors, adapters, and bus functional models

For TLMs to be useful for hardware design, it is necessary to con-
nect them to the RTL models via code which is variously called
transactors, adapters, and bus functional models (BFMs). These
can be either master or slave adapters, depending on the direction of
control.

The master adapter contains tasks, called by the master subsystem
TLM, which encapsulate the protocol and manipulate the signals to
communicate with an RTL model of the slave subsystem.

The slave adapter contains processes, which monitor signals from
an RTL model of the master subsystem and call the tasks or func-
tions in the TLM of the slave subsystem.

11.6.1 Master adapter as module

One way to code adapters is to make them modules which translate
a transaction level interface to a pin level interface, or vice-versa.
The adapter has two interface ports, the transaction level and the
pin level.

Example 11-4: Adapter modeled as a module

module TopTLMPLM;

Multibus TLMbus () ;
Multibus PLMbus () ;

Tester T (TLMbus) ;

MultibusMaster MM (TLMbus, PLMbus);
MultibusArbiter MA (PLMbus) ;

Clock Clk (PLMbus) ;

MultibusMonitor MO (PLMbus) ;

MemoryPIN #(.Lo(20'h00000), .Hi(20'h3ffff))

304 SystemVerilog for Design

M1 (PLMbus.ADR, PLMbus.DAT, PLMbus.MRDC, PLMbus.MWTC,
PLMbus .XACK, PLMbus.BCLK) ;
MemoryPIN #(.Lo{(20'h40000), .Hi(20'h7££f£ff))
M2 (PLMbus.ADR, PLMbus.DAT, PLMbus.MRDC, PLMbus.MWTC,
PLMbus .XACK, PLMbus.BCLK) ;

endmodule : TopTLMPLM

The example below is a simplified version of the Intel Multibus
(now IEEE 796). This allows multiple masters and multiple slaves.
Each master has a request wire BREQ to the arbiter module and a
priority input wire BPRN from the arbiter, i.e. the parallel priority
technique specified in the standard.

Example 11-5: Simplified Intel Multibus with multiple masters and slaves

// Interface header
interface Multibus;
parameter int MASTERS = 1; // number of bus masters

// structural communication

tri [19:0] ADR; // address bus (inverted)
tri [15:0] DAT; // data bus (inverted)
wand /*activeO*/ MRDC, MWTC; // mem read/write commands
wand /*activeO*/ XACK; // transfer acknowledge
wand /*activeO*/ [1:MASTERS] BREQ; // bus request
wand /*activeQx/ CBRQ; // common bus request
wire /*activeO*/ BUSY; // bus busy
wire /*activeO*/ [1:MASTERS] BPRN; // bus priority to master
logic BCLK; // bus clock; driven

// by only one master
logic CCLK; // constant clock
wand INIT; // initialize

// Tasks - Behavioral communication

extern task Request (input int);
extern task Relinquish (input int);
extern forkjoin task ReadMem (input logic [19:0],
output logic [15:0},
bit);

Chapter 11: Behavioral and Transaction Level Modeling 305

extern forkjoin task WriteMem (input logic [19:0],
input logic [(15:0],
output bit) ;

endinterface

module Clock (Multibus Bus);

always begin // clock
#50 Bus.CCLK = 0;
#50 Bus.CCLK = 1;
end

endmodule : Clock

The master adapter is coded with tasks which drive wires and have
the same prototype as the transaction level slave. If only a single
driver is allowed for a wire, a logic variable can be used directly. If
multiple drivers are allowed, the adapter needs a continuous assign-
ment to model the buffering to the wire.

If the master does not already have control of the bus, the master
has to request it from the arbiter, wait for the priority to be granted,
and then wait for the previous master to relinquish the bus. These
actions are encapsulated in the task GetBus.

If no slave responds to the address, then a time out occurs and the
read or write task returns with the error flag set.

Example 11-6: Simple Multibus TLM example with master adapter as a module

module MultibusMaster (interface Tasks, interface Wires);
parameter int Number = 1; // number of master for
// request/grant

enum {IDLE, READY, READ, WRITE} Master State;

assign Wires.ADR adr;
assign Wires.DAT = dat;

]

logic [19:0] adr
logic [15:0] dat

oo
N N

logic mrdc = 1; assign Wires.MRDC = mrdc;
logic mwtc = 1; assign Wires.MWTC = mwtc;
logic breg = 1; agsign Wires.BREQ[Number] = breq;
logic cbrg = 1; assign Wires.CBRQ = cbrqg;

306 SystemVerilog for Design

logic busy = 1; assign Wires.BUSY = busy:;
assign Wires.BCLK = Wires.CCLK;

task Tasks.ReadMem (input 1logic [19:0] Address,
output logic [15:0] Data,

output bit Error) ;
if (Master State == IDLE) GetBus();
else assert (Master State == READY);
Master State = READ;
Data = 'x; Error = 1; // default if no slave responds
adr = ~Address;
#50 mrdec = 0; //min delay
fork
begin: ok
@ (negedge Wires.XACK) Data = ~ Wires.DAT;
EndRead () ;

@ (posedge Wires.XACK) Error = 0;
disable timeout;
end
begin: timeout // Timeout if no acknowledgement
#900 Error = 1;
EndRead () ;
disable ok;
end
join
FreeBus () ;
endtask

task Tasks.WriteMem (input 1logic [19:0] Address,
input logic (15:0] Data,

output bit Error) ;
if (Master_State == IDLE) GetBus();
else assert (Master_State == READY);

Master State = WRITE;
Error = 1; // default if no slave responds
GetBus () ;
adr = ~Address;
dat = -~Data;
#50 mwtc = 0;
fork
begin: ok
@ (negedge Wires.XACK) EndWrite();
@ (posedge Wires.XACK) Error = 0;
disable timeout;
end

Chapter 11: Behavioral and Transaction Level Modeling 307

begin: timeout // Timeout if no acknowledgement
#900 Error = 1;
EndWrite() ;
disable ok;
end
join
FreeBus () ;
endtask

task EndRead() ;
mrdc = 1;
#50 adr = 'z;
endtask

task EndWrite();

mwtec = 1;

#60 adr = 'z;

dat = 'z;
endtask

task GetBus();
@ (negedge Wires.BCLK) breq = 0;
cbrg = 0;
@ (negedge Wires.BPRN[Numberl]) ;
@ (negedge Wires.BCLK iff !Wires.BPRN [Number]) ;
#50 busy = 0;
cbrg = 1;
endtask

task FreeBus{() ;
breqg = 1;
if (Wires.CBRQ) Master_State = READY;
else begin
Master_ State = IDLE;
busy = 1; // relinquish the bus if CBRQ asserted
end
endtask

endmodule: MultibusMaster

module Tester (interface Bus); // repeated from previous example
logic [15:0] D;
logic E;
int A;

308 SystemVerilog for Design

initial begin
for (A = 0; A < 21'h100000; A = A + 21'h40000)
begin
fork #1000; Bus.WriteMem(A[19:0], 0, E); join
if (E) $display ("%t bus error on write %h", $time, A);
else $display ("%t write OK %$h", $time, A);
fork #1000; Bus.ReadMem(A[19:0}, D, E); join
if (E) $display ("%t bus error on read %h", $time, A);
else S$display ("%t read OK %h", S$time, A);
end
end

initial # 10000 $finish;

endmodule

module MultibusArbiter (interface Bus);

logic [1:Bus.MASTERS] bprn = 'l; assign Bus.BPRN = bprn;
int last = 0;

always @ (negedge Bus.BCLK)
if (Bus.CBRQ == 0) begin // request
automatic int i = last+l;
forever begin

if (i > Bus.MASTERS) 1 = 1;
if (Bus. BREQ[l] == 0) break;
agsert (i != last); else $fatal (0, "no bus master");
i++;
if (i > Bus.MASTERS) i = 1;
end
last = i;
#50 bprn /*{il*/ = 0; $display("bprn[%b] = %b", i, bprn);
end
else if (Bus.BUSY == 0) begin // relinquish
#50 bprn /*[lastl*/ =
end

endmodule : MultibusArbiter

module MultibusMonitor (interface Bus);

initial Smonitor({
"ADR=%h DAT=%h MRDC=%b MWTC=%b XACK=%b BREQ=%b CBRQ=%b
BUSY=%b BPRN=%b",
Bus.ADR, Bus.DAT, Bus.MRDC, Bus.MWTC, Bus.XACK,
Bus.BREQ, Bus.CBRQ, Bus.BUSY, Bus.BPRN);
endmodule

Chapter 11: Behavioral and Transaction Level Modeling 309

// Memory Module with pin level interface
module MemoryPIN (

input [19:0] ADR, // address bus
inout [15:0] DAT, // data bus
input /*active0*/ MRDC, // memory read
input /*activeO*/ MWTC, // memory write
output logic /*active(0*/ XACK, // acknowledge
input CCLK

)i

parameter Lo = 20'h00000;

parameter Hi = 20'h3ffff;

logic [15:0] Mem[Lo:Hil;

logic [15:0] Bufdat;

logic Bufena = 0; //default disables buffers

initial XACK 1; // default disables

assign DAT = Bufena ? Bufdat : 'z;

always @(posedge CCLK)

begin
automatic logic [19:0] Address = ~ADR;
if (MRDC == 0 && Address >= Lo && Address <= Hi) // read
begin

Bufdat <= ~Mem[Address];
Bufena <= 1;

XACK <= 0;
end
else if (MWTC == 0 && Address >= Lo && Address <= Hi)
begin // write
Mem[Address] = ~DAT;
XACK <= 0;
end
else begin
XACK <= 1;
Bufena <= 0;
end

end

endmodule: MemoryPIN

310

SystemVerilog for Design

11.6.2 Adapter in an interface

Another way to code adapters is to put them in the interface. This is
straightforward for a single adapter, but not for multiple ones,
because of name collisions.

These require modified versions of the interface, which is quite
easy for master adapters, since unused tasks should not interfere
with the model. Slave adapters, on the other hand, call tasks or
functions in the slave TLM, and there will be an elaboration error if

the

slave TLM is missing. So a different version of the interface is

needed. The example below shows a master adapter.

Example 11-7: Simple Multibus TLM example with master adapter as an interface

module TopInterfaceAdapter;

Multibus Mbus () ;

Tester T (Mbus)

i

MultibusArbiter MA(Mbus) ;
Clock Clk (Mbus) ;
MultibusMonitor MO (Mbus) ;

/* MemoryPIN
MemoryPIN

MemoryPIN #(.
Mbus .DAT,

MemoryPIN #/{.
Mbus .DAT,

#(.Lo(20'h00000), .Hi(20'h3ffff)) M1 (Mbus);
#(.Lo(20'h40000), .Hi(20'h7ffff)) M2 (Mbus); */

Lo(20'h00000), .Hi(20'h3ffff)) M1l (Mbus.ADR,
Mbus.MRDC, Mbus.MWTC, Mbus.XACK, Mbus.BCLK};
Lo(20'h40000), .Hi(20'h7ffff)) M2 (Mbus.ADR,
Mbus.MRDC, Mbus.MWTC, Mbus.XACK, Mbus.BCLK);

endmodule : TopInterfaceAdapter

// Interface header
interface Multibus;

parameter int
parameter int

MASTERS = 1; // number of bus masters
Number = 1;

// structural communication

tri [19:0] ADR; // address bus

tri [15:0] DAT; // data bus

wand /*active0*/ MRDC, MWTC; // mem read/write commands
wand /*activeO*/ XACK; // acknowledge

wand /*active0*/ [1:MASTERS] BREQ;

Chapter 11: Behavioral and Transaction Level Modeling 31

wand /*activeQ*/ CBRQ;
wire /*activeO*/ BUSY;
wire /*activeO*/ [1:MASTERS] BPRN;
logic BCLK;
logic CCLK;
wand INIT;

// Master Adapter converts ReadMem/WriteMem calls into waveforms
enum {IDLE, READ, WRITE} Master State;

'z; assign ADR = adr;
'z; assign DAT = dat;

logic [19:0] adr
logic [15:0] dat

logic mrdec = 1; assign MRDC = mrdc;
logic mwtc = 1; assign MWTC = mwtc;
logic breq = 1; assign BREQ[Number] = breq;
logic cbrg = 1; assign CBRQ = cbrg;

task ReadMem (input 1logic [19:0] Address,
output logic ([15:0] Data,

output bit Error) ;
assert (Master_ State == IDLE);
Master State = READ;
Data = 'x;
Exrror = 1; // default if no slave responds
GetBus () ;

adr = ~Address;
#50 mrdc = 0; //min delay
fork
begin: ok
@ (negedge XACK) Data = ~ DAT;
EndRead () ;
@ (posedge XACK) Error = 0;
disable timeout;
end
begin: timeout // Timeout if no acknowledgement
#900 Error = 1;
EndRead () ;
disable ok;
end
join
FreeBus () ;
Master_ State = IDLE;
endtask

task WriteMem (input logic [19:0] Address,
input logic [15:0] Data,
output bit Error) ;

312 SystemVerilog for Design

assert (Master_State == IDLE);
Master State = WRITE;
Error = 1; // default if no slave responds
GetBus () ;
adr = ~Address;
dat = ~Data;
#50 mwtc = 0;
fork
begin: ok
@ (negedge XACK) EndWrite();
@ (posedge XACK) Error = 0;
disable timeout;
end
begin: timeout // Timeout if no acknowledgement
#900 Error = 1;
EndWrite () ;
disable ok;
end
join
FreeBus () ;
Master_State = IDLE;
endtask

task EndRead() ;
mrdc = 1;
#50 adr = 'z;
endtask

task EndWrite();

mwtc = 1;

#60 adr = 'z;

dat = 'z;
endtask

task GetBus();
breq = 0;
cbrg = 0;
@ (negedge BCLK iff |BPRN [Number]) ;
#50 busy = 0;
cbrg = 1;
endtask

task FreeBus();

breq = 1;
busy = 1;
endtask

endinterface

Chapter 11: Behavioral and Transaction Level Modeling

313

module Clock (Multibus Bus);

always begin // clock
#50 Bus.BCLK = 0;
#50 Bus.BCLK = 1;
end

initial # 10000 $finish;

endmodule : Clock

module Tester (interface Bus);
logic [15:0] D;
logic E;
int A;
initial begin

for (A = 0; A < 21'hl100000; A = A + 21'h40000)

begin
fork
#1000;
Bus.WriteMem(A[19:0], 0, E);
join
if (E) $display ("%t bus error on write %h", $time, A);
else $display ("%t write OK %h", S$time, A);
fork
#1000;
Bus.ReadMem(A[19:0], D, E);
join
if (E) $display ("%t bus error on read %h", S$Stime, A);
else $display ("%t read OK %h", S$Stime, A);
end
end
endmodule
module MultibusArbiter (interface Bus);
logic {1:Bus.MASTERS] bprn = 'l; assign Bus.BPRN = bprn;
logic busy = 1; assign Bus.BUSY = busy;
int last = 1;
always @ (posedge Bus.BCLK)
if (Bus.CBRQ == 0 && Bus.BUSY == 1) begin // request

automatic int i = last+l;

314 SystemVerilog for Design

forever begin
if (i > Bus.MASTERS) i = 1;

if (Bus.BREQ{i] == 0) break;
assert (i != last); else $fatal(0, "no bus master");
i+4+;
if (1 > Bus.MASTERS) i = 1;
end
last = i;

#50 busy = 0;
#50 bprn /*[il*/ = 0; $display("bprn([%b] = %b", i, bprn);

end

else if (Bus.BREQ[last] == 1) begin // relinquish
#50 bprn /*[last]l*/ = 1;
#50 busy = 1;

end

endmodule : MultibusArbiter

module MultibusMonitor (interface Bus) ;

initial $monitor(
"ADR=%h DAT=%h MRDC=%b MWTC=%b XACK=%b BREQ=%b CBRQ=%Db

BUSY=%b BPRN=%b",
Bus.ADR, Bus.DAT, Bus.MRDC, Bus.MWTC, Bus.XACK, Bus.BREQ,

Bus.CBRQ, Bus.BUSY, Bus.BPRN);

endmodule

// Memory Module with pin level interface
module MemoryPIN (

input [19:0] ADR, // address bus
inout [15:0] DAT, // data bus
input /*activeO*/ MRDC, // memory read
input /*activeO*/ MWTC, // memory write
output logic /*activeO*/ XACK, // acknowledge
input CCLK

)i

parameter Lo = 20'h00000;

parameter Hi = 20'h3ffff;

logic [15:0} Mem[Lo:Hil;

logic [15:0] Bufdat;

logic Bufena = 0; //default disables buffers

initial XACK = 1; // default disables

Chapter 11: Behavioral and Transaction Level Modeling 315

assign DAT = Bufena ? Bufdat : 'z;

always @ (posedge CCLK) begin
automatic logic ([19:0] Address = ~ADR;
if (MRDC == 0 && Address »>= Lo && Address <= Hi) // read
begin
Bufdat <= ~Mem([Address];
Bufena <= 1;

XACK <= 0;
end
else if (MWTC == 0 && Address >= Lo && Address <= Hi)
begin // write
Mem [Address] = ~DAT;
XACK <= 0;
end
else begin
XACK <= 1;
Bufena <= 0;
end

end

endmodule: MemoryPIN

11.7 More complex transactions

The transactions modeled above are simple, in the sense that there
is only one at a time. This allows the lifetime of the transaction to
correspond to the lifetime of the task call initiating it. The task can
contain the data relevant to the transaction, such as start time.

Other systems may allow one transaction to start before the previ-
ous one has finished (overlapping or pipelining). They may even
allow out-of-order completion (split transactions). In these cases,
the data about the transaction cannot be contained in a single task.
Either a new process (thread) must be spawned to control or moni-
tor the transaction and to hold relevant data, or a dynamic data
object must be created to store the information about the transac-
tion.

316

SystemVerilog for Design

11.8 Summary

These more elaborate transaction level models and their language
constructs are typically used in verification, and are therefore
described in the forthcoming companion book, SystemVerilog for
Verification.

Transactions have traditionally been used in system modeling and
in hardware verification. TLM has not been used much by hardware
designers. One of the reasons is that Verilog-2001 and VHDL-2000
do not have the ability to define an interface with methods, whereas
some programming and verification languages have classes, which
can be used in a similar way.

SystemVerilog brings the interface and method constructs into
HDL, allowing the hardware designer to take advantage of the
TLM technique, and to represent the rest of the system at a more
abstract level, with the benefits of simplicity and simulation perfor-
mance.

Over time, new tools are likely to be developed for verification (and
maybe for synthesis) of the transaction level modeling style pre-
sented in this chapter.

Appendix A
The SystemVerilog Formal
Definition (BNF)

This appendix contains the formal definition of the SystemVerilog
standard. The definition is taken directly from Annex A of the Sys-
temVerilog Language Reference Manual (SystemVerilog LRM) I

The formal definition of SystemVerilog is described in Backus-
Naur Form (BNF). The variant used in this appendix is as follows:

Bold text represents literal words themselves (these are called
terminals). For example: modulc.

Non-bold text (possibly with underscores) represents syntactic
categories (i.e. non terminals). For example: port_identifier.

Syntactic categories are defined using the form:
syntactic_category ::= definition

A vertical bar (|) separates alternatives.
Square brackets ([]) enclose optional items.

Braces ({ }) enclose items which can be repeated zero or more
times.

1. The SystemVerilog formal definition is reprinted with permission from the SystemVerilog
3.1a/draft 2 Language Reference Manual. Copyright 2003 by Accellera. This draft version
was a work-in-progress and had not been ratified by the Accellera standards organization.
See page xxvii in the Preface for information on obtaining the latest released version of the
SystemVerilog Language Reference Manual.

Appendix B
A History of SUPERLOG, The
Beginning of SystemVerilog

Simon Davidmann, one of the co-authors of this book, has been
involved with the development of Hardware Description Languages
since 1978. He has provided this brief history of the primary devel-
opments that have led from rudimentary gate-level modeling in the
1970s to the advanced SystemVerilog Hardware Design and Verifi-
cation Language of 2003. His perspective of the development pro-
cess of HDLs and the industry leaders that have brought about this
evolution makes an interesting appendix to this book on using Sys-
temVerilog for design.

358 SystemVerilog for Design

B.1 Early days -

The current Hardware Description Languages (HDLs) as we know
them have roots in the latter part of the 20th century. The first HDL
that included both register transfer and timing constructs was the
HILO [1] language, developed in the late 1970s in the UK by a
team at Brunel University led by Peter Flake, which included Phil
Moorby and Simon Davidmann (see Photo 1, below). The lan-
guage, associated simulators, and test generator were funded in part
by the UK’s Ministry of Defence and were targeted to produce and
validate tests for PCBs and ICs. The development team at Brunel
was spun out in 1983 into the UK’s Cirrus Computers Ltd. and
thence in 1984 into GenRad, Inc. in the USA for commercializa-

tion,

Photo 1: HILO-2 team circa 1981. (left to right) Simon Davidmann, Peter Flake,
Phil Moorby, Gerry Musgrave, Bob Harris, Richard Wilson

Appendix B: SystemVerilog roots: A History of SUPERLOG 359

In the early 1980s; the gate array based ASIC market started its
growth to prominence. Though it had some success there, GenRad
did not focus HILO development on ASIC design. Gateway Design
Automation was founded in Massachusetts by Prabhu Goel specifi-
cally to build ASIC verification tools. Prabhu Goel was the first
user of HILO in the U.S. Phil Moorby joined Gateway, moved to
the U.S., and conceived the Verilog HDL and Verilog-XL simula-
tor. He based this initial version of Verilog (Verilog-86) on the
HILO-2 gate level language and mechanisms, improving the bidi-
rectional capabilities, and dramatically changed the higher level
constructs (borrowing from C, Pascal and Occam) while improving
the timing capabilities, and making them a fundamental part of the
behavioral language. Verilog-XL was a significant commercial suc-
cess, partly due to the inclusion of gate level, structural, and behav-
ioral constructs all in one language.

During the late 1980s, designers were predominantly using sche-
matic capture packages to edit their structural designs, and gate
level libraries supplied by ASIC vendors for their implementations.
These vendors were very concerned about timing accuracy for
design ‘sign off’, and so Gateway added the ‘specify block’ and
PLI delay calculators. The certification of Verilog-XL by all the
ASIC vendors, driven by Martin Harding’s ASIC Business Group
within Gateway, was one of the key reasons why Verilog was so
successful.

In the mid 1980s, Synopsys started to work with Verilog and ASIC
vendors to produce its logic optimization and re-targeting tools.
The piece that was missing was the Verilog Register Transfer Level
(RTL) synthesis technology, which Synopsys released in 1988/89.

By the early part of the 1990s, the design flow had changed from
the 1980s methodology of schematics to Verilog RTL design and
verification, Verilog RTL synthesis and functional simulation, and
Verilog gate level timing simulation ‘sign off’. As this move to an
RTL methodology based on Verilog was taking place, Cadence
Design Systems acquired Gateway, and thus took control of the
(then) proprietary Verilog language. Most of the other EDA ven-
dors did not have access to Verilog tools or a Verilog language
license from Cadence, and a large number started to back the
VHDL [2] language as a public standard. VHDL was developed in
the early 1980s for the US Department of Defense to provide a con-

360 SystemVerilog for Design

sistent way to document chip designs, and it was first approved as
an IEEE standard in 1987.

B.2 Opening up Verilog: towards an IEEE standard

HDL users in Europe and Japan are particularly keen on adopting
standards, and not proprietary solutions. They started to adopt
VHDL, as it was already public and an IEEE standard. Even though
VHDL was originally developed as a language for documenting
design, EDA vendors developed tools around it, and their custom-
ers starting using it for RTL design and verification.

In 1989, under the guidance of its Director of Strategic Marketing,
Venk Shukla, Cadence responded to this swing away from Verilog
by forming Open Verilog International (OVI), as a non-profit
industry standards organization, donating Verilog to it, and thus
placing the Verilog language and PLI into the public domain. This
version became know as OVI Verilog 1.0.

OVI promoted and marketed Verilog and, by working with the
IEEE, turned the Verilog HDL into the IEEE 1364 Verilog HDL
(Verilog-95). There was a false start to this within OVI, as many
people wanted to extend Verilog, and thus OVI quickly made many
changes to the Verilog language, as donated by Cadence. This Ver-
ilog 2.0 from OVI was rejected by the IEEE committee, who
selected the proven and widely used OVI Verilog 1.0 as the basis
for IEEE 1364.

This OVI promotion and marketing, and IEEE standardization,
stemmed the move away from Verilog. Competitive simulators
such as VCS and NC-Verilog appeared and, by 2000, Verilog
returned to being the dominant HDL.

B.3 Co-Design Automation

As Verilog was becoming standardized in the mid 1990s, discus-
sion started regarding on what languages and/or language features
were needed at higher levels of abstraction. Verilog was behind
VHDL in this respect.

Appendix B: SystemVerilog roots: A History of SUPERLOG 361

B.4 Moving to

During 1995, Peter Flake and Simon Davidmann started collaborat-
ing again to develop their ideas on next generation simulators and
languages for design and verification. In September 1997, they
founded Co-Design Automation, Inc., which was incorporated in
California with the specific business plan of developing a new sim-
ulator and a new language—ultimately called SUPERLOG, being a
superset of Verilog—to augment the then current HDLs.

Many people have asked why the company that developed SUPER-
LOG (SystemVerilog) was called Co-Design, when the outcome of
their endeavors was to evolve Verilog from being an HDL to being
an integrated Hardware Design and Verification Language
(HDVL). The answer is simple... the original business plan was to
evolve Verilog to be of use for hardware design, software design,
and verification—i.e. to be useful for codesign as well as verifica-
tion—which was a significant challenge. The company succeeded
in evolving Verilog to unify the design and verification tasks.

Co-Design obtained its first seed round of funding in June 1998.
One of the seed investors was Andy Bechtolsheim, a co-founder of
Sun Microsystems and later an engineering VP at Cisco. He was
very interested to see a new HDL developed to make digital design-
ers more productive. Another key investor in the Co-Design seed
round was Rich Davenport, CEO of Simulation Technologies
(developer of the VirSim simulation debugger), who shared the
founders’ vision and who became a Co-Design board member from
inception through to final successful acquisition. Other early inves-
tors were John Sanguinetti, the developer of VCS, who went on to
found C2/Cynapps/Forte and develop C/C++ synthesis, and Rajeev
Madhavan who was CEO and a founder of Ambit, and then of
Magma. Many of the key technology visionaries in EDA were
backing the Co-Design vision of extending Verilog and creating a
super Verilog.

C++ class libraries or Java: the land of the free?

April 15, 1998 was a milestone, as it saw the formation and first
meeting of the OVI Architectural Language Committee (ALC).
This included personnel from Cisco, Sun, National, Motorola,
Cadence (owners of NC-Verilog), Viewlogic (owners of VCS) and
Co-Design. It was convened to discuss ‘developing an architec-

362 SystemVerilog for Design

tural/algorithmic language with verification and analysis orienta-
tion with a processor modeling extension that is targeted for
advanced processor architecture development. This OVI committee
work started with all good intentions, but by January 1999 had
become de focussed by many people steering the committee down
the route of adopting existing software languages or class librar-
jes—the two main camps being based around C++ class libraries
(two proposals) and Java based methodologies (also two propos-
als).

Even though there were a few believers that a better Verilog was
needed, most people in the EDA industry were getting excited
about C++ class libraries or Java based approaches to hardware
design. This was the middle of the late 1990s internet dot com
‘free’ bubble, and so many people thought that it would be a good
idea to find a way to use C++ or Java as a digital design language,
and get all the EDA tools they would need for free ©.

B.5 Marketing SUPERLOG

The Co-Design team saw the situation in a different light. In May
1999, Dave Kelf joined Co-Design as VP marketing and started to
develop plans for informing the world about the company’s direc-
tion for a unified HDL/HVL. Co-Design attended the June 1999
DAC conference and exhibition with a tiny 10ft by 10ft booth. An
informative article by Peter Clarke in the US EE Times [EE1] the
week before the conference caused a very busy time for Co-Design
staff at the show. All employees (except Peter Heller, the CFO)
attended (see Photo 2) and, being a small company, the software
development engineers had to be pressed into giving demos at the
exhibition booth.

At DAC 1999, the hot topic was definitely new design and verifica-
tion languages. SUPERLOG/Co-Design was listed as one of the 10
‘must see’ items of DAC by Gary Smith of Dataquest [DQ1]. To
quote from Gary in the EE Times article: “The Verilog guys are
saying they have run out of steam. The VHDL guys are pretty much
saying VHDL is dead. C++ is not going to work at all, and the C
guys can’t come up with a solution unless they really restrict the
problem. Co-Design has a fair chance of establishing its language.”

Appendix B: SystemVerilog roots: A History of SUPERLOG 363

Photo 2: The whole of Co-Design attends DAC 1999 to launch the SUPERLOG
debate—(left to right) Dave Kelf, Christian Burisch, Lee Moore, James Kenney,
Simon Davidmann, Peter Flake, Matthew Hall.

In January 2000, Peter Flake made the first public technical presen-
tation of SUPERLOG at Asia Pacific DAC (ASP-DAC) in Japan
[3]. This was followed by another presentation at the HDL Confer-
ence (HDLCon) in February [4]. Later that year, in September,
Simon Davidmann made a keynote presentation at the Forum on
Design Languages conference (FDL) that explained the process of
developing languages [5].

The idea was to add the capabilities of software programming lan-
guages and high level verification languages, all within the one
familiar design language. The SUPERLOG language was continu-
ally being polished from inception through 2001, and was proven in
Co-Design’s simulator (SYSTEMSIM) and in its translator to Ver-
ilog (SYSTEMEX).

364

SystemVerilog for Design

During 2000, as the Co-Design products were gaining acceptance
with early adopters, it became obvious to many sophisticated EDA
watchers and users that evolving the known and well liked Verilog
HDL into a super HDL was a better approach than replacing it with
a software language. This is exactly what Co-Design had pioneered
with its unified HDL/HVL: SUPERLOG. Co-Design was placed
under pressure by some of its partners and customers to accelerate
the process of getting SUPERLOG standardized as the next genera-
tion of Verilog. Many of the engineers participating in developing
the IEEE 1364 Verilog-2001 specification got very excited about
SUPERLOG, and were also keen to see it become folded into the
next IEEE Verilog. The press picked up on these undercurrents, and
in August 2000 Richard Goering of EE Times stated “Wouldn’t it
be funny if the EDA vendors pushing C/C++ for hardware design
were wrong, and Co-Design’s SUPERLOG language wound up as
the real next generation HDL?” [EE2]. Also, John Cooley started to
have many users and supporters writing into ESNUG about their
like of SUPERLOG and its direction, prompting an article in
November 2000 on “the SUPERLOG evolution” [EE3].

Several EDA companies became supportive of the SUPERLOG
vision, and wanted to get more involved. Dave Kelf responded to
this, and created the S2K (SUPERLOG 2000) partners program,
where members could get early access to SUPERLOG language
technology, and help SUPERLOG on its path to industry adoption
and standardization. By early 2001, the EDA world of languages
started to settle into two camps: the ‘evolve Verilog camp’ centered
around SUPERLOG for next generation RTL methodologies, and
the C++ class library approach centered around the open source
SystemC [6] class library put in the public domain by Synopsys, for
high level systems modeling. While there was all this discussion
regarding EDA languages, there was little, if any, discussion about
evolving VHDL.

A tutorial {7] at the HDL Conference (HDLCon) in February 2001
was the first detailed disclosure of the SUPERLOG syntax. A year
later at HDLCon in March 2002, Co-Design presented two tutori-
als: one on verification using SUPERLOG’s verification features
[8] and the other on SystemVerilog (SUPERLOG) interfaces [9]
and communication based design.

Appendix B: SystemVerilog roots: A History of SUPERLOG 365

When building SUPERLOG, the hard challenge for the Co-Design
language development team was the balance of controlling the lan-
guage to make it easy, quick, and efficient to modify and improve
as needed, while having a path to openness and standardization.
The solution to this dilemma came with the donation of the design
subset of SUPERLOG to Accellera! and the creation of what was
initially called the Accellera Verilog++ committee. The design part
of SUPERLOG was termed the Extended Synthesizable Subset
(ESS) and this SUPERLOG ESS was officially donated to Accel-
lera in May 2001.

B.6 SystemVerilog

From May 2001 through May 2002, a small group of dedicated
HDL enthusiasts, EDA developers, IEEE 1364 committee mem-
bers, and users worked hard in the Accellera committee, focused on
turning the Co-Design donation of the SUPERLOG ESS into a pub-
lic standard. Accellera was very keen on working on the SUPER-
LOG donation, and the Accellera Board Chairman, Dennis Brophy,
and Technical Committee Chairman, Vassilios Gerousis, were very
supportive. Co-Design had up to 25% of its employees attending
regular Accellera committee meetings.

In May 2002, this new language extension to the Verilog HDL was
approved by the Accellera board of directors, and became known as
SystemVerilog 3.0 [10]. Copies of the Accellera standard were dis-
tributed at the June DAC 2002.

Meanwhile, it was announced that Intel had made a strategic invest-
ment in Co-Design. Intel has a policy of not endorsing suppliers’
products, but it is interesting to note that, a year later, at DAC 2002,
Intel was one of the public supporters of the SystemVerilog 3.0
standard. There they said that they had been using it for a while,

1. OVTI’s focus was Verilog only and, for almost 10 years, promoted Verilog with the annual
International Verilog Conference in Santa Clara. With the demise of support and develop-
ment for the VHDL language, OVI merged with VHDL International to form Accellera, and
IVC became the HDL Conference (HDLCon), now recently renamed Design and Verifica-
tion Conference (DVCon) (www.dvcon.org). Accellera is now a language neutral non-profit
organization that promotes EDA language standards (www.accellera.org).

366 SystemVerilog for Design

and saw it as fundamental technology for future advanced proces-
sor design.

Almost all of SystemVerilog 3.0 is SUPERLOG, but not vice-
versa. Much of SUPERLOG was not donated to Accellera for Sys-
temVerilog 3.0. A couple of features were added by the committee:
data types for enumerations and implicit port connections. The
SUPERLOG Design Assertion Subset was developed concurrently
with the committee.

Photo 3: DAC 2002 was attended by most of the Co-Design staff.

B.7 SystemVerilog 3.1 and beyond

After the June DAC 2002, work started in Accellera on extending
SystemVerilog into the testbench area, and to improve the asser-
tions into a full temporal logic. Donations were made by other com-

Appendix B: SystemVerilog roots: A History of SUPERLOG 367

panies, with the majority coming from Synopsys. This evolution of
SystemVerilog, currently at revision 3.1, was released at DAC
2003.

Co-Design was acquired by Synopsys in September 2002, and sev-
eral Co-Design staff stayed involved with the Accellera System-

Verilog work.

At the Design and Verification Conference (DVCon) held in San
Jose in February 2003, Aart de Geus, co-founder, Chairman, and
CEO of Synopsys, delivered the keynote speech, and explained
how SystemVerilog was a key component of his company’s lan-
guage strategy moving forward.

The benefit to users is, of course, that they will be able to design
and verify in much more efficient ways than was previously possi-
ble with the older, lower level HDL capabilities.

1981 62 B3 84 85 B6 87 88 89 90 91 92 93 94 05 96 97 98 99 00 01 02 03 04 05 06 07 08 09

’ Simon Davidmann
HILO : é Peter Flake :
l]T/' - B {Co-Design) vgh
*;"‘Peter Flake' 7 : ‘7’\/\:;
(GenRad) :
% S
P~ l Verilog 86 I Verilog 90 | Verilog 95 l Verllog 01
Q\Phll Moorbyé . S T
Gat
F(Gateway ~ i
o {_wioLer] VHDL 93 | wibLoo |
X ous =z :
Z, Gov. &
Pt

Figure 11-1: History: Evolution from HILO, Verilog, SUPERLOG to SystemVerilog

B.8 References:

[1] “The HILO Simulation Language”, P.L. Flake et al, Proc. International Symposium on
Computer Hardware Description Languages and their Applications, 1975.

[2] The IEEE 1076 VHDL-1987 language — developed to document US DoD designs.

368 SystemVerilog for Design

[3] “SUPERLOG - a Unified Design Language for System-on-Chip.” P. Flake, S.
Davidmann, ASP-DAC, Yokahama, Japan, 2000.

[4] February 2000, International HDL Conference, Santa Clara. Paper: “SUPERLOG -
Evolving Verilog and C for System-on-Chip Design.” P. Flake, S. Davidmann, D. Kelf.

[5] September 2000, Forum on Design Languages, Tiibingen, Germany. Keynote paper:
“Evolving the Next Design Language”, Simon Davidmann, Peter Flake

[6] SystemC. (www.systemc.org) now maintained by the Open SystemC Initiative
(OSCD).

[7] February 2001, International HDL Conference, San Jose. “A practical approach to
System verification and hardware design”. Tutorial presented by Peter Flake and Dave
Rich, which showed and explained SUPERLOG constructs: local modules, $root, explicit
time, C type system, structs, typedefs, unions, 2 state variables, logic, packed/unpacked
types, strings, enums, safe pointers, dynamic memory, queues, lists, bump operators,
extended loops, enhanced always blocks, recursive functions, dynamic processes,
interfaces and modports, explicit FSMs.

[8] March 2002 International HDL Conference, San Jose, “Advanced Verification with
SUPERLOG”. Tutorial presented by Dave Rich and Tom Fitzpatrick. Like 2001 HDLcon
tutorial, but also included examples of SUPERLOG associated arrays, constrained
random, weighted case, semaphores, classes, polymorphism, functional coverage,
assertions, CBlend (direct C interface), HW/SW platform simulation with embedded
ARM core.

[9] March 2002 International HDL Conference, San Jose, “A communication based design
platform: The power of SystemVerilog (SUPERLOG) interfaces” ~ Tutorial presented by
Tom Fitzpatrick, Co-Design Automation, which focused on use model of interfaces and
illustrates the use of CBlend for embedded processor simulation environment.

[10] SystemVerilog 3.0_LRM.pdf from Accellera.

[EE1] EE Times US, May 31, 1999. www.edtn.com/story/tech/OEG1999053150003
“Startup spins next generation system design language” — Peter Clarke. An informative
article that provides a very good summary of Co-Design and its SUPERLOG vision.

[EE2] EE Times, US, August 24, 2000. www.eetimes.com/story/OEG200008245003 1 “Is
SUPERLOG another HDL?” — Richard Goering.

[EE3] EE Times, US, November 6, 2000. www.eetimes.com/story/OEG20001 10650024
“The SUPERLOG evolution” — John Cooley

[DQ1] Gartner Dataquest has a team focusing on analyzing the EDA market segment -
Gary Smith is the leader of this group, who predicts trends. Each year at DAC, Dataquest
has a pre-DAC briefing where Gary produces his ‘must see, hot technologies/companies’
list.

Appendix B: SystemVerilog roots: A History of SUPERLOG 369

B.9 Who’s Who in the evolution of SUPERLOG and SystemVerilog 3.0

Peter Flake — inventor of HILO language, the first HDL with tim-
ing, and developer of test generators for HILO-1and HILO-2. Co-
founder of Co-Design and developer of SUPERLOG/SystemVer-

ilog.

Phil Moorby — developed fault free and fault simulator for HILO-2.-
Invented the Verilog language and the Verilog-XL simulator.
Became Chief Scientist at Co-Design.

Simon Davidmann — developer in the HILO team and first Euro-
pean employee of Gateway who developed Verilog. Joined Chrono-
logic Simulation as one of first employees to market and sell VCS
simulator in Europe. Co-Founder and CEO of Co-Design and co-
developer of SUPERLOG/SystemVerilog.

Martin Harding — started and managed ASIC Business Group
within Gateway making Verilog a de facto standard with ASIC ven-
dors. Seed round investor in Co-Design.

Venk Shukla — Strategic marketing director within Cadence who
initiated the formation of OVI to open up the Verilog language and
put it on its path to IEEE standardization. Became a board member
of Co-Design.

Andy Bechtolsheim — a co-founder of Sun Microsystems, devel-
oper of the Sun workstations, currently engineering VP at Cisco,
and latterly a Silicon Valley angel investor. Liked vision of new
HDL and became seed round investor in Co-Design.

Rich Davenport — Sales director at Gateway, founder of Simuiation
Technologies, and President/COO of Summit Design. Became lead
investor in Co-Design seed round in 1998, shared the vision of uni-
fied design/verification language and tool. Became Co-Design
board member from inception through to successful acquisition.

John Sanguinetti — founder and CEO of Chronologic Simulation,
developer of VCS, the first compiled Verilog simulator. Shared the
Co-Design vision of a unified HDL and became a seed round inves-
tor. Later John focused on C++ based synthesis technologies within
Forte Design.

370

SystemVerilog for Design

Rajeev Madhavan — founder of LogicVision, Ambit Design Sys-
tems and Magma Design Automation. Saw significant benefits in
unifying the different HDL and HVL requirements and became
seed round investor in Co-Design.

Dave Kelf — an early user of Verilog. Moved into marketing and
was responsible for the product marketing of Cadence’s NC-Ver-
ilog simulator. VP Marketing at Co-Design.

Stuart Sutherland, Cliff Cummings, Stefen Boyd, Mike McNamara,
Anders Norstom, Bob Beckwith, Tom Fitzpatrick, and Kurt Baty -
IEEE Verilog developers and early supporters of SUPERLOG.

Richard Goering and Peter Clarke — editors with EE Times in the
US, kept a watchful eye on the ‘new’ language debate as it evolved,
and played a key role in the industry by assessing the players and
their messages, and ensuring that the lively discussions were made
public and brought to their readers’ attention. Over a period of 2
years, there were many front cover articles in EE Times that cov-
ered the language debate with 5 of them featuring Co-Design.

Gary Smith — Chief EDA Analyst at Gartner Dataquest. Closely
watches evolving technologies and identifies trends. In 1999 identi-
fied Co-Design and SUPERLOG as a potential winner.

Raj Singh and Raj Parekh — partners at Redwood Ventures, both
with significant histories in design and EDA. Started a venture cap-
ital business to invest in new technologies, became intrigued with
Co-Design opportunity, and invested in first venture round. Held
board seat from investment through acquisition.

Peter Heller — co-founder and CFO of Co-Design — involved with
the creation of the European offices of many successful EDA star-
tups including Verilog developers Gateway Design Automation and
VCS developers Chronologic Simulation — structured Co-Design
with US and UK legal entities and managed all legal and financial
issues from startup through financing to ultimate acquisition by

Synopsys.

Don Thomas — Professor at CMU, early pioneer in HDL methodol-
ogies, wrote the first book on Verilog with Phil Moorby. Don was a
member of Co-Design’s Technical Advisory Board from the begin-
ning.

Index

Symbols
172 OPCIAtOT ..eeevverie et nenesaaressesnnonnas
$bits system functionceceeveerierereerceninnne
$cast dynamic cast function.......
$dimensions system function
$high system functionc.cccoeeeeririennen. 98
$increment system function..........cccoveeveenn. 98
$left system function...............
$low system function.......
$right system function
$size system function.........c.........
%= operator..................

&= operator....
*= gperator.....
++ operator.....
+= operator...............
¥ port connections....
X, port CONNECtioNSccvverevenrecuerrvecennennne 237
.name port connections 198-202, 237
/= Operator........c..c.cccvveeuens
<<<= gperator....
<<= operator
-= operator.......
-- operator
=7= 0PEIAtOrcovrireiieecrreee e
SS= OPEIALOT ..ot
>>>= gperator

A OPEIALOT v srcvineiciiee e
|= OPETALOT ... st
Al

L3

Numerics

2-state data types
2-state operations.....
4-state data types

A

Accellera standards organization................... 2

acknowledgements..........cooeeveevereerennnnn. Xxviil

alias statement

always @*.........

always_combccecereennee 28, 108-115, 159

always ffi....ccocncencnene 28,117

always_latch....c.c.c.coevvcrvncrirecnnnn, 28, 115-117

anonymous enumerated typecccoceeenees 58

anonymous StrUCtUIe.........c.coeveveercrrererrennenes 67

ANONYMOUS UNIOM ..c.vevveireirereirrsresernaesineneones 75

AITAYS . .veetiereerererreneecresresesesseseinesassenressesseneans
ASSOCIAMIVE .c.vovceercrrcriiencetercrnrereenennes 101
COPYINE.reviivirrereereeerraessenrenreresanassanane 90
declaration and usage.. 80-99
dYNamicC.....ccoevceniverieiincinrrsrnenns 100
INAEXING .ot 92
INIHAHZING oo 86
packed ... 83-85
passing to tasks and functions...............
query functionscoceveercrreerererncnnennnnns
SPAISE .vuvuvevierentrcrieterermsnrerseresrenseesessane
unpackedccoveenennen

assignment operators

2SSOCIALIVE AITAYS .ecovvrrerrrerecrenrieveseeerenens

automatic functions

automatic tasks..............

automatic variables

B

Backus-Naur Form.......ocovvvivvviinricrinrones 317

DEgin...end......oceeerrierer e
block Namesccevvvreerenincerieiennenns

behavioral modeling
bit data type........ccevvvnene.
bit-stream casting.......

372 Verilog-2001: A Guide to the New Features of the Verilog HDL
break Statementcveecrecrviineriniensennns 152 F
byte data type....coeririnmermeerseicnnis 25 first Method ..o.veeecercreccricrsiiisinssinsinans 61
for loop enhancements..... ... 144-148
c FULL_CASC.ouvvveeerereeeereeceeersneni i isaressas 161
case equality Operators.........cccerevririnenss 140 fUNCHIONS. ...viveieeecnieeeeiieieirireeere s e
€aSe EXPressionuevivirennns AULOMALIC .o.vevrveseeereeccrtenieseresaeinsseness 118
case selection item.... begin...end....cccviiiiniiesn s 119
CASE SLALEMENLS ..c.vevereereniiviniie e default argument type and direction 125
PHOTILY woveevrrcviiiiiiiiienseeer s 160162 default argument value.........ccocoeenrenenn 126
unique 157-162, 168,172 1171513 200U USIUPUPIOPP PP 131
CASHINE 1evvenrereveesereiirirres st bcs s et formal argumentscooveeervieirrcericens 124
$cast dynamic casting ... 44,60 named endfunction.........ccoeeccevcriiiinnnn, 131
Dit-Streamcocovceviiinniniinieiic e 91 passing arguments by name.................. 123
cast OPErator........covuvvrieiens 43, 60, 143, 144 reference arguments
companion book on verificationxxiii, xxvii return statement............
compilation unit..........coceovenns VOId 1ot
description and usage..............
extern module declarations G
structure declarationsccovveieiiinis global declarationsc..covvevieerecvsvenreneens 13
timeunit declarations
typedef declarations...... H
variable initialization HDVL, definition ofccccooveereererinnereronns 2
compilation-unit scope, definition of.......... 11
COMSE.eeiieiiiiiiene e]
CONSANLS..cvvvvvvverecrevees IEEE 1364 Verilog standard.............. xxvii, 1
continue statement IEEE 1364.1 Verilog synthesis standard xxvii,
106
D if statements
data types priority
2-state...... unique
] £ 11 SOOI PP import keyword
relaxed rules increment operator 134-137
decrement operator inSide OPErator.......cocveenieriemeinrmeriveisenes 141
default structure values.......c.coovvvenvinncrne 69 Nt data tYPE...verveeerseereereesereeneseriseenesiones 25
disable statement...........ccoeeiivinininnnns 121, 150 G0EEIFACES coveeoeoeoeeeessseeesver s sessessneeeeesereseeeseesinns
do..while 100p ..o 148-150 COnCepts 226-235
dynamiC arrays......ooevmeesrssresssersseneseeeness 100 CONLENLSovevieereeeceerereererissssnrnsraresessesnses 235
dynamic Castingcococoerivmsncnnnenns 44 declarations ...oeewveeeerviveveens .236
exporting methods.... .255
E extern forkjoin.......... v 257
enumerated types importing Methodscooveerinrnneninee 251
ANONYIMOUS ...ovivcerireissseiisnnsirssssessssnansenss methods......coeevvvvcrvcnneiiiineens 251-258
declaration and usage.......cocoueuinine 5264 mMOAPOILS .oovveeceeenieriiersrrenrnisnens 243-250
modeling FSMs............ 168-177 module port declarations, explicit......... 239
EXAMPLES ..ooceviiicrrriiiiir e module port declarations, generic......... 240
abOUL.....ceeieneririinne XXV PArameterized.ocovvvernrvmerirmsiresinnens
obtaining copies of.... i procedural blocks
export declarationcccovvnrnnnninees referencing signal within
extern declaration.......c.c.cocvvineiiiiinicnnns
extern declarations.... L
extern forkjoin............. TADELS 1o s 156
external declarationsccoovviivnienicinnns Language Reference Manualcc.co.ccounuenns

373 SystemVerilog for Design

SystemVerilogoenviiiivinniiicinn, xxvii P
Verilogcccovunn S XXVE PACKAGES . ..rvvvcreceercrerrrienriecieceseereeneseenes 13
last method..... e 61 packed arrayscccoeerveerenennirnrennnns 83-85
literal values...... s 8 packed StrUCLUTES......c.covveviverirercrerierererenns 70
logic data type.....cooervreeciicreicecree s 25 packed UNIONS ...c.ovveviveveriiecreienseecieee e 76
longint data type.........coccorvenirininnninnnnens 25 parallel_Case.......coeouriereiririeerennecesinennis
LRM e
SystemVerilogcccoeniveirecrccrnnnenn, Xxvil
VErilog ...covucerinnicrnriiecniinenccerinnes XXVil
M
methods
first
last.......
name.
next "
num prevmethod ... 62
prev PLIOTItY CASC...uveuieverecreererierarerenrinnes 160-162
module prototypes priority if........
prototypes
N interface task/function.........c.cvevevvernnnne 252
name method........cocovevevrecreincnnecrrneriannas 62 modules......cconinincininnintenen, 184-186
named end of blocks 186
named endmodule..........ocorvveeiviiernereenans 186 R
named port connections................... 193-197 ref module ports.........ccoceerercrecinicnnncnnenns
nested interface declarations..........ccocuevene 239 reftask/function arguments
nested modules........covveeeererenccnnnnne 187-193 return statement.........ccc.coeervvercerennns
net aliasingcocevvvcvinerneiorernecnenns 204-209
next method. ... 62 S
num method ..o 62 shortint data type.......o.oerveveerreerrernerrnnnsennn, 25
shortreal data type..........cocvvevvrrninceniennn. 25
O signed modifiercoooovvrereierrierierereninnn. 31
sizeof, se€ $bitSccovvvrreiciierr e
sparse arrays........... ... 101
statement 1abels.........c.cooeveneirncninnen, 156
static variables.........ccoecevivrinirinicinnens 32-38
SEANES et evevererireee e ene s e rse b esaianens 102
SETUCKUTES eovvereeieveir sttt e e sesr e en s sresaaros s
ANONYIMOUS 1.vvevveievenreseessessessesrsesesarerne 67
declaration and usage.............cueee.. 66-74
default values

initializing...............

Do e e bbbt enan 138 ++ and -- Operators.......ccvcvvierieeinierinnenn 137
SO UPUTO VPP VOTU OO TPRON 138 2-state and 4-state data typescoveene 27

ordered port connections.... s 193

374 Verilog-2001: A Guide to the New Features of the Verilog HDL
array query system functions................. 9 U
assignment OPerators.........oovvirernrcenenes 138 UNIONS..oviiriierrererereiee e
automatic variablesoceeeiiiiiniiniinneenns 37 ANONYMIOUS v.vecevveeeveensiens
break and continue........ .. 153 declaration and usage
CASHNEG cvvrcrrrereersnns e 45 PACKED ..vvoveoerseerereeeveses e
do...while 100pSoceveerrmiiiiisiinnnns 150 unpackedcoccoeeececcuvciiniminriniiennnissnnses
external compilation-unit declarations.... 14 unique €ase.......c.cccorueuens
fOr 100PS «.covivviiiirivce UNIQUE if v 163-165
inside operator unnamed blockscc.coeiriiiiiiiiiiiene 221
interfaces.........c... unpacked arraysoveevveemnnessresesnennes 80
priority case.... unpacked SIrUCTUIES.ccoovmriimie e 70
priority I et unpacked UTHOTS +oevereeremeeanereraeeeseeenerensnannns 75
ref ports.....coevenee unsigned modifier ... 31
retUM.cccs user-defined types....ocovviviiniienniees 49-51
SIIUCTUTES ..cvvieren ittt
UNIOMNS ...veeveiveerirerreeenesseiiesiesseviesiassasianns 78V
UIIQUE CASE..ovovoecrnninsciesssaces 161,172,174 variable initializationcc..crecereeerecnnee 34-43
unique if........... 165 vectors, filling
void functions . 122 yoid data type.....
wild equality operator 141 void functions

system functionscccoceevieinninnncnneenes
BBIES oo cvc e 99
SAMENSIONSovvcvererrerirmirnirii e 97
Bhigh .o 98
$increment ..o 98
Bleft. .o 97
FIOW oo 98
Bright . e 97
BSIZE ovvererrerrrerre s 98

SystemVerilog 3.0 ..o 2

SystemVerilog 3.1 .o 3

SystemVerilog 3.1a....cccoiinincinennin 3

SystemVerilog LRM....ccccooniiniiiccinnnnes xxvil

begin...end.....c.cooiiiiiniiiinieee 119
default argument type and direction 125
default argument value
EIMPLY wrreerrrrrerneeinrirneninnns
named endtask........ocooceniiiiininieneninns
passing arguments by name 123
reference arguments................ .
return statement............
timeprecision statement
timeunit statement...........cooeevvreinnennnns
Transaction Level Modeling... 291-316
tYPE CASLING ...ocviiriirriinenisnirrsescrennne 43-45
type Keyword........covevnimiinniiencninenenes 219

typedef, declaration and usage.............. 49-51

