IEEE Std 1076.6-1999

IEEE Standard for VHDL Register
Transfer Level (RTL) Synthesis

Sponsor

Design Automation Standards Committee
of the
IEEE Computer Society

Approved 16 September 1999
IEEE-SA Standards Board

Abstract: A standard syntax and semantics for VHDL register transfer level (RTL) synthesis is de-
fined. The subset of IEEE 1076 (VHDL) that is suitable for RTL synthesis is defined, along with the
semantics of that subset for the synthesis domain.

Keywords: pragma, register transfer level (RTL), synthesis, VHDL

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2000 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 9 March 2000. Printed in the United States of America.

Print: ISBN 0-7381-1819-2 SH94792
PDF: ISBN 0-7381-1820-6 SS94792

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

| EEE Standar ds documents are devel oped within the IEEE Societies and the Standards Coordinating Com-
mittees of the IEEE Standards Association (IEEE-SA) Standards Board. Members of the committees serve
voluntarily and without compensation. They are not necessarily members of the Institute. The standards
developed within |EEE represent a consensus of the broad expertise on the subject within the Institute as
well as those activities outside of |EEE that have expressed an interest in participating in the development of
the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there
are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to
the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and
issued is subject to change brought about through developments in the state of the art and comments
received from users of the standard. Every |EEE Standard is subjected to review at least every five years for
revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it isrea-
sonable to conclude that its contents, although still of some value, do not whoally reflect the present state of
the art. Users are cautioned to check to determine that they have the latest edition of any |EEE Standard.

Comments for revision of |EEE Standards are welcome from any interested party, regardless of membership
affiliation with I[EEE. Suggestions for changes in documents should be in the form of a proposed change of
text, together with appropriate supporting comments.

Interpretations. Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of 1EEE, the
Institute will initiate action to prepare appropriate responses. Since |EEE Standards represent a consensus of
al concerned interests, it isimportant to ensure that any interpretation has also received the concurrence of a
balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating
Committees are not able to provide an instant response to interpretation requests except in those cases where
the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane

P.O. Box 1331

Piscataway, NJ 08855-1331

USA

Note: Attention is called to the possibility that implementation of this standard may
require use of subject matter covered by patent rights. By publication of this standard,
no position is taken with respect to the existence or validity of any patent rights in
connection therewith. The IEEE shall not be responsible for identifying patents for
which alicense may be required by an |EEE standard or for conducting inquiries into
the legal validity or scope of those patents that are brought to its attention.

Authorization to photocopy portions of any individual standard for internal or personal useis granted by the
Ingtitute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright
Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Cus-
tomer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; (978) 750-8400. Permission to photocopy
portions of any individual standard for educational classroom use can also be obtained through the Copy-
right Clearance Center.

Introduction

[This introduction is not part of IEEE Std 1076.6-1999, |IEEE Standard for VHDL Register Transfer Level (RTL)
Synthesis]

This standard describes a syntax and semantics for VHDL RTL synthesis. It defines the subset of IEEE Std
1076-1993 (VHDL) that is suitable for RTL synthesis aswell as the semantics of that subset for the synthesis
domain. This standard is based on |EEE Std 1076-1993, |EEE Std 1164-1993, and |EEE Std 1076.3-1997.

The purpose of this standard isto define a syntax and semantics that can be used in common by all compliant
RTL synthesistools to achieve uniformity of resultsin asimilar manner to which simulation tools use IEEE
Std 1076-1993. This will allow users of synthesis tools to produce well-defined designs whose functional
characteristics are independent of a particular synthesis implementation by making their designs compliant
with this standard.

The standard is intended for use by logic designers and el ectronics engineers.

Work on this standard was initiated by the Synthesis Interoperability Working Group under VHDL Interna-
tional. The Working Group was aso chartered by the EDA Industry Council Project Technical Advisory
Board (PTAB) to develop a draft based on the subsets donated by a number of companies and groups.

After the PTAB approved Draft 1.5 with an overwhelming affirmative response, an |EEE project authoriza-
tion request (PAR) was obtained for IEEE standardization. Most of the members of the original Working
Group continued to be part of the Pilot Group of P1076.6 that led the technical work.

Participants

At the time this standard was balloted, the 1076.6 Pilot Team consisted of the following individuals:
Jayaram Bhasker, Chair
Rob Anderson, Compiler Directives
David Bishop, Web and Reflector Administrator
Apurva Kalia, Semantics Task Leader
Douglas J. Smith, Editor/Attributes Task Leader
Lance G. Thompson, Syntax Task Leader

Victor Berman Robert A. Flatt Doug Perry
Dominique Borrione Christopher Grim Steven E. Shultz
Dennis B. Brophy Rich Hatcher Fur-Shing Tsai

Ben Cohen Masamichi Kawarabayashi Jm Vellenga

Colin Dente Jim Lewis Eugenio Villar
Wolfgang Ecker Sanjiv Narayan NelsVander Zanden

Many individuals from different organizations contributed to the devel opment of this standard. In particular,
the following individuals contributed to its development by being part of the Synthesis Interoperability
Working Group:

Bill Anker Robert Blackburn John Hillawi
LaNaeAvra Pradip Jha

In addition, 95 individuals on the Working Group e-mail reflector aso contributed to the development of this
standard.

Copyright © 2000 IEEE. All rights reserved. iii

The following members of the balloting committee voted on this standard:

Mostapha Aboulhamid Brian S. Griffin Gabe Moretti

Phillip R. Acuff Andrew Guyler David S. Morris

Bill Anker Pauline C. Haddow Gerald Musgrave
Peter J. Ashenden Michael J. Haney Wolfgang W. Nebel
Jesus Avila-Casa William A. Hanna Kevin O'Brien
Stephen A. Bailey Donald F. Hanson Serafin Olcoz

Pete Bakowski M. M. Kamal Hashmi William R. Paulsen
David L. Barton Rich Hatcher Paolo Prinetto
Victor Berman Jim Heaton Johan Sandstrom
Jayaram Bhasker Geir Hedemark Hisashi Sasaki
William Billowitch John Hillawi Quentin G. Schmierer
Robert Blackburn John Hines Steven E. Schultz
Martin J. Bolton Pradip Jha Toru Shonai
Dominique Borrione ApurvaKalia Douglas J. Smith
Dennis B. Brophy Takashi Kambe Joseph J. Stanco
Patrick K. Bryant Osamu Karatsu Atsushi Takahara
Larrie Carr Jake Karrfalt Thomas D. Tessier
Shir-Shen Chang Masamichi Kawarabayashi Lance G. Thompson
Luc Claesen Steven Kelem Paul Traynar
Edmond S. Cooley Robert H. Klenke Yatin K. Trivedi
Alan Coppola Venkatram Krishnaswamy Cary Ussery
Ronnie W. Craig Vello Kukk Radha Vaidyanathan
David C. Crohn Gunther Lehmann Ranganadha R. Vemuri
Clifford E. Cummings Jim Lewis Eugenio Villar
Timothy R. Davis Victor Martin Ronald Waxman
Steven L. Drager Peter Marwedel J. Richard Weger
Douglas D. Dunlop John McCluskey Ron Werner

George E. Econonuakos Michael D. McKinney John Williams
Robert A. Flatt Paul J. Menchini William R. Young
Scott Flinchbaugh Jean P. Mermet Tetsuo Yutani
RitaA. Glover Egbert Molenkamp Jan Zegers

Kenji Goto Jaun Moreno Mark Zwolinski

When the IEEE-SA Standards Board approved this standard on 16 September 1999, it had the following
membership:
Richard J. Holleman, Chair
Donald N. Heirman, Vice Chair
Judith Gorman, Secretary

Satish K. Aggarwal James H. Gurney Louis-Frangois Pau
Dennis Bodson Lowell G. Johnson Ronald C. Petersen
Mark D. Bowman Raobert J. Kennelly Gerald H. Peterson
JamesT. Carlo E. G. “Al” Kiener John B. Posey
Gary R. Engmann Joseph L. Koepfinger* Gary S. Robinson
Harold E. Epstein L. Bruce McClung Akio Tojo

Jay Forster* Daleep C. Mohla Hans E. Weinrich
Ruben D. Garzon Robert F. Munzner DonadW. Zipse

*Member Emeritus
Also included is the following nonvoting |EEE-SA Standards Board liaison:

Robert E. Hebner

Janet Rutigliano
|EEE Sandards Project Editor

iv Copyright © 2000 IEEE. All rights reserved.

Contents

T @1 V1= T USSR 1
TR S o o= S 1

1.2 ComplianCeto thiS StANAIT...........ccvrueirieerieieere et r e e seere e 1

0 11 03T T P 2

R o 01V 011 o = OSSP 2

2. REFEIEINCES. ...ttt h e bbbt e e e R e Rt R R Rt Rt bR e e b et et e e e e e e e eneas 3
G T I T g1« o] SRS 3
4. PrEdEfiNE0 tYPES. ..ottt ettt a e b bRt b b e Rt et e et eeneeneens 4
5. Verification MEthOGOIOOYcccoieririerieireiriee st 5
5.1 Combinational VEITICAIIONcccoiiiiiiiie ettt ene s 5

5.2 Sequential VEIfICAIONc..ceeeeecece sttt st e e ne e enens 6

6. Modeling hardware BlEMENLS..........ccooririiiiee ettt st st s s e et e e e e e enea 6
6.1 Edge-sensitive SeqUential [0gIC.ccuiveiiiiiiiesie ettt st s n e enens 7

6.2 Level-sensitive SEqUENtial [0GIC.couiirrerieereeierict et 11

6.3 Three-state and BUS MOAEIINGccvieiiiiiiie e e e e 12

6.4 Modeling combinational 10GICccuoiiuiririreee e 12

7 L =0 .07 TSSO RPRPRTIN 12
80 N 1T o 1= 12

7.2 MELACOMIMENES.ctiiieiiteee ettt ettt sttt st et ea et e e ae e s bt e ae e ebe e s e ehe e e e sheeseesaeeseesaeesbesanenbennnenes 13

S TS 4 - TP TP P PP PSSR 14
8.1 Design entities and CONfIQUIALIONS..........coeiiiirire ettt e 14

8.2 SUbPrograms and PACKAGES.ccueererireresestesesieseesseeeseeseesessessessessessesaessessessessenseseensenseseenenns 19

LS G T Y/ o1 TP PR PR 23

S D = ol = = o] PSPPSR 28

8.5 SPECITICALIONS. ... vttt ettt b et b e e b et ne b e r e e ene e 34

8.8 INBIMIES ...t e e R R R e e r e e R e r e n e r e an e 36

8.7 EXPIESSIONSccteieteietereettstete sttt st s bttt b et bese ke se bt s e bt s e e bt s e e bt b e st e b e e e b et e b et eb e st ebene bt ne b e e ene e 38

8.8 SEqUENTIAl SLALEMENES....c.eceeeeececiee e st r e s b e s re s be s be s resteee st e e eneeneeneens 43

8.9 CONCUITENT SLALEIMENTS. ... ecueiiteeiieeerie ettt e et e bt e s ae e eeeseeseesneeseesneeseesneesaesneesresneenes 49

8.10 SCOPE AN VIS ITY ...t bbb et st 54

8.11 Design unitS and thEIT @NAIYSISccoviiriririreie ettt s 55

ST 2 = = o] = o o FO USRS 56

8. L3 LEXICAl ElBMENESeeeveieeiieete ettt sttt st sttt b et be sttt se et ne b e e ene e 56

8.14 Predefined language eNVIFONMENL...........c.oiiiirere et se e e e 56
Annex A (informative) SYNtaX SUMIMAIYcc.ccueieeeririeeeseseseesesieseessessesaeseesessessessessesssssessessessessessessensesens 59

Copyright © 2000 IEEE. All rights reserved. \Y

IEEE Standard for VHDL Register
Transfer Level (RTL) Synthesis

1. Overview

1.1 Scope

This standard defines a means of writing VHSIC hardware description language (VHDL) that guarantees the
interoperability of VHDL descriptions among any register transfer level (RTL) synthesis tools that comply
with this standard. Compliant synthesis tools may have features above those required by this standard. This
standard defines how the semantics of VHDL shall be used; for example, to model level- and edge-sensitive
logic. It also describes the syntax of the language with reference to what shall be supported and what shall
not be supported for interoperability.

The use of this standard should enhance the portability of VHDL designs across synthesis tools conforming

to this standard. It should also minimize the potential for functional simulation mismatches between models
both before and after they are synthesized.

1.2 Compliance to this standard
1.2.1 Model compliance
A VHDL model shall be defined as being compliant to this standard if the model

a) Usesonly constructs described as supported or ignored in this standard
b) Adheresto the semantics defined in this standard

1.2.2 Tool compliance
A synthesis tool shall be defined as being compliant to this standard if the tool

a) Acceptsal modelsthat adhere to the model compliance definitionin 1.2.1
b) Supportslanguage-related pragmas defined by this standard

¢) Producesacircuit model that has the same functionality as the input model, based on the verification
process outlined in Clause 5

Copyright © 2000 IEEE. All rights reserved. 1

IEEE

Std 1076.6-1999 IEEE STANDARD FOR VHDL

1.3 Terminology

The word shall indicates mandatory requirements to be followed strictly in order to conform to the standard
and from which no deviation is permitted (shall equalsis required to). The word should indicates that a cer-
tain course of action is preferred, but not necessarily required, or that (in the negative form) a certain course
of action is deprecated but not prohibited (should equals is recommended that). The word may indicates a
course of action permissible within the limits of the standard (may equalsis permitted).

A synthesis tool is said to accept aVHDL construct if it allows that construct to be legal input; it is said to
interpret the construct (or to provide an interpretation of the construct) if it produces something that repre-
sents the construct. A synthesis tool is not required to provide an interpretation for every construct that it
accepts, but only for those for which an interpretation is specified by this standard.

The constructs in the standard shall be categorized as follows:

Supported: RTL synthesis shall interpret a construct; that is, map the construct to an equivalent hard-
ware representation.

Ignored: RTL synthesis shall ignore the construct. Encountering the construct shall not cause syn-
thesis to fail, but synthesis results may not match simulation results. The mechanism, if any, by
which RTL synthesis notifies (warns) the user of such constructs is not defined by this standard.
Ignored constructs may include unsupported constructs.

Not supported: RTL synthesis does not support the construct. RTL synthesis does not expect to
encounter the construct, and the failure mode shall be undefined. RTL synthesis may fail upon
encountering such a construct. Failure is not mandatory; more specifically, RTL synthesisis allowed
to treat such a construct asignored.

1.4 Conventions

This standard uses the following conventions:

a)

b)
0)
d)

e

f)
9)

VHDL reserved words (such as downto) are in boldface, and all other VHDL identifiers (such as
REVERSE_RANGE or FOO) are in uppercase letters.

The text of the VHDL examples and code fragmentsis represented in a fixed-width font.
Syntax text that is struck-through (e.g.-text) refers to syntax that shall not be supported.
Syntax text that is underscored (e.g. text) refersto syntax that shall be ignored.

“<” and “>" are used to represent text in one of several different, but specific, forms. For example,
one of the forms of <clock_edge> could be “CLOCK'EVENT and CLOCK =‘1""

Any paragraph starting with “NOTE” isinformative and not part of the standard.

The examples that appear in this document under “ Example:” are for the sole purpose of demon-
strating the syntax and semantics of VHDL for synthesis. It is not the intent of any such examplesto
demonstrate, recommend, or emphasize coding styles that are more (or less) efficient in generating
an equivalent hardware representation. In addition, it is not the intent of this standard to present
examples that represent a compliance test suite or a performance benchmark, even though these
examples are compliant with this standard (except as noted otherwise).

Copyright © 2000 IEEE. All rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

2. References

This standard shall be used in conjunction with the following publications. If any of the following standards
are superseded by an approved revision, the revision shall apply.

|EEE Std 1076-1993, |EEE Standard VHDL Language Reference Manual 1
|EEE Std 1076.3-1997, |EEE Standard Synthesis Packages (NUMERIC_BIT and NUMERIC_STD).

IEEE Std 1164-1993, IEEE Standard Multivalue Logic System for VHDL Mode Interoperability
(STD_LOGIC_1164).

3. Definitions

Terms used within this standard, but not defined in this clause, are from |IEEE Std 1076—19932, IEEE Std
1164-1993, and/or |EEE Std 1076.3-1997.

3.1 assignment reference: The occurrence of a literal or expression as the waveform element of a signal
assignment statement, or as the right-hand side expression of a variable assignment statement.

3.2 don’t care value: The enumeration literal ‘-’ of the type STD_ULOGIC (or subtype STD_LOGIC)
defined by |EEE Std 1164-1993.

3.3 edge-sensitive storage element: A storage element mapped to by a synthesis tool that

a) Propagates the value at the data input whenever an appropriate value is detected on a clock control
input, and

b) Preservesthe last value propagated at all other times, except when any asynchronous control inputs
become active.

(For example, aflip-flop.)

3.4 high-impedance value: The enumeration litera “Z" of the type STD_ULOGIC (or subtype
STD_LOGIC) defined by IEEE Std 1164-1993.

(For example, alatch.)

3.5 Language Reference Manual (LRM): The IEEE VHDL Language Reference Manua (IEEE Std
1076-1993).

3.6 level-sensitive storage element: A storage element mapped to by a synthesis tool that
a) Propagates the value at the data input whenever an appropriate value is detected on a clock control
input, and
b) Preservesthe last value propagated at all other times, except when any asynchronous control inputs
become active.
3.7 logical operation: An operation for which the VHDL operator isand, or, nand, nor, xor, or not.

LEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, PO. Box 1331, Piscataway,
NJ 08855-1331, USA (http://www.standards.ieee.org/).

2References are listed in Clause 2.

Copyright © 2000 IEEE. All rights reserved. 3

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

3.8 metacomment: A VHDL comment (--) that is used to provide synthesis-specific interpretation by a syn-
thesis tool.

3.9 metalogical value: One of the enumeration literals, ‘U’, *X’, *W’, or ‘-, of the type STD_ULOGIC (or
subtype STD_L OGIC) defined by |IEEE Std 1164-1993.

3.10 pragma: A generic term used to define a construct with no predefined language semantics that influ-
ences how a synthesis tool will synthesize VHDL code into an equivalent hardware representation.

3.1l register transfer level (RTL): A level of description of adigital design in which the clocked behavior
of the design is expressly described in terms of data transfers between storage elements, which may be
implied, and combinational logic, which may represent any computing or arithmetic-logic-unit logic. RTL
modeling allows design hierarchy that represents a structural description of other RTL models.

3.12 synthesistool: Any system, process, or tool that interprets RTL VHDL source code as a description of
an electronic circuit and derives a netlist description of that circuit.

3.13 user: A person, system, process, or tool that generates the VHDL source code that a synthesis tool
processes.

3.14 vector: A one-dimensional array.
3.15 well-defined: Containing no metalogical or high-impedance element values.

3.16 synthesis-specific attribute: An attribute recognized by an RTL synthesis compliant tool as described
in7.1.

3.17 synchronous assignment: An assignment that takes place when asignal or variable value is updated as
adirect result of a clock edge expression evaluating as true.

4. Predefined types

A synthesis tool, compliant with this standard, shall support the following predefined types:

a) BIT, BOOLEAN, and BIT_VECTOR as defined in |[EEE Std 1076-1993
b) CHARACTER and STRING as defined in |EEE Std 1076-1993
c) INTEGER asdefined in IEEE Std 1076-1993

d) STD_ULOGIC, STD_ULOGIC VECTOR, STD_LOGIC, and STD_LOGIC_VECTOR as defined
by the package STD_LOGIC 1164 in |IEEE Std 1164-1993

€) SIGNED and UNSIGNED as defined by the VHDL package NUMERIC BIT in IEEE Std
1076.3-1997

f) SIGNED and UNSIGNED as defined by the VHDL package NUMERIC_STD in IEEE Std
1076.3-1997

No array types, other than those listed in items (€) and (f) above, shall be used to represent signed and
unsigned numbers.

The synthesis tool shall also support user-defined and other types derived from the predefined types, accord-
ing to the rules of 8.3.

4 Copyright © 2000 IEEE. All rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

By definition, if atype with ametalogical valueis used in amodel, then this type shall have as an ancestor a
type that belongs to the package STD_LOGIC_1164 (IEEE Std 1164-1993).

5. Verification methodology

Synthesized results may be broadly classified as either combinational or sequential. Sequential logic has
some form of interna storage (latch, register, memory). Combinational logic has outputs that are solely a
function of the inputs, with no internal loops and no internal storage. Designs may contain both sequential
and combinational parts.

The process of verifying synthesis results using simulation consists of applying equivalent inputs to both the
original model and synthesized models, and then comparing their outputs to ensure that they are equivalent.
“Equivalent” in this context means that a synthesis tool shall produce acircuit that is equivalent at the input,
output, and bidirectional ports of the model. Since synthesis, in general, does not recognize the same delays
as simulators, the outputs cannot be compared at every simulation time. Rather, they can only be compared
at specific smulation times when al transient delays have settled and al active timeout clauses have been
exceeded. If the outputs do not match at all comparable times, the synthesis tool shall not be compliant.
There shall be no matching requirement placed on any internal nodes.

Input stimulus shall comply to the following criteria:

a) Input data does not contain metalogical values.

b) Input data may contain ‘H’ and ‘L’ on inputs, in which case they are converted to ‘1" and ‘O,
respectively.

¢) For combinational verification, input data must change far enough in advance of sensing times to
alow transient delays to have settled.

d) After asynchronous set/reset signals go from active to inactive, there must be enough time to take
care of setup/hold times of the sequential elements before clock and/or input data change.

e) For edge-sensitive-based designs, primary inputs of the design must change far enough in advance
for the edge-sensitive storage element input data to not violate the setup times with reference to the
active clock edge. Also, the input data must remain stable for long enough to respect the hold times
with respect to the active clock edge.

f) For level-sengitive storage element based designs, primary inputs of the design must change far
enough in advance for the level -sensitive storage element input data to respect the setup times. Also,
the input data must remain stable for long enough to respect the hold times.

NOTE—A synthesis tool may define metalogical values appearing on primary outputsin one model as equivalent to log-
ical values in the other model. For this reason, the input stimulus may need to reset internal storage elements to specific
logical values before the outputs of both models are compared for logical values.

5.1 Combinational verification

To verify combinational logic, the input stimulus shall be applied first. Sufficient time shall be provided for
the design to settle, and then the outputs shall be examined. To verify the combinational logic portion of a
model, the following sequence of events shall be performed repeatedly for each input stimulus application:

a) Apply input stimulus
b) Wait for datato settle
¢) Check outputs

Copyright © 2000 IEEE. All rights reserved. 5

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

Each application of inputs shall include enough delay so that the transient delays and timeout clause delays
have been exceeded. A model is not in compliance with this standard if it is possible for outputs or internal
nodes of the combinational model to never reach a steady state (i.e., oscillatory behavior).

Example:

A <= not A after 5 ns; -- oscillatory behavior, nonconpliant

5.2 Sequential verification

The general scheme consists of applying inputs periodically and then comparing the outputs just before the
next set of inputs is applied. Sequential models contain edge-sensitive and/or level-sensitive storage ele-
ments. The sequential design must be reset, if required, before verification can begin.

The verification of designs containing edge-sensitive or level-sensitive storage elementsis as follows:

a) Edge-sensitive models: The same sequence of tasks used for combinatorial verification shall be per-
formed during sequential verification: change the inputs, compute the results, compare the outputs.
For sequential verification, however, these tasks shall be synchronized with one of the inputs, which
isaclock. The inputs must change in an appropriate order with respect to the input that is treated as
a clock, and their consequences must be allowed to settle prior to comparison. Comparison might
best be performed just before the active clock edge and the non-clock inputs can change after the
edge. The circuit then has the rest of the clock period to compute the new results before they are
stored at the next clock edge. The period of the clock generated by the stimulus shall be sufficient to
alow the input and output signals to settle.

b) Level-sensitive models. These designs are generally less predictable than edge-sensitive models due
to the asynchronous nature of the signal interactions. Verification of synthesized results depends on
the application. With level-sensitive storage elements, ageneral ruleisthat datainputs should be sta-
ble before enables go inactive (i.e., latch) and comparing of outputs is best done after enables are
inactive (i.e., latched) and combinational delays have settled. In the absence of changes to the inputs
of the level-sensitive model, if one or more internal values or outputs of the model never reach a
steady state (oscillatory behavior), then it is not in compliance with this standard.

6. Modeling hardware elements

This clause specifies styles for modeling hardware elements, such as edge-sensitive storage elements, level-
sensitive storage elements, and three-state drivers.

This clause does not limit the optimizations that can be performed on aVVHDL model. The scope of optimi-
zations that may be performed by a synthesis tool depends on the tool itself. The hardware modeling styles
specified in this clause do not take into account any optimizations or transformations. A specific tool may
perform optimizations and may not generate the suggested hardware inferences, or it may generate a
different set of hardware inferences. This shall NOT be taken as a violation of this standard, provided the
synthesized netlist has the same functionality as the input model, as characterized in Clause 5.

6 Copyright © 2000 IEEE. All rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

6.1 Edge-sensitive sequential logic
6.1.1 Clock signal type

The allowed types for clock signals shall be BIT, STD_ULOGIC, and their subtypes (e.g., STD_LOGIC)
with a minimum subset of ‘0" and ‘1. Only the values ‘0" and ‘1’ from these types shall be used in expres-
sions representing clock levels and clock edges (see 6.1.2).

Scalar elements of arrays of the above types shall be supported as clock signals.

Example:

signal BUS8: std_logic_vector(7 donut 0)
b?bcess (BUS8(0))
begi n

if BUS8(0) = '1' and BUS8(0)' EVENT then

. BUS8(0) is a scalar elenment used as a clock signal

6.1.2 Clock edge specification

The function RISING_EDGE shall represent arising edge and the function FALLING_EDGE shall repre-
sent afalling edge. RISING_EDGE and FALLING_EDGE are the functions declared by either the package
STD_LOGIC 1164 defined in |EEE Std 1164-1993, or by the package NUMERIC_BIT defined in IEEE Std
1076.3-1997.

cl ock_edge ::=
Rl SI NG_EDGE(cl k_si gnal _nane)
| FALLI NG_EDGE(cl k_si gnal _nane)
| clock_l evel and event_expr
| event _expr and clock_| eve

clock_level ::=
clk_signal _name = '0' | clk_signal _name = "1

event _expr ::=

cl k_si gnal _name' EVENT
| not clk_signal _name' STABLE

6.1.2.1 Positive edge clock

The following expressions shall represent a positive clock edge when used as a condition in an if statement
(positive <clock _edge>):

— RISING _EDGE(cl k_si gnal _name)

— cl k_signal _nanme' EVENT and cl k_signal _name = '1

— clk_signal _name = '1' and cl k_si gnal _nane' EVENT

— not cl k_signal _nane' STABLE and cl k_signal _name = '1
— clk_signal _name = '1' and not cl k_signal _nanme' STABLE

The following expressions shall represent a positive clock edge when used as a condition in a wait until
statement (positive <clock _edge> or <clock_level>):

Copyright © 2000 IEEE. All rights reserved. 7

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

— RI SI NG_EDGE(¢l k_si gnal _nane)

— clk_signal _name = "1

— cl k_signal _nanme' EVENT and cl k_si gnal _nanme = '1'

— clk_signal _name = '1' and cl k_si gnal _nane' EVENT

— not cl k_signal _nane' STABLE and cl k_si gnal _name = '1'
— clk_signal _name = '1' and not cl k_signal _nane' STABLE

6.1.2.2 Negative edge clock

The following expressions shall represent a negative clock edge when used as a condition in an if statement
(negative <clock_edge>):

— FALLI NG_EDGE(cl k_si gnal _nane)

— cl k_signal _nanme' EVENT and cl k_si gnal _nanme = "0’
— clk_signal _name = '0' and cl k_si gnal _nane' EVENT
— not cl k_signal _nanme' STABLE and cl k_si gnal _narme = '0'
— clk_signal _name = '0' and not cl k_signal _nanme' STABLE

The following expressions shall represent a negative clock edge when used as a condition in a wait until
statement (negative <clock_edge> or <clock_level>):

— FALLI NG_EDCE(cl k_si gnal _nane)

— clk_signal _namre ="'0'

— cl k_signal _nanme' EVENT and cl k_si gnal _nanme = "'0'

— clk_signal _name = '0' and cl k_si gnal _nane' EVENT

— not cl k_signal _nanme' STABLE and cl k_si gnal _narme = '0'
— clk_signal _name = '0' and not cl k_signal _nane' STABLE

6.1.3 Modeling edge-sensitive storage elements

A synchronous assignment takes place when asignal or variable is updated as adirect result of aclock edge
expression evaluation to true.

A signal updated with a synchronous assignment should model one or more edge-sensitive storage elements.
A variable updated in a synchronous assignment should model an edge-sensitive storage element. If simula-
tion semantics suggest that the value of the variable isread beforeit iswritten, then an edge-sensitive storage
element should be modeled by the variable. By optimization, the generated edge-sensitive storage may be
eliminated.

Only one clock edge shall be allowed per process statement (including any procedures called within the
process). Conditional or selected signal assignments shall not be used to model an edge-sensitive storage
element (see 8.9.5).

No wait statements are allowed in a procedure (8.2.2).

6.1.3.1 Using the “if” statement

An edge-sensitive storage element may be modeled using aclock edge with an if statement. The template for
modeling such an edge-sensitive storage element shall be

8 Copyright © 2000 IEEE. All rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

[process_label:] process (<clock_signal>)
<declarations>
begin
if <clock_ edge> then
<sequence of statements>
end if;
end process [process_label];

The clock signal in <clock_edge> shall be listed in the process sensitivity list.
Sequential statements preceding or succeeding the if statement shall not be supported.
Example:

DFF: process (CLOCK)

begin
if CLOCK'EVENT and CLOCK = 'l' then
Q <= D; -- Q models a rising edge-triggered storage element
end if;

end process DFF;

6.1.3.2 Using the “wait” statement

An edge-sensitive storage element may be modeled using a clock edge as a condition in a wait until state-
ment. The wait until statement shall be the first statement in the process. No additional wait until
statements shall appear within such a process, including any procedures called within the process. The tem-
plate for modeling such an edge-sensitive storage element shall be

[process_label:]
process
<declarations>
begin
wait until <clock_edge>; -- this must be the first statement in the process
<sequence_ of statements>
end process [process_label];

NOTES

1 —Because the wait until statement must appear as the first statement of the process, an asynchronous override (set or
reset) of edge-sensitive storage elements can not be represented using the wait until statement form.

2—Conditional or selected signal assignments shall not be used to represent edge-sensitive storage elements.

Example:
DFFl: process
begin
wait until CLOCK = '0';
Q <= D; -- Q models a falling edge-triggered storage element

end process DFF1;
Example:

DFF2: process
variable VAR: UNSIGNED(3 downto 0);

begin
wait until CLOCK = '1';
VAR := VAR + 1;

COUNT <= VAR;
end process DFF2;

—- Variable VAR should model four rising edge-triggered storage elements because the

-- value of VAR is read in the first assignment before its value is assigned.
-- By optimization, some edge-triggered storage elements may be eliminated.

Copyright © 2000 IEEE. All rights reserved. 9

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

Example:

DFF3: process
vari abl e VAR UNSI GNED(3 downto 0);

begi n
wait until CLOCK = '1';
VAR : = COUNT; -- Variable is witten prior to being read.
VAR : = VAR + 1; -- VAR i s conbinational .
COUNT <= VAR -- Count npdels edge-sensitive storage el enents.

end process DFF3;

-- Variable VAR shoul d not nodel edge-sensitive storage el ements because VAR is
-- assigned a value before its value is read.

6.1.3.3 With asynchronous control

A variable or asignal that is synchronously assigned may also be asynchronously assigned to model asyn-
chronous set/reset edge-sensitive storage elements. Such a variable or a signal models an asynchronous
set/reset edge-sensitive storage element. The template for representing such edge-sensitive storage elements
shall be

[process_| abel :]
process (<clock_signal >, <asynchronous_si gnal s>)
<decl arati ons>
begi n
if <conditionl> then
<sequence_of _st at ement s>
el sif <condition2> then
<sequence_of _st at ement s>
el sif <condition3> then

el sif <cl ock_edge> then
<sequence_of _st at ement s>
end if;
end process [process_| abel];

The if branches preceding the last clock edge branch represents the asynchronous set/reset logic.
A clock edge shall only appear in the last elsif condition.

Sequential statements, as used in the template above, shall not include any if statements conditiona on a
clock edge.

The sensitivity list of the process shall include all of the following:

a) Theclock signa sensed by the clock edge expression
b) All signals sensed by the remaining conditions of theif statement

c) All signals sensed by the sequential statements governed by the remaining conditions of the if state-
ment other than the clock edge expression

No signals other than those identified in the above list shall appear in the sensitivity list.
The order of the signalsin the sensitivity list is not important.

Sequentia statements preceding or succeeding the if statement shall not be supported.

10 Copyright © 2000 IEEE. Al rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

NOTES

1—Asynchronous set-reset conditions are level sensitive; that is, they cannot contain a clock edge expression. Addition-
ally, these conditions have a higher priority than the clock edge condition.

2—It is not necessary to describe both set and reset cases if the desired implementation does not require both of these
features. Either or both may be modeled in the RTL model.

3—TheVHDL semantics shall be followed in resolving any priority between set and reset.
Example:

AS_DFF: process (CLOCK, RESET, SET, SET_OR _RESET, A)
begi n
if RESET = '1' then
Q<="0";
elsif SET ="'1' then
Qe<="1
elsif SET_OR RESET = '1' then
Q<= A
el sif CLOCK EVENT and CLOCK = '1' then
Q<=1D
end if;
end process AS_DFF;

-- Signal Q nodels an asynchronous reset/set rising edge triggered
-- edge-sensitive storage el enent. The reset expression is RESET, the set

-- expression is SET, and SET_COR RESET nmy be either a reset condition or a set
-- condition according to the value of A

6.2 Level-sensitive sequential logic

A level-sensitive storage element shall be modeled for a signal (or variable) when both of the following
apply:

a) Thesigna (or variable) is assigned either directly in a process, or assigned within a subprogram
invoked within the process, and the process contains no clock edge construct.

b) There are executions of the process that do not execute an explicit assignment (via an assignment
statement) to the signal (or variable).

A level-sensitive storage element may be modeled for asignal (or variable) when both of the following apply:

a) Thesignal (or variable) is assigned in a process that contains no clock edge construct.

b) There are executions of the process in which the value of the signal (or variable) is read before its
assighment.

The process sensitivity list shall contain all signals read within the process statement. Processes with
incomplete sensitivity lists are not supported.

NOTES

1—Variables declared in subprograms never model level-sensitive storage elements, because variables declared in sub-
programs are always initialized in every call.

2—Conditional or selected signal assignments shall not be used to model alevel-sensitive storage element (see 8.9.5).

3—When a signal is assigned from within a procedure, it shall have the same inference semantics as a signal assigned
from within a process.

4—1It is recommended to avoid a modeling style in which the value of asignal or variable is read before its assignment.
Thiswould avoid the generation of unwanted storage elements where none might be intended.

Copyright © 2000 IEEE. All rights reserved. 11

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

Example:

LEV_SENS: process (ENABLE, D)

begi n
if ENABLE = '1' then
Q<=D -- Qis an inconplete asynchronous assi gnnent,
end if; -- so it nodels a level-sensitive storage el ement.

end process;

6.3 Three-state and bus modeling

Three-state logic shall be modeled when an abject, or an element of the aobject, is explicitly assigned the
|EEE Std 1164-1993 value “Z.”

The assignment to “Z” shall be a conditional assignment; that is, assignment occurs under the control of a
condition.

For asignal that has multiple drivers, if one driver has an assignment to “Z,” all drivers shall have at least one
assignmentto“Z.”

NOTE—If an object isassigned avalue “Z” in a process that is edge-sensitive or level-sensitive (as described in 6.1 and
6.2), then a synthesis tool may infer sequential elements on all inputs of the three-state logic.

6.4 Modeling combinational logic

Any process that does not contain a clock edge or wait statement shall model either combinational logic or
level-sensitive sequential logic.

If there is always an assignment to avariable or signal in all possible executions of the process, and all vari-
ables and signals have well-defined values, then the variable or signal models combinational logic.

a) If asigna or variable is updated before it is read in all executions of a process, then it shall model
combinational logic.

b) If asigna or variableisread beforeit is updated, then it may model combinational logic.

Concurrent signal assignment statements (see 8.9.5) and concurrent procedure calls (see 8.9.3) aways
model combinational logic.

The process sensitivity list shall list all signals read within the process statement.

7. Pragmas
Pragmas influence how amodel is synthesized. The following pragmas may appear within the VHDL code:

a) Attributes
b) Metacomments

7.1 Attributes

Only one attribute with a synthesis-specific interpretation shall be supported for synthesis:
ENUM_ENCODING. All others shall be ignored.

12 Copyright © 2000 IEEE. Al rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

7.1.1 ENUM_ENCODING attribute

An attribute named ENUM_ENCODING shall provide a means of encoding enumeration type values. The
attribute specification for this attribute shall specify the encoding of the enumeration type literalsin the form
of astring. This string shall be made up of tokens separated by one or more spaces. There shall be as many
tokens as there are literals in the enumeration type, with the first token corresponding to the first enumera-
tion literal, the second token corresponding to the second enumeration literal, and so on.

Each token shall be made up of a sequence of ‘0" and ‘1’ characters. Character ‘0’ shall represent alogic O
value, and character ‘1’ shall represent a logic 1 value. Additionally, each token may optionally contain
underscore characters; these shall be used for enhancing readability and are to beignored. All tokens shall be
composed of the same number of characters (ignoring the underscore characters). The following declares an
enumeration type and attribute ENUM_ENCODING:

type <enuneration_type> is (<enumlitl> <enumlit2> ..., <enumlitN>);
attri bute ENUM ENCODI NG STRING -- Attribute declaration
The attribute specification defines the encoding for the enumeration literals.

attri bute ENUM ENCODI NG of <enuneration_type>: type is
"[<space(s) >] <t okenl><space(s) ><t oken2><space(s) >. .. <t okenN>[<space(s)>]";
-- Attribute specification

Token <token1> specifies the encoding for <enum_lit1>, <token2> specifies the encoding for <enum_lit2>,
and so on.

This attribute shall only decorate an enumeration type.
NOTE—Use of this attribute may lead to simulation mismatches (e.g., with use of relational operators).
Example:

-- Exanpl e shows ENUM ENCCDI NG used to describe one-hot encoding:

attribute ENUM ENCODI NG string;
type COLOR is (RED, GREEN, BLUE, YELLOW ORANGE);

attribute ENUM ENCODI NG of COLOR: type is "10000 01000 00100 00010 00001";

-- Enuneration literal RED is encoded with the first val ue 10000,
-- GREEN is encoded with the value 01000, and so on.

User-defined attribute declarations and their specifications shall be ignored.

7.2 Metacomments
Two metacomments provide for conditional synthesis control. They shall be

— RTL_SYNTHESIS OFF
— RTL_SYNTHESISON

A synthesis tool shall ignore any VHDL code after the “RTL_SYNTHESIS OFF" directive and before any
subsequent “RTL_SYNTHESIS ON” directive.

Copyright © 2000 IEEE. All rights reserved. 13

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

Metacomments differing only in the use of corresponding uppercase and lowercase letters shall be consid-
ered the same.

The source code as awhole, including ignored constructs, shall conform to |EEE Std 1076-1993. The source
code, exclusive of constructs ignored because of the metacomments, shall be compliant with the terms of
this standard.

NOTES

1—Care should be taken when using these metacomments to ensure that synthesis behavior accurately reflects simula-
tion behavior. Use of these metacomments may lead to simulation mismatches.

2—The interpretation of comments other than RTL_SYNTHESIS OFF and RTL_SYNTHESIS ON by a synthesis tool
is not compliant with this standard.

8. Syntax

8.1 Design entities and configurations

8.1.1 Entity declarations

entity_declaration ::=
entity identifier is
entity_header
entity declarative_part
[begin
entity statenment_ part]
end [entity] [entity_sinple_nane] ;

Supported:

— Entity_declaration

Ignored:

— Entity_statement_part

Not supported:

— Entity_declarative part
— Reserved word entity after reserved word end

Example:
library | EEE;
use | EEE. std_Logi c_1164. al | ;
entity Eis
generi c(DEPTH : Integer := 8);
port (CLOCK : in std_l ogi c;
RESET : in std_| ogi c;
A cin std_l ogic_vector(7 downto 0);
B : inout std_logic_vector(7 downto 0);
C : out std_l ogic_vector(7 downto 0));
end E;

14 Copyright © 2000 IEEE. Al rights reserved.

REGISTER TRANSFER LEVEL SYNTHESIS

8.1.1.1 Entity header

entity_header ::=
[formal _generic_clause]
[formal _port_cl ause]

generic_cl ause

port_cl ause

Supported:

— Entity_header
— Generic_clause
— Port_clause

a) Generics

generic_list

:= generic(generic_list)

= port(port_list)

;.= generic_interface_list

IEEE
Std 1076.6-1999

Types allowed in the generic interface list of the entity _header shall be those described in 8.4.3.2.

Supported:

— Generic_list

b) Ports

port _list ::= port_interface_list

Supported:

— Port_list

Ignored:

— Initial valuesin port_list

8.1.1.2 Entity declarative part

eﬂt‘ declarative part ::=

{ enti ty_decl ar ati ve_item}

Lty Lve_l .

subpr ogram decl arati on
subpr ogr am body

type_decl aration

subt ype_decl arati on

const ant _decl arati on

si gnal _decl aration
shared_vari abl e_decl arati on
file_declaration

al i as_decl aration
attribute_decl aration
attribute_specification

di sconnecti on_specification
use_cl ause
group_tenpl at e_decl arati on
group_decl aration

Copyright © 2000 IEEE. All rights reserved.

15

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

Not supported:

— Entity_declarative_part
— Entity_declarative_item

8.1.1.3 Entity statement part

entity statenent_part ::=
{ entity statenent }

entity statement ::=
concurrent _assertion_statement
| passive_concurrent_procedure_cal
| passive_process_st at ement

Ignored:

— Entity_statement_part
— Entity_statement

NOTE—The entity statement part describes passive behavior for simulation monitoring purposes. It cannot drive signals
in the architecture; therefore, it has no effect on the behavior of the architecture.

8.1.2 Architecture bodies

architecture_body ::=
architecture identifier of entity_name is
architecture_declarative_part
begi n
[architecture_statenent_part]
end [architeeture | [architecture_sinple_nanme] ;

Supported:

— Architecture_body
— Multiple architectures corresponding to a given entity declaration

Not supported:

— Global signal interactions between architectures
— Reserved word ar chitecture after reserved word end

8.1.2.1 Architecture declarative part

architecture_declarative_part ::=
{ block_declarative_item}

bl ock_declarative_item::=
subprogram decl arati on

| subprogram body
| type_declaration

| subtype_decl aration

| constant_decl aration

| signal _declaration

| sharedvariable declaration

| file_declaration

| alias_declaration

| component _decl arati on

16 Copyright © 2000 IEEE. Al rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

| attribute_declaration

| attribute specification

| configuration_specification
| disconnection_specification
I

|

I

use_cl ause

— Architecture_declarative _part
— Block_declarative item

Ignored:

— File_declaration

— Alias_declaration

— Configuration_specification

— Disconnection_specification

— User-defined attribute declarations and their specifications, except as described in 7.1.

Not supported:

— Shared variable declaration
— Group_template declaration
— Group_declaration

A use clause shall only reference the selected name of a package, which may, in turn, reference al of (or a
particular item_name within) the package.

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in 7.1. All other attribute declarations and attribute specifications shall be ignored.

8.1.2.2 Architecture statement part

architecture_statenment _part ::=
{ concurrent_statenent }

Supported:

— Architecture_statement_part
asdefinedin 8.9.
8.1.3 Configuration declaration

configuration_declaration ::=
configuration identifier of entity name is
. . ive_

bIock_configuFation

end [eonfiguratien] [configuration_sinple_nane];

{ configura?ion_declara?ive_itenw}

Copyright © 2000 IEEE. All rights reserved. 17

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

T on— e o
use_cl ause
| attribute_specification
| group_declaration

Supported:

— Configuration_declaration

Not supported:

— Configuration_declarative part
— Configuration_declarative _item
— Reserved word configur ation after reserved word end

Configuration declaration shall be supported to the extent of specifying the architecture to be associated with
the top-level entity of a synthesized design hierarchy.

8.1.3.1 Block configuration

bl ock_configuration :: =
for block_specification
{ use_clause }
{) on }
end for
bl ock_specification :: =
archi tecture_nane
| block_statenent _|abel
| generate-statepent—label [(—index—specification)]
. _ T . -
di screte_range
| static_expresion

block_con?iguration
| component _configuration

Supported:

— Block_configuration
— Block_specification

Not supported:
— Use clause
— Index_specification
— Configuration_item
— Block_statement_label
— Generate_statement_label

Use clause shall not be supported in this context.
Block specification shall only be an architecture name.

Configuration declaration shall only be used to select the architecture to be used with the top-level entity.

18 Copyright © 2000 IEEE. Al rights reserved.

REGISTER TRANSFER LEVEL SYNTHESIS

8.1.3.2 Component configuration

conponent—configuration =
for conponent_specification
[binding_indication ;]
[block_configuration]
end for ;

Not supported:

— Component_configuration

8.2 Subprograms and packages
8.2.1 Subprogram declarations

subprogram decl aration :: =
subprogram speci fication ;

subprogram specification ::=

procedure designator [(formal _paraneter_list)]

| [—pure|—inpure—] function designator [(formal _parameter_list)]

return type_nmark

designator ::=identifier | operator_synbol
operator_synbol ::= string_literal
Supported:

— Subprogram_declaration
— Subprogram_specification
— Designator

— Operator_symbol

Not supported:

— Reserved words pure and impure

8.2.1.1 Formal parameters

formal _parameter_list ::= paranmeter_interface_list

Supported:

— Formal_parameter_list

IEEE
Std 1076.6-1999

A subprogram shall not assign to an element or a slice of an unconstrained out parameter, unless the corre-

sponding actual parameter in each call of the subprogram is an identifier.

a) Constant and variable parameters

Constant and variable parameters shall be supported.

Copyright © 2000 IEEE. All rights reserved.

19

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

b) Signal parameters

Signal parameters shall be supported.
¢) File parameters

File parameters shall not be supported.
8.2.2 Subprogram bodies

subprogram body ::=
subprogram specification is
subprogram decl arative_part
begi n
[subprogram statenent_part]

end [subprogramkind] [designator] ;

subprogram decl arative_part ::=
{ subprogram declarative_item}

subprogram decl arative_item:: =
subprogram decl arati on
subpr ogram body

type_decl aration

subt ype_decl arati on

const ant _decl arati on

vari abl e_decl arati on

file declaration
alias_declaration
attribute_decl aration
attribute_specification
use_cl ause
group_tenplate_declaration
group—declaration

subprogram st atement _part ::=
{ sequential _statenent }

subprogram kind ::= procedure | function

Supported:

— Subprogram_body

— Subprogram_specification

— Subprogram_declarative part
— Subprogram_declarative_item
— Subprogram_statement_part

Ignored:

— File_declaration
— Alias_declaration

Not supported:

— Subprogram_kind
— Group_template_declaration
— Group_declaration

20 Copyright © 2000 IEEE. Al rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

A use clause shall only reference the selected name of a package, which may, in turn, reference al of (or a
particular item_name within) the package.

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in 7.1. All other attribute declarations and attribute specifications shall be ignored.

Subprogram recursion shall be supported when the number of recursions is bounded by a static value.
A subprogram statement part shall not include await statement.

8.2.3 Subprogram overloading

8.2.3.1 Operator overloading

Operator overloading shall be supported.

a) Signatures

Signatures shall not be supported.

NOTE—In the presence of a user-defined function representing an operator (i.e., a function defined outside any of the
standard packages named in Clause 4), the RTL synthesis tool must honor the functionality of the user-defined function.

8.2.4 Resolution functions

The resolution function RESOLVED is supported in subtype STD_LOGIC. All other resolution functions
shall be ignored.

8.2.5 Package declarations

package_decl aration :: =
package identifier is
package_decl arati ve_part
end [package] [package_sinpl e_nane]

package_decl arative_part ::=
{ package_decl arative_item}

package_decl arative_item:: =
subprogram decl arati on
type_decl aration

subt ype_decl arati on

const ant _decl arati on

si gnal _decl aration
shared_variable_declaration
file declaration
alias_declaration
conponent _decl arati on
attribute_declaration
attribute_specification

di sconnection_specification
use_cl ause
group—tenplate_declaration
group_declaration

Copyright © 2000 IEEE. All rights reserved. 21

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

Supported:

— Package declaration
— Package _declarative part
— Package declarative item

Ignored:

— File_declaration

— Alias_declaration

— Disconnection_specification

— User-defined attribute declarations and their specifications, except as described in 7.1

Not supported:

— Reserved word package after reserved word end
— Shared variable_declaration

— Group_template_declaration

— Group_declaration

Signal declarations shall have an initial value expression. Furthermore, a signal declared in a package shall
have no sources. A constant declaration must include the initial value expression; that is, deferred constants
are not supported.

A use clause shall only reference the selected name of a package, which may, in turn, reference al of (or a
particular item_name within) the package.

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in 7.1. All other attribute declarations and attribute specifications shall be ignored.

8.2.6 Package bodies

package_body :: =
package body package_sinpl e_nane is
package_body_decl arative_part

end [package—bedy | [package_sinpl e_nane]

package_body_decl arative_part ::=
{ package_body_decl arative_item}

package_body_decl arative_item:: =
subprogram decl arati on
| subprogram body
| type_declaration
| subtype_decl aration
| constant_decl aration
| shared-variable_declaration
| file_declaration
| alias_declaration
| use_cl ause
| group_tenplate_declaration
| group_declaration

22 Copyright © 2000 IEEE. Al rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Supported:

— Package _body
— Package body_declarative part
— Package body_declarative item

Ignored:

— Alias_declaration
— File_declaration

Not supported:

— Shared variable_declaration

— Group_template_declaration

— Group_declaration

— Reserved words package body after reserved word end

A use clause shall only reference the selected name of a package, which may, in turn, reference al of (or a
particular item_name within) the package.

8.3 Types

8.3.1 Scalar types

scal ar_type_definition ::=
enuneration_type_definition
| integer_type_definition
| physical type_definition
| floating_ type definition

range_constraint ::= range range
range ::=
range_attri bute_nane
| sinple_expression direction sinple_expression

direction ::=to | downto

Supported:

— Scdar_type definition
— Range_constraint

— Range

— Direction

Ignored:

— Physical_type definition
— Floating_type_definition

Null ranges shall not be supported.

Copyright © 2000 IEEE. All rights reserved. 23

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

8.3.1.1 Enumeration types

enuneration_type_definition ::=
(enuneration_literal { , enuneration_literal })

enuneration_literal ::=identifier | character_literal

Supported:

— Enumeration_type definition
— Enumeration _literal

Elements of the following enumeration types (and their subtypes) shall be mapped to single bits, as specified
in |[EEE Std 1076.3-1997:

a) BIT and BOOLEAN
b) STD_ULOGIC.

The synthesis tool may select a default mapping for elements of other enumeration types. The user may
override the default mapping by means of the ENUM_ENCODING attribute (see 7.1.1).

a) Predefined enumer ation types

Supported:

— CHARACTER

Ignored:

— SEVERITY_LEVEL

Not supported:

— FILE_OPEN_KIND
— FILE_OPEN_STATUS

8.3.1.2 Integer types
integer_type_definition ::= range_constraint
Supported:
— Integer_type_definition

It is recommended that a synthesis tool should convert asignal or variable that has an integer subtype indica-
tion to a corresponding vector of hits. If the range contains no negative values, the object should have an
unsigned binary representation. If the range contains one or more negative values, the object should have a
twos-complement implementation. The vector should have a width that is capable of representing all possi-
ble values in the range specified for the integer type definition. The synthesis tool should support integer
types and positive, negative, and unconstrained (universal) integers whose bounds lie within the range
-2,147,483,648 to +2,147,483,647 inclusive (the range that successfully maps 32-bit twos-complement
numbers).

Subtypes NATURAL and POSITIVE are supported.

24 Copyright © 2000 IEEE. Al rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

NOTE—Integer ranges may be synthesized as if the zero value is included. For example, “INTEGER range 9 to 10"
may be synthesized using an equivalent vector length of 4 hits, just asif it had been defined with a subtype indication of
“INTEGER rangeOto 15"

8.3.1.3 Physical types

physi cal _type_definition ::=
range_constraint
units
primary_unit_decl aration
{ secondary_unit_declaration }
end units [physical _type_sinple_nane]

primary unit_declaration ::= identifier
secondary_unit_declaration ::= identifier = physical _literal
physical literal ::=[abstract_literal] unit_nanme

[gnored:

— Physica_type definition
— Physical_literal

Physical objects and literals other than the predefined physical type TIME shall not be supported.
Declarations of objects of type TIME shall be ignored. References to objects and literals of type TIME may
occur only within the time_expression following the reserved word after, or the timeout_clause of a wait
statement, and shall be ignored.

8.3.1.4 Floating point types

floating_type definition ::= range_constraint

Ignored:
— Floating_type_definition

Floating point type declarations shall be ignored. Reference to objects and literals of a floating point type
may occur only within ignored constructs (for example, after the after clause).

8.3.2 Composite types

conposite_type_definition ::=
array_type_definition
| record_type_definition
Supported:
— Composite_type_definition
8.3.2.1 Array types
array_type_definition ::=

unconstrai ned_array_definition
| constrained_array_definition

Copyright © 2000 IEEE. All rights reserved. 25

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

unconstrai ned_array_definition ::=
array (index_subtype_definition {——index—subtype—definition3})

of el ement_subtype_indi cation

constrai ned_array_definition ::=
array index_constraint of el ement_subtype_indication

i ndex_subtype_definition ::= type_mark range <>
index_constraint ::= (discrete_range {—discrete range})
discrete_range ::= discrete_subtype_indication | range

range ::= range_attribute_nane
si nmpl e_expression direction sinple_expression

Supported:

— Array_type definition

— Unconstrained_array_definition
— Constrained_array_definition
— Index_subtype definition

— Index_constraint

— Discrete range

The index constraint shall contain exactly one discrete range. The bounds of the discrete range shall be
specified directly or indirectly as static values belonging to an integer type. The element subtype indication
shall denote either a subtype of a scalar (integer or enumeration) type, or a one-dimensional vector of an
enumeration type whose elements denote single hits.

Null ranges shall not be supported.

If adiscrete range is specified using a discrete subtype indication, the discrete subtype indication shall name
a subtype of an integer type.

In an unconstrained array definition, exactly one index subtype definition shall be supported.
A range shall comprise integer values.

a) Index constraints and discrete ranges

These shall be supported.

b) Predefined array types

Predefined array types shall be supported.

8.3.2.2 Record types

record_type_definition ::=
record
el enent _decl arati on
{ el ement _declaration }
end record [record_type_sinple_nane]

el enent _declaration ::= identifier_list : element_subtype_definition

26 Copyright © 2000 IEEE. Al rights reserved.

REGISTER TRANSFER LEVEL SYNTHESIS

identifier_list ::=identifier { , identifier }
el ement _subtype_definition ::= subtype_indication
Supported:

— Record_type_definition

— Element_declaration

— ldentifier_list

— Element_subtype_definition

8.3.3 Access types

access_type _definition ::= access subtype_indication

Ignored:

— Access_type_definition
The use of access types shall not be supported.
8.3.3.1 Incomplete type declarations

inconplete_type declaration ::= type identifier ;

Ignored:

— Incomplete_type declaration
8.3.3.2 Allocation and deallocation of objects
Allocation and deallocation shall not be supported.
8.3.4 File types

file type definition ::= file of type_nark

Ignored:

— File_type_definition

Use of file objects (objects declared as belonging to afile type) shall not be supported.

8.3.4.1 File operations

Not supported:

— File operations

Copyright © 2000 IEEE. All rights reserved.

IEEE
Std 1076.6-1999

27

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

8.4 Declarations

declaration ::=

type_decl aration

subt ype_decl arati on

obj ect _decl aration
interface_declaration
alias_declaration
attribute_declaration
conponent _decl arati on
group_tenplate_declaration
group—declaration
entity_declaration
configuration_decl aration
subpr ogram decl arati on
package_decl aration

Supported:

— Declaration

Ignored:
— Alias_declaration

Not supported:

— Group_template declaration
— Group_declaration

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in 7.1. All other attribute declarations and attribute specifications shall be ignored.

8.4.1 Type declarations

type_declaration ::=
full _type_decl aration
| inconplete_type_declaration

full _type_declaration ::=
type identifier is type_definition

type_definition ::=
scal ar_type_definition
| composite_type_definition
| access_type_definition
| file type_definition

Supported:

— Type declaration
— Full_type declaration
— Type_definition

28 Copyright © 2000 IEEE. Al rights reserved.

REGISTER TRANSFER LEVEL SYNTHESIS

Ignored:

— Incomplete_type declaration
— Access_type definition
— File _type _definition

IEEE
Std 1076.6-1999

Full type declarations containing access type definition or file type definition shall be ignored.

8.4.2 Subtype declarations

subtype_decl aration ::=

subtype identifier is subtype_indication

subtype_indication ::=

[resolution_function_nane]

type_mark [constraint]

type_mark ::=
type_name
| subtype_nane

constraint ::=
range_constraint
| index_constraint

Supported:

— Subtype _declaration
— Subtype_indication
— Type_mark

— Constraint

Ignored:

— User-defined resolution functions

8.4.3 Objects

8.4.3.1 Object declarations

obj ect _declaration ::=
const ant _decl arati on
| signal _declaration
| variabl e_decl aration
| file_declaration

Supported:

— Object_declaration

Ignored:

— File_declaration

Copyright © 2000 IEEE. All rights reserved.

29

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

a) Constant declarations

constant _declaration ::=
constant identifier_list : subtype_indication := expression ;

Supported:
— Constant_declaration

Deferred constant declaration shall not be supported. That is, the expression shall be present in the constant
declaration.

b) Signal declarations

signal _declaration ::=
signal identifier_list : subtype_indication [sighal—kind] [:= expression]

si-gral—ki-nd ::= register | bus
Supported:
— Signa_declaration
Ignored:
— Expression
Not supported:
— Signa_kind

Theinitia value expression shall be ignored unless the declaration isin apackage, where it shall have an ini-
tial value expression.

The subtype indication shall be a globally static type. An assignment to a signal declared in a package shall
not be supported.

¢) Variable declarations

vari abl e_declaration ::=
[fshared} variable identifier_list : subtype_indication [:= expression]

Supported:

— Variable _declaration
Ignored:

— Expression

Not supported:

— Reserved word shared

30 Copyright © 2000 IEEE. Al rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

The reserved word shar ed shall not be supported. Theinitial value expression shall beignored. The subtype
indication shall be aglobally static type.

The use of access objects shall not be supported.
d) File declarations

file_declaration ::=
file identifier_list : subtype_indication [file_open_information]

file open_information ::=
[open file_open_kind_expression] is file_logical_nane

file logical _nane ::= string_expression

Ignored:
— File_declaration
The use of file objects shall not be supported.

8.4.3.2 Interface declarations

interface_declaration ::=
interface_constant _declaration
| interface_signal _declaration
| interface_variabl e_decl aration
| i Ttile .
interface_constant _declaration ::=
[constant] identifier_list : [in] subtype_indication [:= static_expression]

interface_signal _declaration ::=
[signal] identifier_list : [npde] subtype_indication [bus}
[:= static_expression]

interface_variabl e_declaration ::=
[variable] identifier_|list : [npbde] subtype_indication
[:= static_expression]

interfacefile-declaration ::=
file identifier_list : subtype_indication

mode ::=in | out | inout | buffer | H-nrkage
Supported:

— Interface _declaration

— Interface_constant_declaration
— Interface_signal_declaration
— Interface variable declaration

Ignored:

— Static_expression (interface signal declarations and interface variable declarations)

Copyright © 2000 IEEE. All rights reserved. 31

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

Not supported:

— Interface file declaration
— Modelinkage
— Reserved word bus

Generic interface constant declarations shall have a subtype indication of an integer type or of a subtype
thereof.

The static expression shall be ignored in port interface lists and formal parameter lists, except for interface
constant declarations that shall be supported.

a) Interfacelists

interface_list ::=
interface_elenent {; interface_el enent}

interface_elenment ::= interface_declaration
Supported:
— Interface list

— Interface_element
b) Association lists

association_list ::=
associ ati on_el ement {, association_el ement}

associ ation_el enent ::=
[formal _part =>] actual _part

formal _part ::=
f or mal _desi gnat or
| function nanme(fornal designator)
| type_mark{ formal _designator)

formal _designator ::=
generi c_nane
| port_nane
| paraneter_nane

actual _part ::=
act ual _desi gnat or
| function_nane(actual _designator)
| type—mark{—actual_designator—)

actual _designator ::=
expressi on
| signal _nane
| vari abl e_nane
| file_name
I

open

32 Copyright © 2000 IEEE. Al rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Supported:

— Association_list

— Association_element
— Forma_part

— Formal_designator
— Actua_part

— Actua_designator

Not supported:

— Function_name
— Type_mark
— File_name

The formal part may only be aformal designator, and the actual part shall only be an actual designator.

8.4.3.3 Alias declarations

alias_declaration ::=
alias alias_designator [: subtype_indication] is name [signaturel;

alias_designator ::=identifier | character_literal | operator_synbol

Ignored:

— Alias_declaration
— Alias_designator

Not supported:

— Signature
Use of aliases shall not be supported.
8.4.4 Attribute declarations

attribute _declaration ::=
attribute identifier : type_nmark ;

Ignored:

— Attribute_declaration

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in 7.1. All other attribute declarations and attribute specifications shall be ignored.

8.4.5 Component declarations

conponent _decl aration ::=
conponent identifier [is]
[l ocal _generic_cl ause]
[l ocal _port_cl ause]

end conponent [conrponent—si-nple—nanme} ;

Copyright © 2000 IEEE. All rights reserved. 33

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

Supported:

— Component_declaration

Not supported:

— Reserved word is
— Component_simple_name

8.4.6 Group template declarations

group tEJC]G ate declaration @ =

groap identifier is (entity_class_entry_list) ;

. Lo o

enti;y_0|ags_entry {, entity class_entry }
entityelass—entry ::= entity class [<>]
Not supported:

— Group_template_declaration
— Entity_class entry list
— Entity_class _entry

8.4.7 Group declarations

fon =

groap identifier : group_tenplate_name(group_consituent_list)
group—constituent—tist ::= group_constituent {, group_constituent }
group—constituent 1 := name | character_litera

Not supported:

— Group_declaration
— Group_constituent_list
— Group_constituent

8.5 Specifications

8.5.1 Attribute specification

attribute_specification ::=
attribute attribute_designator of entity_specification is expression;

entity_specification ::=
entity_name_list : entity_class

entity_class ::=
entity| architecture| configuration
| procedure| function| package
| type| subtype| constant
| signal| variable| conmponent
| label| literal| units
| group| Hie

34 Copyright © 2000 IEEE. All rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

entity_name_list ::=
entity_designator {, entity_designator}
| ethers
| aH-

entity_designator ::= entity_tag [signrature}l
entity_tag ::= sinple_name | character_literal | operator_synbol
Supported:

— Attribute_specification
— Entity_specification
— Entity_class

— Entity_name _list

— Entity_designator

— Entity_tag

Ignored:

— User-defined attribute declarations

Not supported:

— Signature

— Entity classgroup and file

— Use of user-defined attributes

— Reserved words other and all in entity_name _list

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in 7.1. All other attribute declarations and attribute specifications shall be ignored.

8.5.2 Configuration specification

configuration_specification ::=
for conponent_specification binding_indication;

conponent _specification ::=
instantiation_list : conponent_nane

instantiation_list ::=
instantiation_|label {, instantiation_|abel}
| others
| all

Ignored:

— Configuration_specification
— Component_specification
— Ingtantiation_list

Copyright © 2000 IEEE. All rights reserved. 35

IEEE
Std 1076.6-1999

8.5.2.1 Binding indication

bi ndi ng_i ndication ::=
[use entity_ aspect |
[—generic_rap_aspect—-
[—port—rap—aspect—-

Ignored:

— Binding_indication

Not supported:
— Generic_map_aspect
— Port_map_aspect
a) Entity aspect
entity aspect ::=
entity entity_nanme [(architecture_identifier)]

| configuration configuration_nane
| open

Not supported:

— Entity_aspect
b) Generic map and port map aspects

generi c_map_aspect ::=
generic map (generic_association_list)

port_map_aspect ::=
port map (port_association_list)

8.5.2.2 Default binding indication
Default binding shall be supported.
8.5.3 Disconnection specification

Disconnection specifications shall be ignored.

8.6 Names

8.6.1 Names

name ::=
si npl e_nane
| operator_synbo
| sel ected_nane
| indexed_nane
| slice_nane
| attribute_nane

prefix ::=

nanme
| function_cal

36

IEEE STANDARD FOR VHDL

Copyright © 2000 IEEE. All rights reserved.

IEEE

REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Supported:

— Name
— Prefix

8.6.2 Simple names
sinple_name ::= identifier:
Supported:
— Simple_name
8.6.3 Selected names

sel ected_name ::= prefix.suffix

suffix ::=
si npl e_nane
| character_literal
| operator_synbol
| all

Supported:

— Selected name
— Suffix

8.6.4 Indexed names
i ndexed_nane ::= prefix (expression {—expression})
Supported:

— Indexed_name

Using an indexed name of an unconstrained out parameter in a procedure shall not be supported.

Only asingle expression shall be permitted (no multidimensional objects).
8.6.5 Slice names
slice_nane ::= prefix (discrete_range)
Supported:
— Slice_name
Using a dlice name of an unconstrained out parameter in a procedure shall not be supported.

Null slices shall not be supported.

For a discrete range that appears as part of a dice name, the bounds of the discrete range shall be specified

directly or indirectly as static values belonging to an integer type.

Copyright © 2000 IEEE. All rights reserved.

37

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

8.6.6 Attribute names

attribute_nanme ::=
prefix [sighature]’ attribute_designator [{(—expression) |

attribute_designator ::= attribute_sinple_nanme
Supported attribute designators:

— 'BASE

— 'LEFT

— 'RIGHT

— 'HIGH

— 'LOW

— 'RANGE

— 'REVERSE_RANGE
— 'LENGTH

— 'EVENT

— 'STABLE

Supported:

— Attribute_name
— Attribute_designator

Not supported:

— Signature
— Expression

Attributes EVENT’ and ' STABLE' shall be used as specified in 6.1.

8.7 Expressions

8.7.1 Expressions

expression :

relation { and relation }
| relation { or relation }
| relation { xor relation }
| relation [nand relation]
| relation [nor relation]
| . [.

relation ::=
shift_expression [relational _operator shift_expression]

shift_expression ::=

si npl e_expressi on [shift—operator—sinple—expression |

si npl e_expression ::=

[sign] term{ adding_operator term}
term:: =

factor { multiplying_operator factor }

38 Copyright © 2000 IEEE. Al rights reserved.

REGISTER TRANSFER LEVEL SYNTHESIS

factor ::=

pri

primary [** primary]
abs primary
not primary

mary ::=
name

literal

aggr egat e
function_cal

qual i fi ed_expression
type_conver si on
allocator

(expression)

Supported:

Expression
Relation
Shift_expression
Simple_expression
Term

Factor

Primary

Not supported:

Xnor operator
All shift operators
Allocator in aprimary

8.7.2 Operators

| ogical _operator ::=and | or | nand | nor | xor | xher
rel ational _operator ::==] /=] <| <=]| > | >=
shift operator——=sl}-srl} slat}-sratl rol}ror
addi ng_operator ::=+ | - | &
sign ::=+ | -
mul tiplying_operator ::=* | / | nmod | rem
m scel | aneous_operator ::= ** | abs | not
Supported:

Logica_operator
Relational _operator
Adding_operator

Sign
Multiplying_operator
Miscellaneous_operator

Not supported:

Xnor operator
Shift_operator

Copyright © 2000 IEEE. All rights reserved.

IEEE
Std 1076.6-1999

39

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

8.7.2.1 Logical operators
Not supported:

— Xnor operator
8.7.2.2 Relational operators
No restriction.

NOTE—Using relational operators for enumerated type that has an explicit encoding specified via the
ENUM_ENCODING attribute may lead to simulation mismatches (see 7.1.1).

8.7.2.3 Shift operators
Supported:

— All SHIFT_LEFT and SHIFT_RIGHT functions defined in packages NUMERIC BIT and
NUMERIC_STD as part of IEEE Std 1076.3-1997

Not supported:
— All shift operators
8.7.2.4 Adding operators
No restriction.
8.7.2.5 Sign operators
No restriction.
8.7.2.6 Multiplying operators

Supported:

— * (multiply) operator
— [(division), mod, and rem operators
— All multiplying operators defined in |[EEE Std 1076.3-1997

The/ (division), mod, and rem operators shall be supported only when both operands are static or when the
right operand is a static power of two.

8.7.2.7 Miscellaneous operators

Supported:

— ** (exponentiation) operator
— absoperator

The ** (exponentiation) operator shall be supported only when both operands are static or when the left
operand has the static value of two.

40 Copyright © 2000 IEEE. All rights reserved.

REGISTER TRANSFER LEVEL SYNTHESIS

8.7.3 Operands
8.7.3.1 Literals

literal ::=
nunmeric_litera
| enuneration_litera
| string_litera
| bit_string_literal
| pubk

numeric_literal ::=
abstract _literal
| physical _litera

Supported:

— Litera
— Numeric _literal

Not supported:

— Null

IEEE
Std 1076.6-1999

References to objects and literals of type TIME may occur only within the time_expression following the

reserved word after or the timeout_clause of await statement, and shall be ignored.

8.7.3.2 Aggregates

aggregate ::=

(el enent_association {, elenment_association})

el enent _association ::=
[choices =>] expression

choices ::= choice { | choice }

choice ::=
si npl e_expr essi on
| discrete_range
| el enent _si npl e_nane
| others

Supported:

— Aggregate

— Element_association

— Choices

— Choice

— Useof atype asachoice

Example:

subtype Src_Typ is Integer range 7 downto 4
subtype Dest_Typ is Integer range 3 downto O
-- Constant definition with aggregates

constant Data_c : Std_Logic_Vector(7 downto 0)

Copyright © 2000 IEEE. All rights reserved.

Dest _Typ => '0")

41

IEEE
Std 1076.6-1999

a) Record aggregates
Not supported:

— Record aggregates
b) Array aggregates
No restriction.

8.7.3.3 Function calls

function_call ::=
function_name [(actual _paraneter_part)]

actual _paraneter_part ::= paraneter_association_list

Supported:

— Function_call
— Actua_parameter_part

Restrictions exist for the actual parameter part and are described in 8.4.3.2.

8.7.3.4 Qualified expressions
qualified_expression ::=
type_mark’ (expression)
| type_nark’ aggregate
Supported:
— Qualified_expression
8.7.3.5Type conversions
type_conversion ::= type_nark(expression)
Supported:
— Type_conversion
8.7.3.6 Allocators
atlecatoer =
new subtype_i ndi cation

| new qualified_expression

Not supported:

— Allocator

IEEE STANDARD FOR VHDL

42 Copyright © 2000 IEEE. Al rights reserved.

REGISTER TRANSFER LEVEL SYNTHESIS

8.7.4 Static expressions

8.7.4.1 Locally static primaries

Locally static primaries shall be supported.

8.7.4.2 Globally static primaries

Globally static primaries shall be supported.

8.7.5 Universal expressions

Floating-point expressions shall not be supported. Precision shall be limited to 32 hits.

8.8 Sequential statements

sequence_of _statenents ::=
{ sequential _statenent }

sequenti al _st at enent

wai t _st at emrent

assertion_statenment

report—statenent

si gnal _assi gnnment _st at enent
vari abl e_assi gnnment
procedure_cal | _st at ement

i f_statement

case_st at enent
| oop_st at enent
next _st at enent
exit_statenent

return_stat enent

nul | _st at enent

Supported:

Sequence_of _statements

Sequentia_statement

8.8.1 Wait statement

wali

H-abel} wait [sensitivityelausel [condition_clause]

t_statenent ::=

vty :

sensitivity_list

condition_clause ::
condition :

tinmeout _cl ause :

signal _nane {,

unti |

condition

: = bool ean_expr essi on

Copyright © 2000 IEEE. All rights reserved.

= on sensitivity_list

si gnal _nane}

;= for time_expression

[tinmeout cl ause]

1

IEEE
Std 1076.6-1999

43

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

Supported:
— Wait_statement
— Sengitivity_list
— Condition_clause
— Condition

Ignored:

— Timeout_clause

Not supported:

— Labd
— Sengitivity_clause

Only one wait until statement shall be allowed per process statement, and it shall be the first statement in
the process.

Use of timeout clause may lead to simulation mismatches.
8.8.2 Assertion statement

assertion_statenent ::= [label~—} assertion ;

assertion ::=
assert condition
[report expression]
[severity expression]

Ignored:

— Assertion_statement
— Assertion

Not supported:

— Labd

8.8.3 Report statement

[abel ;] report expression
[severity expression]

Not supported:
— Report_statement
8.8.4 Signal assighment statement

si gnal _assi gnhment _statenent ::=
ftabel-—} target <= [delay_nechanism] waveform;

44 Copyright © 2000 IEEE. All rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

del ay_nechanism:: =
transport

: - Lon] inerti

target ::=
name
| aggregate

waveform:: =
wavef orm el ement {—waveformelepment}-
|—unaffected

Supported:

— Signa_assignment_statement
— Target
— Waveform

Ignored:

— Delay_mechanism

Not supported:

— Labd

— Reserved wordsreject, inertial and unaffected
— Time_expression

— Multiple waveform_elements

An assignment to asignal declared in a package shall not be supported.

8.8.4.1 Updating a projected output waveform

waveform el enent ::=
val ue_expression [after tine_expression]
—nu [after time_expression]

Supported:

— Waveform_element

Ignored:

— Time expression after reserved word after
Not supported:

— Null waveform elements
8.8.5 Variable assignment statement

vari abl e_assi gnment _statenent ::=

[tabel-—} target := expression ;

Copyright © 2000 IEEE. All rights reserved. 45

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

Supported:
— Variable_assignment_statement
Not supported:
— Labe
8.8.5.1 Array variable assignments
Array variable assignment shall be supported.

8.8.6 Procedure call statement

procedure_cal |l _statenment ::= [label-—] procedure_call
procedure_call ::= procedure_nanme [(actual _paraneter_part)]
Supported:

— Procedure_call_statement
— Procedure cal

Not supported:

— Labd
Restrictions for the actual parameter part are described in 8.4.3.2, item (b).
8.8.7 If statement
if_statement ::=
if condition then
sequence_of _statenents
{ elsif condition then
sequence_of _statenents }
[else

sequence_of _statenents]

end i f [—iftabel} ;
Supported:
— |f_statement
Not supported:
— If_labd

If asignal or variable is assigned under some values of the conditiona expressions in the if statement, but
not for all values, then storage elements may result (see 6.2).

46 Copyright © 2000 IEEE. Al rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

8.8.8 Case statement

case_statenent ::=
[case_label: |
case expression is
case_statenent_alternative
{ case_statenent_alternative }

end case [—ecasetabel} ;

case_statenent _alternative ::=
when choi ces =>
sequence_of _statenents

Supported:

— Case_statement
— Case_statement_alternative

Not supported:

— Labd

If asignal or variable is assigned values in some branches of a case statement, but not in all cases, then level-
sensitive storage elements may result (see 6.2). Thisistrue only if the assignment does not occur under the
control of aclock edge.

If ametalogical value occurs as a choice (or as an element of a choice) in a case statement that is interpreted
by a synthesis tool, the synthesis tool shall interpret the choice as one that may never occur. That is, the
interpretation that is generated shall not be required to contain any constructs corresponding to the presence
or absence of the sequence of statements associated with the choice.

NOTES

1—If the type of the case expression includes metalogical values, and if not all the metalogical values are included
among the case choices, then the case statement must include an others choice to cover the missing metalogical choice
values (see |EEE Std 1076-1993).

2—A case choice (such as “1X1") that includes a metalogical value indicates a branch that can never be taken by the
synthesized circuit (see |EEE Std 1076.3-1997).

8.8.9 Loop statement

| oop_statenent ::=
[loop_label:]
[iteration_scheme] |oop
sequence_of _statenents
end loop [loop_label] ;

iteration_schene ::=
| for | oop_paraneter_specification

paraneter_specification ::=
identifier in discrete_range

di screte_range ::= discrete_subtype_indication | range

Copyright © 2000 IEEE. All rights reserved. 47

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

Supported:

— Loop_statement

— lteration_scheme

— Parameter_specification
— Discrete range

Not supported:
— While
The iteration scheme shall not be omitted.

For a discrete range that appears as part of a parameter specification, the bounds of the discrete range shall
be specified directly or indirectly as static values belonging to an integer type.

8.8.10 Next statement

next_statenent ::=

[tabel—1 next [loop_label] [when condition]
Supported:
— Next_statement
Not supported:
— Labd
8.8.11 Exit statement

exit_statenent ::=

[1abel-—1 exit [loop_label] [when condition]
Supported:
— Exit_statement
Not supported:
— Labd
8.8.12 Return statement

return_statenment ::=

[tabel-—} return [expression]
Supported:

— Return_statement

Not supported:

— Labe

48 Copyright © 2000 IEEE. All rights reserved.

REGISTER TRANSFER LEVEL SYNTHESIS

8.8.13 Null statement

null _statenent ::=

abel—3 null ;

Supported:

Null_statement

Not supported:

Label

8.9 Concurrent statements

concurrent_statenent ::=

bl ock_st at enent

process_st at enent

concurrent _procedure_cal |l _stat ement
concurrent_assertion_statenent

concurrent _si gnal _assi gnnment _st at enent

conponent _i nstanti ati on_st at ement

I
I
|
I
I
| generate_stat enent
Supported:

— Concurrent_statement

8.9.1 Block statement

bl ock_statenent ::=
bl ock_| abel :

bl ock [(guardexpression)] [s]

block header

bl ock_decl arati ve_part
begi n

bl ock_st at enent _part
end block [block_label] ;

bleck—header ::=
[generic_cl ause
[generic_map_clause ;]]
[port_clause
[port_map_clause ;]]

bl ock_decl arative_part ::=
{ block_declarative_item}

bl ock_statenent _part ::=
{ concurrent_statenment }

Supported:

— Block_statement
— Block_declarative part
— Block_statement_part

Copyright © 2000 IEEE. All rights reserved.

IEEE
Std 1076.6-1999

49

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

Not supported:

— Block_header
— Guard_expression
— Reserved word is

8.9.2 Process statement

process_statenent ::=
[process_|label:]
[postponed] process [(sensitivity list)] [+s]
process_decl arati ve_part
begin
process_st at ement _part
end process [process_| abel]

process_decl arative_part ::=
{ process_declarative_item}

process_declarative_item:: =
subpr ogram decl arati on

| subprogram body

| type_declaration

| subtype_decl aration

| constant _decl aration

| variabl e_declaration

| file_declaration

|

I

l

I

alias_declaration
attribute_declaration
attribute_specification
use_cl ause
group—tenplate_declaration
group_declaration

process_st at ement _part =
{ sequential _statenent }

Supported:

— Process_statement

— Sengitivity_list

— Process_declarative part
— Process_declarative item
— Process_statement_part

Ignored:

— File_declaration
— Alias_declaration
— User-defined attribute declarations and their specifications

Not supported:

— Reserved words postponed and is
— Group_template declaration
— Group_declaration

50 Copyright © 2000 IEEE. Al rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

The sensitivity list must include those signals or elements of signals that are read by the process except for
signals read only under control of aclock edge, as described in Clause 6.

A use clause shall only reference the selected name of a package, which may, in turn, reference al of (or a
particular item_name within) the package.

Attribute declarations and specifications as described in 7.1 shall be the only ones supported.
Use of file objects, access objects (variables of accesstype), and aliasesin a process are nhot supported.
8.9.3 Concurrent procedure call statement

concurrent _procedure_call _statenment ::=

[label:] [pestpened] procedure_call
Supported:
— Concurrent_procedure_call_statement
Not supported:
— Reserved word postponed
8.9.4 Concurrent assertion statement

concurrent _assertion_statement ::=

[label:] [pestponed] assertion ;

Ignored:

— Concurrent_assertion_statement
Not supported:
— Reserved word postponed

8.9.5 Concurrent signal assignment statement

concurrent _signal _assi gnment _statenent ::=

[label:] [—peostponed—]} conditional_signal _assignnment
| [label:] [—pestpened] sel ected_signal _assignnent

options ::= [—guarded-]} [del ay_nechanisn
Supported:
— Concurrent_signal_assignment_statement
Ignored:
— Options

Not supported:

— Reserved words postponed and guar ded

Copyright © 2000 IEEE. All rights reserved. 51

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

Any after clauses shall be ignored.

Multiple waveform elements shall not be supported.

The value unaffected shall not be supported.

Edge specifications (<clock_edge> or <clock_level>) shall not be allowed in concurrent signal assignments.
Example:

architecture ARCH of ENT is
begi n

B(7) <= A(6);
B(3 downto 0) <= A(7 downto 4);

C <= not A
end ARCH,

8.9.5.1 Conditional signal assignment

condi tional _si gnal _assi gnment ::=
target <= options conditional waveforns ;

condi ti onal _waveforns ::=
{ wavef orm when condition else }

wavef or m [—when—condi-tion1
Supported:

— Conditional_signal_assignment
— Conditional_waveforms

Ignored:
— Options
Not supported:
— Last when condition
Conditional signal assignments that satisfy either of the following conditions shall not be supported:

a) The conditional waveforms contain areference to one or more elements of the target signal.
b) The conditional waveforms contain an expression that represents a clock edge as defined in 6.1.2.

Example:

architecture ARCH of ENT is

begi n
C<=B when A(0) ="'1' else
not B when A(1l) ='1" else
"00000000" when A(2) ='1" and RESET = '1' else
(others => ('1'));
end ARCH,

52 Copyright © 2000 IEEE. Al rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

8.9.5.2 Selected signal assignments

sel ect ed_si gnal _assignnent ::=
with expression sel ect
target <= options sel ected_waveforns ;

sel ected_waveforns ::=
{ wavef orm when choices , }
wavef or m when choi ces

Supported:

— Selected signal_assignment
— Selected waveforms

Ignored:
— Options
Selected signal assignments that satisfy either of the following conditions shall not be supported:

a) The selected waveforms contain a reference to one or more elements of the target signal.
b) The selected waveforms contain an expression that represents a clock edge as defined in 6.1.2.

Example:

architecture Aof Eis

begi n
with A sel ect
C<=8B when "00000000",
not B when "10101010",
(others => ('1'")) when "11110001",
not A when ot hers;
end A

8.9.6 Component instantiation statement

conponent _i nstanti ati on_statement ::=
instantiation_| abel :
instantiated_unit
[generic_map_aspect]
[port_map_aspect] ;

instantiated unit ::=
[conponent] conponent _nane

| entity entity_nanme [(architecture_name)|
. .] Al

Supported:

— Component_instantiation_statement
— Instantiated_unit

Not supported:

— Entity and configuration forms of instantiated unit
— Reserved word component

Copyright © 2000 IEEE. All rights reserved. 53

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

Restrictions exist for the generic map aspect and the port map aspect and are described in 8.4.3.2.
Type conversions on aformal port shall not be supported.
8.9.6.1 Instantiation of a component
Component instantiation shall be supported.
8.9.6.2 Instantiation of a design entity
Not supported:
— Instantiation of adesign entity
8.9.7 Generate statement

generate_statenent ::=
gener ate_| abel :
generati on_schenme generate

[{block_declarativeitem}
—begi-nt
{ concurrent_statenent }
end generate [generate_| abel]

generati on_schene ::=
for generate_paraneter_specification
| if condition

label ::=identifier
Supported:

— Generate_statement
— Generate_scheme
— Labd

Not supported:

— Block_declarative_item (the declarative region)
— Reserved word begin

The generate parameter specification shall be statically computable and of the form “identifier in range”
only.

8.10 Scope and visibility
8.10.1 Declarative region
Declarative regions shall be supported.
8.10.2 Scope of declarations

The scope of declarations shall be supported.

54 Copyright © 2000 IEEE. All rights reserved.

REGISTER TRANSFER LEVEL SYNTHESIS

8.10.3 Visibility
Visihility rules shall be supported.
8.10.4 Use clause

use_cl ause ::=
use sel ected_nanme {, sel ected_nane}

Supported:

— Use clause
8.10.5 The context of overloaded resolution

The context of overloaded resolution shall be supported.

8.11 Design units and their analysis

8.11.1 Design units

design_file ::= design_unit { design_unit }
design_unit ::= context_clause library_unit
library_unit ::=

primary_unit
| secondary_unit

primary_unit ::=
entity_declaration
| configuration_declaration
| package_decl aration

secondary_unit ::=
archi t ect ur e_body
| package_body

Supported:

— Design_file

— Design_unit

— Library_unit
— Primary_unit
— Secondary_unit

8.11.2 Design libraries

library_clause ::= library |ogical _nane_list
| ogical _nane_list ::=logical _name {, |ogical_nane}
| ogi cal _nane ::= identifier

Copyright © 2000 IEEE. All rights reserved.

IEEE
Std 1076.6-1999

55

IEEE
Std 1076.6-1999

Supported:

— Library_clause
— Logica_name list
— Logica_name

8.11.3 Context clauses

context_clause ::= { context_item}

context_item::=
library_cl ause
| use_cl ause

Supported:

— Context_clause
— Context_item

8.11.4 Order of analysis

The order of analysis shall be supported.

8.12 Elaboration

No constraints shall be put on elaboration for synthesis.

8.13 Lexical elements
Real literals are only allowed in after clauses.

Extended identifiers shall not be supported.

8.14 Predefined language environment
8.14.1 Predefined attributes
8.14.1.1 Attributes whose prefix is a type t

— tBASE
— tLEFT
— tRIGHT
— tHIGH
— tLOW

— tASCENDING
— tIMAGE
— tVALUE(x)
— tPOS(X)
— tVAL(X)
— t'SUCC(x)

56

IEEE STANDARD FOR VHDL

Copyright © 2000 IEEE. All rights reserved.

REGISTER TRANSFER LEVEL SYNTHESIS

IEEE
Std 1076.6-1999

8.14.1.2 Attributes whose prefix is an array object a, or attributes of a constrained array

subtype a

— aLEFT[)]

— &RIGHT[®)]

— &HIGH[®)]

— dLOW[(®)]

— aRANGE[®)]

— &REVERSE_RANGE[(®)]
— dLENGTH[(®)]

— JASCENDBINGHR)Y

8.14.1.3 Attributes whose prefix is a signal s

— SDELAYEDH®}
— SSTABLEK®]
— SQUIET

— STRANSAGTION
— SEVENT

— SACTIVE

Attributes STABLE and EVENT may be used only as described in Clause 6.

8.14.1.4 Attributes whose prefix is a named object e

8.14.2 Package STANDARD

Functionsin the package STANDARD shall be either supported or not supported as defined bel ow.

Supported:

— Functions with arguments of type CHARACTER
— Functions with arguments of type STRING
— All functions whose arguments are only of type BOOLEAN

Copyright © 2000 IEEE. All rights reserved.

57

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

— All functions whose arguments are only of type BIT
— Thefollowing functions with arguments of type “universal integer” or INTEGER:
Relational operator functions
i +” , w_n , i abs” , Wk
“I",“mod”, and “rem” when both operands are static or the second argument is a static power of two
“**” provided both operands are static, or the first argument is a static value of two
— All functions with an argument of type BIT_VECTOR

Ignored:

— Theattribute ‘ FOREIGN’

Not supported:

— Functions with arguments of type SEVERITY_LEVEL
— Thefollowing functions with arguments of type “universal integer” or INTEGER:

“I",“mod”, and “rem” when neither operand is static, or the second argument is not a static power of
two

“**" when the first argument is not a static value of two, or when neither operand is static
— Functions with arguments of type “universal real” or of type REAL
— Functions with arguments of type TIME
— Thefunction NOW
— Functions with arguments of type FILE_OPEN_KIND
— Functions with arguments of type FILE_OPEN_STATUS

8.14.3 Package TEXTIO

The subprograms defined in package TEXTIO shall not be supported.

58 Copyright © 2000 IEEE. Al rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Annex A

(informative)

Syntax summary

This annex summarizes the VHDL syntax that is supported.

abstract _literal ::= decimal _literal | based_litera

access_type definition ::= access subtype_indication

actual _designator ::=
expressi on
| signal _nane
| variabl e_nane
filenane

| open
actual _paraneter_part ::= paraneter_association_list
actual _part ::=

act ual _desi gnat or

| function_nane(actual _designator)

| type—mark{—actual_designator—)
addi ng_operator ::=+ | - | &
aggregate ::=

(el enent_associ ation {, elenment_association})

alias_declaration ::=
alias alias_designator [: subtype_indication] is nanme [signhaturel;

alias_designator ::=identifier | character_literal | operator_synbo

allocator :: =
new subtype_i ndi cation
| new qualified_expression

architecture_body ::=
architecture identifier of entity_name is
architecture_decl arative_part
begi n
architecture_statenment _part]
end [architecture] [architecture_sinple_name] ;

architecture_declarative_part ::=
{ block_declarative_item}

architecture_statenment _part ::=
{ concurrent_statenent }

array_type_definition ::=
unconstrai ned_array_definition
| constrained_array_definition

assertion ::=
assert condition
[report expression]
[severity expression]

Copyright © 2000 IEEE. All rights reserved. 59

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

assertion_statenment ::= [tabel-—} assertion

associ ation_elenent ::=
[formal _part =>] actual _part

association_list ::=
associ ati on_el ement {, association_elenent}

attribute _declaration ::=
attribute identifier : type_nark

attribute_designator ::= attribute_sinple_nanme

attribute_name ::=

prefix [signature}l attribute_designator [{—expression)—}

attribute_specification ::=
attribute attribute_designator of entity_specification is expression;

base ::= integer
base_specifier ::= B| O] X
base_unit_declaration ::= identifier

based_i nteger ::=
extended_digit { [underline] extended_digit }

based_literal ::=

base # based_i nteger [——based—integer—] # [exponent]

basi c_character ::=
basi c_graphi c_character | format_effector

basi c_graphi c_character ::=
upper _case_letter | digit | special _character| space_character

basic_identifier ::=
letter { [underline] letter_or_digit }

bi ndi ng_indication ::=

[use-entity aspect—}

[—generic_map_aspect—]-

[—port_rap_aspeet—
bit_string_literal :: base_specifier “ [bit_value] “
bit_value ::= extended_digit { [underline] extended_ digit }

bl ock_configuration ::=
for block_specification
{ use_clause }
{ configuration_item}

end for

bl ock_decl arative_item:: =
subprogram decl arati on

| subprogram body
| type_declaration
| subtype_decl aration
| constant_decl aration
| signal _declaration
| shared—variable_declaration
| Hle_declaration
| alias_declaration

60 Copyright © 2000 IEEE. Al rights reserved.

REGISTER TRANSFER LEVEL SYNTHESIS

| component _decl arati on

| attribute_declaration

| attribute_specification

| configuration_specification
| disconnection_specification
|

I

use_cl ause

bl ock_decl arative_part ::=
{ block_declarative_item}
block-header ::=
[generic_clause
[generic_map_clause ;]]
[port_clause
[port_map_clause ;]]

bl ock_specification ::=
archi tect ure_nane
| block_statement—|abel

| generate statement_label [(—index_specification) |

bl ock_statenent ::=
bl ock_I abel

bl ock [—{—guard—expression)} [Hs}

block_header

bl ock_decl arative_part
begi n

bl ock_st at ement _part
end block [block_label] ;

bl ock_statenment _part ::=
{ concurrent_statenment }

case_statement ::=
case expression is
case_statenent _alternative

{ case_statenent_alternative }

end case [—ecasetlabel}

case_statenent_alternative ::=
when choi ces =>
sequence_of _statenents

character_literal ::= graphi c_character

choice ::=
si npl e_expr essi on
| discrete_range
| el enent _si npl e_nane

| others
choices ::= choice { | choice }
conponent—configuration 1=

for conponent_specification
[binding_indication ;]
[block_configuration]
end for

Copyright © 2000 IEEE. All rights reserved.

IEEE
Std 1076.6-1999

61

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

conponent _decl aration ::=
conponent identifier H-s}
[1 ocal _generic_cl ause]
[l ocal _port_cl ause]

end conponent [econponent—sinple—nane}

conponent _i nstantiation_statenent ::=
instantiation_| abel
instantiated_unit
[generic_nmap_aspect]
[port_map_aspect] ;

conponent _specification ::=
instantiation_list : conponent_nane

conposite_type_definition ::=
array_type_definition
| record_type_definition

concurrent _assertion_statenment ::=

[label:] [—postponed]} assertion

concurrent _procedure_cal |l _statenment ::=

[label:] [—postponed] procedure_call

concurrent _signal _assignment _statenent ::=

[label:] [—peostponed—]} conditional_signal _assignnment
| [label:] [—pestpened] sel ected_signal _assignnent

concurrent_statement ::=
bl ock_st at enent
| process_stat enment
| concurrent_procedure_call _statenent
| concurrent_assertion_statenent
| concurrent_signal _assi gnnent _st at ement
| conponent _instantiation_statenent
| generate_statement

condi tion ::= bool ean_expressi on
condition_clause ::=until condition

condi tional _si gnal _assi gnment ::=
target <= options conditional _waveforns

condi ti onal _waveforns ::=
{ wavef orm when condition else }

wavef or m [—when—condi-tion1

configuration_declaration ::=
configuration identifier of entity_name is

configuration declarative part

bIock_configuFation

end [eonfiguration] [configuration_sinple_nane];
T on_ ive| .

use_cl ause
| attribute_specification
| group_decl aration

{ configura?ion_declara?ive_iten1}

62 Copyright © 2000 IEEE. Al rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

T on -
bl ock_confi guration
| conponent _configuration

configuration_specification ::=
for conponent_specification binding_indication

constant _declaration ::=
constant identifier_list : subtype_indication := expression

constrai ned_array_definition ::=
array index_constraint of el ement_subtype_indication

constraint ::=
range_constraint
| index_constraint

context_clause ::={ context_item}

context_item::=
l'ibrary_cl ause
| use_cl ause

decimal _literal ::=integer [. integer] [exponent]

declaration ::=

type_decl aration

subt ype_decl arati on

obj ect _decl aration
interface_declaration
alias_declaration
attribute_decl aration
conponent _decl arati on
group—tenplate declaration
group_declaration
entity_decl aration
configuration_decl aration
subpr ogram decl arati on
package_decl arati on

del ay_nechanism:: =
transport

| [rejeettine_expressiont] inertia

design_file ::= design_unit { design_unit }
design_unit ::= context_clause library_unit
designator ::=identifier | operator_synbo
direction ::=to | downto

di sconnection_specification ::=
di sconnect guarded_signal _specification after time_expression

di screte_range ::= discrete_subtype_indication | range

el enent _association ::=
[choices =>] expression

el ement _declaration ::=identifier_list : element_subtype_definition

el ement _subtype_definition ::= subtype_indication

Copyright © 2000 IEEE. All rights reserved. 63

IEEE

Std 1076.6-1999

eﬂt‘ aspect =

en?ity entity_nane [(architecture_identifier)]

configuration configurati on_nane
open

entity_class ::=

entity| architecture| configuration
procedure| function| package

type| subtype| constant

signal | variabl e| conponent

label | literal| units

group| e

enti-ty—elass—entry 1= entity_class [<>]

. Pet =

enti?y_clags_entFy {, entity_class_entry }

entity_declaration ::=
entity identifier is

entity_header

entity declarative part

[begin

entity statement part]

end [eptity] [entity_sinple_nane] ;

. S .

{

subprogram decl arati on
subpr ogr am body

type_decl aration
subtype_decl arati on

const ant _decl arati on

si gnal _decl arati on
shared_vari abl e_decl arati on
file_declaration

al i as_decl aration
attribute_declaration
attribute_specification

di sconnecti on_speci fication
use_cl ause
group_t enpl at e_decl arati on
group_decl arati on

enti ty_decl ar ati ve_item}

entity_designator ::= entity_tag [sighrature}

entity_header ::=

[
[

formal _generic_clause]
formal _port_cl ause]

entity_nane_list ::=

entity_designator {, entity_designator}
others
al-

entity_specification ::=
entity_nane_list : entity_class

entity statenment ::=

concurrent _assertion_statenent
passi ve_concurrent _procedure_cal
passi ve_process_st at enent

IEEE STANDARD FOR VHDL

Copyright © 2000 IEEE. All rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

entity statenment_part ::=
{ entity statenent }

entity tag ::= sinple_nanme | character_literal | operator_synbo
enuneration_literal ::=identifier | character_litera

enuneration_type_definition ::=
(enuneration_literal { , enuneraton_literal })

exit_statenment ::=

[tabel-—} exit [loop_label] [when condition]
exponent ::= E[+] integer | E - integer

expression ::=

relation { and relation }
| relation { or relation }
| relation { xor relation }
| relation [nand relation]
| relation [nor relation]
| .

rel ati on {—xner—+elation}
extended_digit ::=digit | letter

extended_identifier ::=
\ graphic_character { graphic_character } \

factor ::=
primary [** primary]
| abs primry
| not primry

file_declaration ::=
file identifier_list : subtype_indication [file_open_information]

file logical _nane ::= string_expression

file open_information ::=
[open file_open_kind_expression] is file_logical_nane

file type definition ::= file of type_nark

floating type_definition ::= range_constraint

formal _designator ::=
generi c_nane
| port_nane
| paraneter_nane

formal _paraneter_list ::= paraneter_interface_list

formal _part ::=
f or mal _desi gnat or

| function nanme(fornmal designator)
| type_mark{ formal _designator)

full _type_declaration ::=
type identifier is type_definition

function_call ::=
function_name [(actual _paraneter_part)]

Copyright © 2000 IEEE. All rights reserved. 65

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

generate_statenent ::=
gener at e_| abel
generati on_schenme generate
[{ block_declarativeitem}
begi-A—}-
{ concurrent_statenent }
end generate [generate_| abel] ;

generati on_schene ::=
for generate_paraneter_specification
| if condition

generic_clause ::=
generic(generic_list)

generic_list ::= generic_interface_list

generi c_nmap_aspect ::=
generic map (generic_association_list)

graphi c_character ::=
basi c_graphic_character | |ower_case_letter | other_special _character

group—constituent ::= nane | character_litera
group—constituent—tist ::= group_constituent {, group_constituent }
group_declarataion :: =

groap identifier : group_tenplate_nane(group_consituent_list)

group teflqs ate declaration ':=

groap identifier is (entity_class_entry_list) ;

guar ded_si gnal _specification ::=
guarded_signal _list : type_mark

identifier ::=
basic_identifier | extended_identifier

identifier_list ::=identifier { , identifier }

if_statenment ::=
if condition then
sequence_of _statements
{ elsif condition then
sequence_of _statenents }
[else
sequence_of _statenents]

end if [—if_label] ;

inconplete_type declaration ::= type identifier
index_constraint ::= (discrete_range {——di-screte—range—})
. _ oF . .

di screte_range
| static_expression

i ndex_subtype_definition ::= type_mark range <>

i ndexed_nane ::= prefix (expression {—expression3})

66 Copyright © 2000 IEEE. Al rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

nstantiated_unit ::=
[conpenent] conponent _nane
| entity-entity name [{—architecture-name)}
| P) f o

nstantiation_list ::=
instantiation_label {, instantiation_Ilabel}

| others

| al
integer ::=digit { [underline] digit }
integer_type_definition ::= range_constraint

nterface_constant _declaration ::=
[constant] identifier_list : [in] subtype_indication [:= static_expression]

nterface_declaration ::=
interface_constant _decl aration
| interface_signal _declaration
| interface_variabl e_declaration
| : P .

nterface_elenent ::= interface_declaration

interface_file_declaration ::=
file identifier_list : subtype_indication

interface_list ::=
interface_elenent {; interface_el enent}

interface_signal _declaration ::=
[signal] identifier_list : [npde] subtype_indication [bus}
[:= static_expression]

interface_variabl e_declaration ::=
[variable] identifier_|list : [npbde] subtype_indication
[:= static_expression]

iteration_schene ::=
. S
| for | oop_paraneter_specification

| abel ::= identifier

letter ::= upper_case_letter | |ower_case letter
letter_or_digit ::=letter | digit
library_clause ::= library |ogical __nane_li st
library_unit ::=

primary_unit
| secondary_unit

literal ::=
nunmeric_litera
| enuneration_litera
| string_litera
| bit_string_litera
I

Aul-
| ogical _nane ::= identifier
| ogical _nane_list ::=1logical _name { , |ogical_nane }

Copyright © 2000 IEEE. All rights reserved. 67

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

| ogical _operator ::=and | or | nand | nor | xor | xher

| oop_statenent ::=
[1oop_label:]
[iteration_scheme] |oop
sequence_of _statenents
end loop [loop_label] ;

m scel | aneous_operator ::= ** | abs | not
mode ::=in | out | inout | buffer | H-nkage
mul tiplying operator ::=* | / | nmod | rem
nanme ::=

si npl e_nane
| operator_synbo
| sel ected_nane
| indexed_nane
| slice_name
| attribute_nane

next _statenment ::=

[+abel-—} next [loop_label] [when condition]

null _statenent ::=

H+abel-—1 nul |

numeric_literal ::=
abstract _literal
| physical _litera

obj ect _declaration ::=
const ant _decl arati on
| signal _declaration
| variabl e_decl aration
| file_declaration

operator_synbol ::= string_litera
options ::= [guarded] [del ay_mechani sni

package_body :: =
package body package_sinpl e_nane is
package_body_decl arative_part

end [package—bedy | [package_sinple_nane] ;

package_body_decl arative_item:: =
subprogram decl arati on
| subprogram body
| type_declaration
| subtype_decl aration
| constant_decl aration
| shared—variable_declaration
| file_declaration
| alias_declaration
| use_cl ause
| group_tenplate_declaration
| group_declaration

package_body_decl arative_part ::=
{ package_body_decl arative_item}

68 Copyright © 2000 IEEE. Al rights reserved.

REGISTER TRANSFER LEVEL SYNTHESIS

package_declaration :: =
package identifier is
package_decl arative_part

end [package] [package_sinple_name | ;

package_decl arative_item:: =
subprogram decl arati on
type_decl aration
subt ype_decl arati on
const ant _decl arati on
si gnal _decl aration

shared—variabledeclaration

file declaration
alias_declaration

attribute_declaration
attribute_specification

di sconnection_specification

use_cl ause

group_tenplate_declaration

|
|
|
|
|
|
|
| conponent _decl aration
|
|
|
|
|
|

group—declaration

package_decl arative_part ::=

{ package_decl arative_item}

paraneter_specification ::=

identifier in discrete_range

physical literal ::=[abstract_litera

physical type_definition ::=
range_constraint
units

primary_unit_decl aration
{ secondary_unit_declaration }
end units [physical _type_sinple_nane]

port_clause ::=
port(port_list)

port_list ::= port_interface_|

port_map_aspect ::=

list

port map (port_association_list)

prefix ::=
nanme
| function_cal

primary ::=
nanme
| literal
| aggregate
| function_cal
| qualified_expression
| type_conversion
| allocator
| (expression)

primary_unit ::=
entity_declaration
| configuration_declaration
| package_decl aration

primary_unit_declaration ::=

Copyright © 2000 IEEE. All rights reserved.

identifier

1 unit_name

IEEE
Std 1076.6-1999

69

IEEE

Std 1076.6-1999 IEEE STANDARD FOR VHDL
procedure_call ::= procedure_nane [(actual _paraneter_part)]
procedure_cal | _statenent ::= [label+—] procedure_call

process_declarative_item::
subprogram decl arati on
subpr ogram body
type_decl aration

subt ype_decl arati on
const ant _decl arati on
vari abl e_decl arati on
file declaration
alias_declaration
attribute_decl aration
attribute_specification
use_cl ause
group_tenplate_declaration
group—declaration

process_decl arative_part ::=
{ process_declarative_item}

process_statenent ::=
[process_|label:]
[postponed] process [(sensitivity list)] [+s]
process_decl arati ve_part
begin
process_st atement _part
end process [process_| abel]

process_st at ement _part =
{ sequential _statenment }

qual i fied_expression ::=
type_mark’ (expression)
| type_nark’ aggregate

range ::=
range_attri bute_nane
| sinple_expression direction sinple_expression

range_constraint ::= range range

record_type_definition ::=
record
el enent _decl arati on
{ elenment_declaration }
end record [record_type_sinple_nane]

relation ::=
shift_expression [relational _operator shift_expression]

relational _operator ::= =] /=| <| <=]| > | >=
report_statement =
[l abel :] report expression

[severity expression]

return_statenment ::=

[+abel~—} return [expression] ;

70 Copyright © 2000 IEEE. Al rights reserved.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

scal ar_type_definition ::=
enuner ation_type_definition
| integer_type_definition
| physical _type_definition
| floating_ type definition

secondary_unit ::=
archi t ect ur e_body
| package_body

secondary_unit_declaration ::= identifier = physical _literal ;

sel ected_name ::= prefix.suffix
sel ect ed_si gnal _assi gnment :: =
wi th expression sel ect
target <= options selected_waveforns ;
sel ected_waveforns ::=

{ wavef orm when choices , }
wavef orm when choi ces

sensitivityeladse 1= on sensitivity_|ist

sensitivity list ::= signal_name {, signal_nane}

sequence_of _statenents ::=
{ sequential _statenment }

sequenti al _statement ::=
wai t _st at ement

| assertion_statenment

| report_statenent

| signal _assignnment _stat enent

| vari abl e_assi gnment

| procedure_call _statenent

| if_statenent

| case_statenent

| | oop_statenent

| next_statenent

| exit_statenent

| return_statenent

| null_statenent

shift_expression ::=

si npl e_expressi on [—shift operator sinple_expression}
sign ::=+ | -

si gnal _assi gnment _statenent ::=
[tabel-—} target <= [delay nechanism] waveform;

signal _declaration ::=
signal identifier_list : subtype_indication [sighal—kind] [:= expression] ;

signal—kind ::= register | bus
signal _list ::=
signal _nane {, signal _nane }

| others
| all

sighature (= [[type_mark { , type_mark }] [return type_mark]

Copyright © 2000 IEEE. All rights reserved. 71

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

sinpl e_expression ::=
[sign] term{ addi ng_operator term}

sinple_name ::= identifier
slice_name ::= prefix (discrete_range)
string_literal ::="* { graphic_character } “

subprogram body ::=
subprogram specification is
subprogram decl arative_part
begi n
subprogram st atenent _part]

end [subprogramkind] [designator] ;

subprogram decl aration :: =
subpr ogram speci ficati on

subprogram decl arative_item::=
subprogram decl arati on
subpr ogram body

type_decl aration

subt ype_decl arati on

const ant _decl arati on

vari abl e_decl arati on

file declaration
alias_declaration
attribute_decl aration
attribute_specification
use_cl ause
group_tenplate_declaration
group—declaration

subprogram decl arative_part ::=
{ subprogram decl arative_item}

subprogram kind ::= procedure | function

subprogram specification ::=
procedure designator [(formal _paraneter_list)]

| [—pure}—inpure} function designator [(fornal _paraneter_list)]

return type_nmark

subprogram st atenent _part ::=
{ sequential _statenment }

subtype_decl aration ::=
subtype identifier is subtype_indication

subtype_indication ::=
[resolution_function_name] type_mark [constraint]

suffix ::=
si npl e_nane
| character_literal
| operator_synbo
| al

target ::=
name
| aggregate

term::=
factor { multiplying_operator factor }

72 Copyright © 2000 IEEE. Al rights reserved.

IEEE

REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999
tinmeout _clause ::= for tine_expression
type_conversion ::= type_mark(expression)

type_decl aration ::=
full _type_declaration
| inconplete_type_declaration

type_definition ::=
scal ar_type_definition
| conposite_type_definition
| access_type_definition
| file_type_definition

type_mark ::=
type_name
| subtype_nane

unconstrai ned_array_definition ::=

array (index_subtype_definition {—ndex—subtype—definition})

of el ement_subtype_indi cation

use_cl ause ::=
use sel ected_nane {, sel ected_nane}

vari abl e_assi gnment _statenent ::=

[tabel-—} target := expression

vari abl e_decl aration :: =
[shared} variable identifier_list : subtype_indication [:= expression] ;

wai t_statement ::=

H-abel+} wait [sensitivity—clausel [condition_clause] [tinmeout_clause] ;

waveform:: =

wavef orm el enent {—waveformelenrent}-
| unaffected

wavef orm el enent ::=
val ue_expression [after tine_expression]

| nubl-fafter time_expression]

Copyright © 2000 IEEE. All rights reserved. 73

