

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2000 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 9 March 2000. Printed in the United States of America.

Print:

 ISBN 0-7381-1819-2 SH94792

PDF:

 ISBN 0-7381-1820-6 SS94792

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

IEEE Std 1076.6-1999

IEEE Standard for VHDL Register
Transfer Level (RTL) Synthesis

Sponsor

Design Automation Standards Committee

of the

IEEE Computer Society

Approved 16 September 1999

IEEE-SA Standards Board

Abstract:

 A standard syntax and semantics for VHDL register transfer level (RTL) synthesis is de-
fined. The subset of IEEE 1076 (VHDL) that is suitable for RTL synthesis is defined, along with the
semantics of that subset for the synthesis domain.

Keywords:

 pragma, register transfer level (RTL), synthesis, VHDL

IEEE Standards

 documents are developed within the IEEE Societies and the Standards Coordinating Com-
mittees of the IEEE Standards Association (IEEE-SA) Standards Board. Members of the committees serve
voluntarily and without compensation. They are not necessarily members of the Institute. The standards
developed within IEEE represent a consensus of the broad expertise on the subject within the Institute as
well as those activities outside of IEEE that have expressed an interest in participating in the development of
the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there
are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to
the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and
issued is subject to change brought about through developments in the state of the art and comments
received from users of the standard. Every IEEE Standard is subjected to review at least every five years for
revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is rea-
sonable to conclude that its contents, although still of some value, do not wholly reflect the present state of
the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership
affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of
text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the
Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of
all concerned interests, it is important to ensure that any interpretation has also received the concurrence of a
balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating
Committees are not able to provide an instant response to interpretation requests except in those cases where
the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the
Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright
Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Cus-
tomer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; (978) 750-8400. Permission to photocopy
portions of any individual standard for educational classroom use can also be obtained through the Copy-
right Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may
require use of subject matter covered by patent rights. By publication of this standard,
no position is taken with respect to the existence or validity of any patent rights in
connection therewith. The IEEE shall not be responsible for identifying patents for
which a license may be required by an IEEE standard or for conducting inquiries into
the legal validity or scope of those patents that are brought to its attention.

Copyright © 2000 IEEE. All rights reserved.

iii

Introduction

[This introduction is not part of IEEE Std 1076.6-1999, IEEE Standard for VHDL Register Transfer Level (RTL)
Synthesis.]

This standard describes a syntax and semantics for VHDL RTL synthesis. It defines the subset of IEEE Std
1076-1993 (VHDL) that is suitable for RTL synthesis as well as the semantics of that subset for the synthesis
domain. This standard is based on IEEE Std 1076-1993, IEEE Std 1164-1993, and IEEE Std 1076.3-1997.

The purpose of this standard is to define a syntax and semantics that can be used in common by all compliant
RTL synthesis tools to achieve uniformity of results in a similar manner to which simulation tools use IEEE
Std 1076-1993. This will allow users of synthesis tools to produce well-defined designs whose functional
characteristics are independent of a particular synthesis implementation by making their designs compliant
with this standard.

The standard is intended for use by logic designers and electronics engineers.

Work on this standard was initiated by the Synthesis Interoperability Working Group under VHDL Interna-
tional. The Working Group was also chartered by the EDA Industry Council Project Technical Advisory
Board (PTAB) to develop a draft based on the subsets donated by a number of companies and groups.

After the PTAB approved Draft 1.5 with an overwhelming affirmative response, an IEEE project authoriza-
tion request (PAR) was obtained for IEEE standardization. Most of the members of the original Working
Group continued to be part of the Pilot Group of P1076.6 that led the technical work.

Participants

At the time this standard was balloted, the 1076.6 Pilot Team consisted of the following individuals:

Jayaram Bhasker,

Chair

Rob Anderson,

Compiler Directives

David Bishop,

Web and Reflector Administrator

Apurva Kalia,

Semantics Task Leader

Douglas J. Smith,

Editor/Attributes Task Leader

Lance G. Thompson,

Syntax Task Leader

Many individuals from different organizations contributed to the development of this standard. In particular,
the following individuals contributed to its development by being part of the Synthesis Interoperability
Working Group:

In addition, 95 individuals on the Working Group e-mail reflector also contributed to the development of this
standard.

Victor Berman
Dominique Borrione
Dennis B. Brophy
Ben Cohen
Colin Dente
Wolfgang Ecker

Robert A. Flatt
Christopher Grim
Rich Hatcher
Masamichi Kawarabayashi
Jim Lewis
Sanjiv Narayan

Doug Perry
Steven E. Shultz
Fur-Shing Tsai
Jim Vellenga
Eugenio Villar
Nels Vander Zanden

Bill Anker
LaNae Avra

Robert Blackburn John Hillawi
Pradip Jha

iv

Copyright © 2000 IEEE. All rights reserved.

The following members of the balloting committee voted on this standard:

When the IEEE-SA Standards Board approved this standard on 16 September 1999, it had the following
membership:

Richard J. Holleman,

 Chair

Donald N. Heirman,

Vice Chair

Judith Gorman,

Secretary

*Member Emeritus

Also included is the following nonvoting IEEE-SA Standards Board liaison:

Robert E. Hebner

Janet Rutigliano

IEEE Standards Project Editor

Mostapha Aboulhamid
Phillip R. Acuff
Bill Anker
Peter J. Ashenden
Jesus Avila-Casa
Stephen A. Bailey
Pete Bakowski
David L. Barton
Victor Berman
Jayaram Bhasker
William Billowitch
Robert Blackburn
Martin J. Bolton
Dominique Borrione
Dennis B. Brophy
Patrick K. Bryant
Larrie Carr
Shir-Shen Chang
Luc Claesen
Edmond S. Cooley
Alan Coppola
Ronnie W. Craig
David C. Crohn
Clifford E. Cummings
Timothy R. Davis
Steven L. Drager
Douglas D. Dunlop
George E. Econonuakos
Robert A. Flatt
Scott Flinchbaugh
Rita A. Glover
Kenji Goto

Brian S. Griffin
Andrew Guyler
Pauline C. Haddow
Michael J. Haney
William A. Hanna
Donald F. Hanson
M. M. Kamal Hashmi
Rich Hatcher
Jim Heaton
Geir Hedemark
John Hillawi
John Hines
Pradip Jha
Apurva Kalia
Takashi Kambe
Osamu Karatsu
Jake Karrfalt
Masamichi Kawarabayashi
Steven Kelem
Robert H. Klenke
Venkatram Krishnaswamy
Vello Kukk
Gunther Lehmann
Jim Lewis
Victor Martin
Peter Marwedel
John McCluskey
Michael D. McKinney
Paul J. Menchini
Jean P. Mermet
Egbert Molenkamp
Jaun Moreno

Gabe Moretti
David S. Morris
Gerald Musgrave
Wolfgang W. Nebel
Kevin O'Brien
Serafin Olcoz
William R. Paulsen
Paolo Prinetto
Johan Sandstrom
Hisashi Sasaki
Quentin G. Schmierer
Steven E. Schultz
Toru Shonai
Douglas J. Smith
Joseph J. Stanco
Atsushi Takahara
Thomas D. Tessier
Lance G. Thompson
Paul Traynar
Yatin K. Trivedi
Cary Ussery
Radha Vaidyanathan
Ranganadha R. Vemuri
Eugenio Villar
Ronald Waxman
J. Richard Weger
Ron Werner
John Williams
William R. Young
Tetsuo Yutani
Jan Zegers
Mark Zwolinski

Satish K. Aggarwal
Dennis Bodson
Mark D. Bowman
James T. Carlo
Gary R. Engmann
Harold E. Epstein
Jay Forster*
Ruben D. Garzon

James H. Gurney
Lowell G. Johnson
Robert J. Kennelly
E. G. “Al” Kiener
Joseph L. Koepfinger*
L. Bruce McClung
Daleep C. Mohla
Robert F. Munzner

Louis-François Pau
Ronald C. Petersen
Gerald H. Peterson
John B. Posey
Gary S. Robinson
Akio Tojo
Hans E. Weinrich
Donald W. Zipse

Copyright © 2000 IEEE. All rights reserved.

v

Contents

1. Overview.. 1

1.1 Scope.. 1
1.2 Compliance to this standard... 1
1.3 Terminology... 2
1.4 Conventions ... 2

2. References.. 3

3. Definitions.. 3

4. Predefined types... 4

5. Verification methodology .. 5

5.1 Combinational verification .. 5
5.2 Sequential verification ... 6

6. Modeling hardware elements... 6

6.1 Edge-sensitive sequential logic.. 7
6.2 Level-sensitive sequential logic... 11
6.3 Three-state and bus modeling .. 12
6.4 Modeling combinational logic ... 12

7. Pragmas.. 12

7.1 Attributes.. 12
7.2 Metacomments... 13

8. Syntax .. 14

8.1 Design entities and configurations... 14
8.2 Subprograms and packages.. 19
8.3 Types.. 23
8.4 Declarations ... 28
8.5 Specifications... 34
8.6 Names .. 36
8.7 Expressions .. 38
8.8 Sequential statements... 43
8.9 Concurrent statements.. 49
8.10 Scope and visibility.. 54
8.11 Design units and their analysis .. 55
8.12 Elaboration... 56
8.13 Lexical elements .. 56
8.14 Predefined language environment.. 56

Annex A (informative) Syntax summary... 59

Copyright © 2000 IEEE. All rights reserved.

1

IEEE Standard for VHDL Register
Transfer Level (RTL) Synthesis

1. Overview

1.1 Scope

This standard defines a means of writing VHSIC hardware description language (VHDL) that guarantees the
interoperability of VHDL descriptions among any register transfer level (RTL) synthesis tools that comply
with this standard. Compliant synthesis tools may have features above those required by this standard. This
standard defines how the semantics of VHDL shall be used; for example, to model level- and edge-sensitive
logic. It also describes the syntax of the language with reference to what shall be supported and what shall
not be supported for interoperability.

The use of this standard should enhance the portability of VHDL designs across synthesis tools conforming
to this standard. It should also minimize the potential for functional simulation mismatches between models
both before and after they are synthesized.

1.2 Compliance to this standard

1.2.1 Model compliance

A VHDL model shall be defined as being compliant to this standard if the model

a) Uses only constructs described as supported or ignored in this standard
b) Adheres to the semantics defined in this standard

1.2.2 Tool compliance

A synthesis tool shall be defined as being compliant to this standard if the tool

a) Accepts all models that adhere to the model compliance definition in 1.2.1

b) Supports language-related pragmas defined by this standard

c) Produces a circuit model that has the same functionality as the input model, based on the verification
process outlined in Clause 5

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

2

Copyright © 2000 IEEE. All rights reserved.

1.3 Terminology

The word

shall

 indicates mandatory requirements to be followed strictly in order to conform to the standard
and from which no deviation is permitted (

shall

 equals

is required to

). The word

should

 indicates that a cer-
tain course of action is preferred, but not necessarily required, or that (in the negative form) a certain course
of action is deprecated but not prohibited (

should

 equals

is recommended that

). The word

may

 indicates a
course of action permissible within the limits of the standard (

may

 equals

is permitted

).

A synthesis tool is said to

 accept

 a VHDL construct if it allows that construct to be legal input; it is said to

interpret

 the construct (or to provide an

interpretation

 of the construct) if it produces something that repre-
sents the construct. A synthesis tool is not required to provide an interpretation for every construct that it
accepts, but only for those for which an interpretation is specified by this standard.

The constructs in the standard shall be categorized as follows:

—

Supported:

 RTL synthesis shall interpret a construct; that is, map the construct to an equivalent hard-
ware representation.

—

Ignored:

 RTL synthesis shall ignore the construct. Encountering the construct shall not cause syn-
thesis to fail, but synthesis results may not match simulation results. The mechanism, if any, by
which RTL synthesis notifies (warns) the user of such constructs is not defined by this standard.
Ignored constructs may include unsupported constructs.

—

Not supported:

 RTL synthesis does not support the construct. RTL synthesis does not expect to
encounter the construct, and the failure mode shall be undefined. RTL synthesis may fail upon
encountering such a construct. Failure is not mandatory; more specifically, RTL synthesis is allowed
to treat such a construct as ignored.

1.4 Conventions

This standard uses the following conventions:

a) VHDL reserved words (such as

downto

) are in boldface, and all other VHDL identifiers (such as
REVERSE_RANGE or FOO) are in uppercase letters.

b) The text of the VHDL examples and code fragments is represented in a fixed-width font.

c) Syntax text that is struck-through (e.g. text) refers to syntax that shall not be supported.

d) Syntax text that is underscored (e.g. text) refers to syntax that shall be ignored.

e) “<” and “>” are used to represent text in one of several different, but specific, forms. For example,
one of the forms of <clock_edge> could be “CLOCK'EVENT

and

 CLOCK = ‘1’.”

f) Any paragraph starting with “NOTE” is informative and not part of the standard.

g) The examples that appear in this document under

“

Example:

”

are for the sole purpose of demon-
strating the syntax and semantics of VHDL for synthesis. It is not the intent of any such examples to
demonstrate, recommend, or emphasize coding styles that are more (or less) efficient in generating
an equivalent hardware representation. In addition, it is not the intent of this standard to present
examples that represent a compliance test suite or a performance benchmark, even though these
examples are compliant with this standard (except as noted otherwise).

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved.

3

2. References

This standard shall be used in conjunction with the following publications. If any of the following standards
are superseded by an approved revision, the revision shall apply.

IEEE Std 1076-1993, IEEE Standard VHDL Language Reference Manual.

1

IEEE Std 1076.3-1997, IEEE Standard Synthesis Packages (NUMERIC_BIT and NUMERIC_STD).

IEEE Std 1164-1993, IEEE Standard Multivalue Logic System for VHDL Model Interoperability
(STD_LOGIC_1164).

3. Definitions

Terms used within this standard, but not defined in this clause, are from IEEE Std 1076-1993

2

, IEEE Std
1164-1993, and/or IEEE Std 1076.3-1997.

3.1 assignment reference:

 The occurrence of a literal or expression as the waveform element of a signal
assignment statement, or as the right-hand side expression of a variable assignment statement.

3.2 don’t care value:

 The enumeration literal ‘-’ of the type STD_ULOGIC (or subtype STD_LOGIC)
defined by IEEE Std 1164-1993.

3.3 edge-sensitive storage element:

A storage element mapped to by a synthesis tool that

a) Propagates the value at the data input whenever an appropriate value is detected on a clock control
input, and

b) Preserves the last value propagated at all other times, except when any asynchronous control inputs
become active.

(For example, a flip-flop.)

3.4 high-impedance value:

 The enumeration literal “Z” of the type STD_ULOGIC (or subtype
STD_LOGIC) defined by IEEE Std 1164-1993.

(For example, a latch.)

3.5 Language Reference Manual (LRM):

 The IEEE VHDL Language Reference Manual (IEEE Std
1076-1993).

3.6 level-sensitive storage element:

A storage element mapped to by a synthesis tool that

a) Propagates the value at the data input whenever an appropriate value is detected on a clock control
input, and

b) Preserves the last value propagated at all other times, except when any asynchronous control inputs
become active.

3.7 logical operation:

 An operation for which the VHDL operator is

and

,

or

,

nand

,

nor

,

xor

, or

not

.

1

IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ 08855-1331, USA (http://www.standards.ieee.org/).

2

References are listed in Clause 2.

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

4

Copyright © 2000 IEEE. All rights reserved.

3.8 metacomment:

 A VHDL comment (--) that is used to provide synthesis-specific interpretation by a syn-
thesis tool.

3.9 metalogical value:

 One of the enumeration literals, ‘U’, ‘X’, ‘W’, or ‘-’, of the type STD_ULOGIC (or
subtype STD_LOGIC) defined by IEEE Std 1164-1993.

3.10 pragma:

 A generic term used to define a construct with no predefined language semantics that influ-
ences how a synthesis tool will synthesize VHDL code into an equivalent hardware representation.

3.11 register transfer level (RTL):

 A level of description of a digital design in which the clocked behavior
of the design is expressly described in terms of data transfers between storage elements, which may be
implied, and combinational logic, which may represent any computing or arithmetic-logic-unit logic. RTL
modeling allows design hierarchy that represents a structural description of other RTL models.

3.12 synthesis tool:

 Any system, process, or tool that interprets RTL VHDL source code as a description of
an electronic circuit and derives a netlist description of that circuit.

3.13 user:

 A person, system, process, or tool that generates the VHDL source code that a synthesis tool
processes.

3.14 vector:

 A one-dimensional array.

3.15 well-defined:

 Containing no metalogical or high-impedance element values.

3.16 synthesis-specific attribute:

 An attribute recognized by an RTL synthesis compliant tool as described
in 7.1.

3.17 synchronous assignment:

An assignment that takes place when a signal or variable value is updated as
a direct result of a clock edge expression evaluating as true.

4. Predefined types

A synthesis tool, compliant with this standard, shall support the following predefined types:

a) BIT, BOOLEAN, and BIT_VECTOR as defined in IEEE Std 1076-1993

b) CHARACTER and STRING as defined in IEEE Std 1076-1993

c) INTEGER as defined in IEEE Std 1076-1993

d) STD_ULOGIC, STD_ULOGIC_VECTOR, STD_LOGIC, and STD_LOGIC_VECTOR as defined
by the package STD_LOGIC_1164 in IEEE Std 1164-1993

e) SIGNED and UNSIGNED as defined by the VHDL package NUMERIC_BIT in IEEE Std
1076.3-1997

f) SIGNED and UNSIGNED as defined by the VHDL package NUMERIC_STD in IEEE Std
1076.3-1997

No array types, other than those listed in items (e) and (f) above, shall be used to represent signed and
unsigned numbers.

The synthesis tool shall also support user-defined and other types derived from the predefined types, accord-
ing to the rules of 8.3.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved.

5

By definition, if a type with a metalogical value is used in a model, then this type shall have as an ancestor a
type that belongs to the package STD_LOGIC_1164 (IEEE Std 1164-1993).

5. Verification methodology

Synthesized results may be broadly classified as either combinational or sequential. Sequential logic has
some form of internal storage (latch, register, memory). Combinational logic has outputs that are solely a
function of the inputs, with no internal loops and no internal storage. Designs may contain both sequential
and combinational parts.

The process of verifying synthesis results using simulation consists of applying equivalent inputs to both the
original model and synthesized models, and then comparing their outputs to ensure that they are equivalent.
“Equivalent” in this context means that a synthesis tool shall produce a circuit that is equivalent at the input,
output, and bidirectional ports of the model. Since synthesis, in general, does not recognize the same delays
as simulators, the outputs cannot be compared at every simulation time. Rather, they can only be compared
at specific simulation times when all transient delays have settled and all active timeout clauses have been
exceeded. If the outputs do not match at all comparable times, the synthesis tool shall not be compliant.
There shall be no matching requirement placed on any internal nodes.

Input stimulus shall comply to the following criteria:

a) Input data does not contain metalogical values.

b) Input data may contain ‘H’ and ‘L’ on inputs, in which case they are converted to ‘1’ and ‘0’,
respectively.

c) For combinational verification, input data must change far enough in advance of sensing times to
allow transient delays to have settled.

d) After asynchronous set/reset signals go from active to inactive, there must be enough time to take
care of setup/hold times of the sequential elements before clock and/or input data change.

e) For edge-sensitive-based designs, primary inputs of the design must change far enough in advance
for the edge-sensitive storage element input data to not violate the setup times with reference to the
active clock edge. Also, the input data must remain stable for long enough to respect the hold times
with respect to the active clock edge.

f) For level-sensitive storage element based designs, primary inputs of the design must change far
enough in advance for the level-sensitive storage element input data to respect the setup times. Also,
the input data must remain stable for long enough to respect the hold times.

NOTE—A synthesis tool may define metalogical values appearing on primary outputs in one model as equivalent to log-
ical values in the other model. For this reason, the input stimulus may need to reset internal storage elements to specific
logical values before the outputs of both models are compared for logical values.

5.1 Combinational verification

To verify combinational logic, the input stimulus shall be applied first. Sufficient time shall be provided for
the design to settle, and then the outputs shall be examined. To verify the combinational logic portion of a
model, the following sequence of events shall be performed repeatedly for each input stimulus application:

a) Apply input stimulus
b) Wait for data to settle
c) Check outputs

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

6

Copyright © 2000 IEEE. All rights reserved.

Each application of inputs shall include enough delay so that the transient delays and timeout clause delays
have been exceeded. A model is not in compliance with this standard if it is possible for outputs or internal
nodes of the combinational model to never reach a steady state (i.e., oscillatory behavior).

Example:

A <=

not

 A

after

 5 ns; -- oscillatory behavior, noncompliant

5.2 Sequential verification

The general scheme consists of applying inputs periodically and then comparing the outputs just before the
next set of inputs is applied. Sequential models contain edge-sensitive and/or level-sensitive storage ele-
ments. The sequential design must be reset, if required, before verification can begin.

The verification of designs containing edge-sensitive or level-sensitive storage elements is as follows:

a)

Edge-sensitive models:

 The same sequence of tasks used for combinatorial verification shall be per-
formed during sequential verification: change the inputs, compute the results, compare the outputs.
For sequential verification, however, these tasks shall be synchronized with one of the inputs, which
is a clock. The inputs must change in an appropriate order with respect to the input that is treated as
a clock, and their consequences must be allowed to settle prior to comparison. Comparison might
best be performed just before the active clock edge and the non-clock inputs can change after the
edge. The circuit then has the rest of the clock period to compute the new results before they are
stored at the next clock edge. The period of the clock generated by the stimulus shall be sufficient to
allow the input and output signals to settle.

b)

Level-sensitive models:

 These designs are generally less predictable than edge-sensitive models due
to the asynchronous nature of the signal interactions. Verification of synthesized results depends on
the application. With level-sensitive storage elements, a general rule is that data inputs should be sta-
ble before enables go inactive (i.e., latch) and comparing of outputs is best done after enables are
inactive (i.e., latched) and combinational delays have settled. In the absence of changes to the inputs
of the level-sensitive model, if one or more internal values or outputs of the model never reach a
steady state (oscillatory behavior), then it is not in compliance with this standard.

6. Modeling hardware elements

This clause specifies styles for modeling hardware elements, such as edge-sensitive storage elements, level-
sensitive storage elements, and three-state drivers.

This clause does not limit the optimizations that can be performed on a VHDL model. The scope of optimi-
zations that may be performed by a synthesis tool depends on the tool itself. The hardware modeling styles
specified in this clause do not take into account any optimizations or transformations. A specific tool may
perform optimizations and may not generate the suggested hardware inferences, or it may generate a
different set of hardware inferences. This shall NOT be taken as a violation of this standard, provided the
synthesized netlist has the same functionality as the input model, as characterized in Clause 5.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved.

7

6.1 Edge-sensitive sequential logic

6.1.1 Clock signal type

The allowed types for clock signals shall be BIT, STD_ULOGIC, and their subtypes (e.g., STD_LOGIC)
with a minimum subset of ‘0’ and ‘1’. Only the values ‘0’ and ‘1’ from these types shall be used in expres-
sions representing clock levels and clock edges (see 6.1.2).

Scalar elements of arrays of the above types shall be supported as clock signals.

Example:

signal

 BUS8: std_logic_vector(7

donut

 0);
...

process

(BUS8(0))

begin
if

 BUS8(0) = '1'

and

 BUS8(0)'EVENT

then

...
...

-- BUS8(0) is a scalar element used as a clock signal.

6.1.2 Clock edge specification

The function RISING_EDGE shall represent a rising edge and the function FALLING_EDGE shall repre-
sent a falling edge. RISING_EDGE and FALLING_EDGE are the functions declared by either the package
STD_LOGIC_1164 defined in IEEE Std 1164-1993, or by the package NUMERIC_BIT defined in IEEE Std
1076.3-1997.

clock_edge ::=
 RISING_EDGE(

clk_signal

_name)
| FALLING_EDGE(

clk_signal

_name)
| clock_level

and

 event_expr
| event_expr

and

 clock_level

clock_level ::=

clk_signal

_name = '0' |

 clk_signal

_name = '1'

event_expr ::=

clk_signal

_name'EVENT
|

not

clk_signal

_name'STABLE

6.1.2.1 Positive edge clock

The following expressions shall represent a positive clock edge when used as a condition in an

if

 statement
(positive <clock_edge>):

—

RISING_EDGE(

clk_signal_

name)

— clk_signal_name'EVENT and clk_signal_name = '1'
— clk_signal_name = '1' and clk_signal_name'EVENT
— not clk_signal_name'STABLE and clk_signal_name = '1'
— clk_signal_name = '1' and not clk_signal_name'STABLE

The following expressions shall represent a positive clock edge when used as a condition in a wait until
statement (positive <clock_edge> or <clock_level>):

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

8 Copyright © 2000 IEEE. All rights reserved.

— RISING_EDGE(clk_signal_name)
— clk_signal_name = '1'
— clk_signal_name'EVENT and clk_signal_name = '1'
— clk_signal_name = '1' and clk_signal_name'EVENT
— not clk_signal_name'STABLE and clk_signal_name = '1'
— clk_signal_name = '1' and not clk_signal_name'STABLE

6.1.2.2 Negative edge clock

The following expressions shall represent a negative clock edge when used as a condition in an if statement
(negative <clock_edge>):

— FALLING_EDGE(clk_signal_name)
— clk_signal_name'EVENT and clk_signal_name = '0'
— clk_signal_name = '0' and clk_signal_name'EVENT
— not clk_signal_name'STABLE and clk_signal_name = '0'
— clk_signal_name = '0' and not clk_signal_name'STABLE

The following expressions shall represent a negative clock edge when used as a condition in a wait until
statement (negative <clock_edge> or <clock_level>):

— FALLING_EDGE(clk_signal_name)
— clk_signal_name = '0'
— clk_signal_name'EVENT and clk_signal_name = '0'
— clk_signal_name = '0' and clk_signal_name'EVENT
— not clk_signal_name'STABLE and clk_signal_name = '0'
— clk_signal_name = '0' and not clk_signal_name'STABLE

6.1.3 Modeling edge-sensitive storage elements

A synchronous assignment takes place when a signal or variable is updated as a direct result of a clock edge
expression evaluation to true.

A signal updated with a synchronous assignment should model one or more edge-sensitive storage elements.

A variable updated in a synchronous assignment should model an edge-sensitive storage element. If simula-
tion semantics suggest that the value of the variable is read before it is written, then an edge-sensitive storage
element should be modeled by the variable. By optimization, the generated edge-sensitive storage may be
eliminated.

Only one clock edge shall be allowed per process statement (including any procedures called within the
process). Conditional or selected signal assignments shall not be used to model an edge-sensitive storage
element (see 8.9.5).

No wait statements are allowed in a procedure (8.2.2).

6.1.3.1 Using the “if” statement

An edge-sensitive storage element may be modeled using a clock edge with an if statement. The template for
modeling such an edge-sensitive storage element shall be

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved.

9

[process_label:]

process

 (<clock_signal>)
<declarations>

begin
if

 <clock_edge>

then

<sequence_of_statements>

end

if

;

end

process

[process_label];

The clock signal in <clock_edge> shall be listed in the process sensitivity list.

Sequential statements preceding or succeeding the

if

 statement shall not be supported.

Example:

DFF:

process

(CLOCK)

begin

if

 CLOCK'EVENT

and

 CLOCK = '1'

then

Q <= D; -- Q models a rising edge-triggered storage element

end

if

;

end

process

DFF;

6.1.3.2 Using the “wait” statement

An edge-sensitive storage element may be modeled using a clock edge as a condition in a

wait

until

 state-
ment. The

wait

until

 statement shall be the first statement in the

process

. No additional

wait

until

statements shall appear within such a

process

,

including any procedures called within the

process

. The tem-
plate for modeling such an edge-sensitive storage element shall be

[process_label:]

process

<declarations>

begin
wait

until

 <clock_edge>; -- this must be the first statement in the process
<sequence_of_statements>

end

process

[process_label];

NOTES

1—Because the

wait until

statement must appear as the first statement of the process, an asynchronous override (set or
reset) of edge-sensitive storage elements can not be represented using the

wait until

 statement form.

2—Conditional or selected signal assignments shall not be used to represent edge-sensitive storage elements.

Example:

DFF1:

process

begin

wait

until

 CLOCK = '0';
Q <= D; -- Q models a falling edge-triggered storage element

end

process

DFF1;

Example:

DFF2:

process

variable

 VAR: UNSIGNED(3

downto

 0);

begin
wait

until

 CLOCK = '1';
VAR := VAR + 1;
COUNT <= VAR;

end

process

DFF2;

-- Variable VAR should model four rising edge-triggered storage elements because the
-- value of VAR is read in the first assignment before its value is assigned.
-- By optimization, some edge-triggered storage elements may be eliminated.

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

10 Copyright © 2000 IEEE. All rights reserved.

Example:

DFF3: process
variable VAR: UNSIGNED(3 downto 0);

begin
wait until CLOCK = '1';

VAR := COUNT; -- Variable is written prior to being read.
VAR := VAR + 1; -- VAR is combinational.
COUNT <= VAR; -- Count models edge-sensitive storage elements.

end process DFF3;

-- Variable VAR should not model edge-sensitive storage elements because VAR is
-- assigned a value before its value is read.

6.1.3.3 With asynchronous control

A variable or a signal that is synchronously assigned may also be asynchronously assigned to model asyn-
chronous set/reset edge-sensitive storage elements. Such a variable or a signal models an asynchronous
set/reset edge-sensitive storage element. The template for representing such edge-sensitive storage elements
shall be

[process_label:]
process (<clock_signal>, <asynchronous_signals>)

<declarations>
begin

if <condition1> then
<sequence_of_statements>

elsif <condition2> then
<sequence_of_statements>

elsif <condition3> then
...

elsif <clock_edge> then
<sequence_of_statements>

end if;
end process [process_label];

The if branches preceding the last clock edge branch represents the asynchronous set/reset logic.

A clock edge shall only appear in the last elsif condition.

Sequential statements, as used in the template above, shall not include any if statements conditional on a
clock edge.

The sensitivity list of the process shall include all of the following:

a) The clock signal sensed by the clock edge expression

b) All signals sensed by the remaining conditions of the if statement

c) All signals sensed by the sequential statements governed by the remaining conditions of the if state-
ment other than the clock edge expression

No signals other than those identified in the above list shall appear in the sensitivity list.

The order of the signals in the sensitivity list is not important.

Sequential statements preceding or succeeding the if statement shall not be supported.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 11

NOTES

1—Asynchronous set-reset conditions are level sensitive; that is, they cannot contain a clock edge expression. Addition-
ally, these conditions have a higher priority than the clock edge condition.

2—It is not necessary to describe both set and reset cases if the desired implementation does not require both of these
features. Either or both may be modeled in the RTL model.

3—The VHDL semantics shall be followed in resolving any priority between set and reset.

Example:

AS_DFF: process (CLOCK, RESET, SET, SET_OR_RESET, A)
begin

if RESET = '1' then
Q <= '0';

elsif SET = '1' then
Q <= '1';

elsif SET_OR_RESET = '1' then
Q <= A;

elsif CLOCK'EVENT and CLOCK = '1' then
Q <= D;

end if;
end process AS_DFF;

-- Signal Q models an asynchronous reset/set rising edge triggered
-- edge-sensitive storage element. The reset expression is RESET, the set
-- expression is SET, and SET_OR_RESET may be either a reset condition or a set
-- condition according to the value of A.

6.2 Level-sensitive sequential logic

A level-sensitive storage element shall be modeled for a signal (or variable) when both of the following
apply:

a) The signal (or variable) is assigned either directly in a process, or assigned within a subprogram
invoked within the process, and the process contains no clock edge construct.

b) There are executions of the process that do not execute an explicit assignment (via an assignment
statement) to the signal (or variable).

A level-sensitive storage element may be modeled for a signal (or variable) when both of the following apply:

a) The signal (or variable) is assigned in a process that contains no clock edge construct.

b) There are executions of the process in which the value of the signal (or variable) is read before its
assignment.

The process sensitivity list shall contain all signals read within the process statement. Processes with
incomplete sensitivity lists are not supported.

NOTES

1—Variables declared in subprograms never model level-sensitive storage elements, because variables declared in sub-
programs are always initialized in every call.

2—Conditional or selected signal assignments shall not be used to model a level-sensitive storage element (see 8.9.5).

3—When a signal is assigned from within a procedure, it shall have the same inference semantics as a signal assigned
from within a process.

4—It is recommended to avoid a modeling style in which the value of a signal or variable is read before its assignment.
This would avoid the generation of unwanted storage elements where none might be intended.

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

12 Copyright © 2000 IEEE. All rights reserved.

Example:

LEV_SENS: process (ENABLE, D)
begin

if ENABLE = '1' then
Q <= D; -- Q is an incomplete asynchronous assignment,

end if; -- so it models a level-sensitive storage element.
end process;

6.3 Three-state and bus modeling

Three-state logic shall be modeled when an object, or an element of the object, is explicitly assigned the
IEEE Std 1164-1993 value “Z.”

The assignment to “Z” shall be a conditional assignment; that is, assignment occurs under the control of a
condition.

For a signal that has multiple drivers, if one driver has an assignment to “Z,” all drivers shall have at least one
assignment to “Z.”

NOTE—If an object is assigned a value “Z” in a process that is edge-sensitive or level-sensitive (as described in 6.1 and
6.2), then a synthesis tool may infer sequential elements on all inputs of the three-state logic.

6.4 Modeling combinational logic

Any process that does not contain a clock edge or wait statement shall model either combinational logic or
level-sensitive sequential logic.

If there is always an assignment to a variable or signal in all possible executions of the process, and all vari-
ables and signals have well-defined values, then the variable or signal models combinational logic.

a) If a signal or variable is updated before it is read in all executions of a process, then it shall model
combinational logic.

b) If a signal or variable is read before it is updated, then it may model combinational logic.

Concurrent signal assignment statements (see 8.9.5) and concurrent procedure calls (see 8.9.3) always
model combinational logic.

The process sensitivity list shall list all signals read within the process statement.

7. Pragmas

Pragmas influence how a model is synthesized. The following pragmas may appear within the VHDL code:

a) Attributes
b) Metacomments

7.1 Attributes

Only one attribute with a synthesis-specific interpretation shall be supported for synthesis:
ENUM_ENCODING. All others shall be ignored.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 13

7.1.1 ENUM_ENCODING attribute

An attribute named ENUM_ENCODING shall provide a means of encoding enumeration type values. The
attribute specification for this attribute shall specify the encoding of the enumeration type literals in the form
of a string. This string shall be made up of tokens separated by one or more spaces. There shall be as many
tokens as there are literals in the enumeration type, with the first token corresponding to the first enumera-
tion literal, the second token corresponding to the second enumeration literal, and so on.

Each token shall be made up of a sequence of ‘0’ and ‘1’ characters. Character ‘0’ shall represent a logic 0
value, and character ‘1’ shall represent a logic 1 value. Additionally, each token may optionally contain
underscore characters; these shall be used for enhancing readability and are to be ignored. All tokens shall be
composed of the same number of characters (ignoring the underscore characters). The following declares an
enumeration type and attribute ENUM_ENCODING:

type <enumeration_type> is (<enum_lit1>, <enum_lit2>, ..., <enum_litN>);

attribute ENUM_ENCODING: STRING; -- Attribute declaration

The attribute specification defines the encoding for the enumeration literals.

attribute ENUM_ENCODING of <enumeration_type>: type is
"[<space(s)>]<token1><space(s)><token2><space(s)>...<tokenN>[<space(s)>]";
-- Attribute specification

Token <token1> specifies the encoding for <enum_lit1>, <token2> specifies the encoding for <enum_lit2>,
and so on.

This attribute shall only decorate an enumeration type.

NOTE—Use of this attribute may lead to simulation mismatches (e.g., with use of relational operators).

Example:

-- Example shows ENUM_ENCODING used to describe one-hot encoding:

attribute ENUM_ENCODING: string;
type COLOR is (RED, GREEN, BLUE, YELLOW, ORANGE);

attribute ENUM_ENCODING of COLOR: type is "10000 01000 00100 00010 00001";

-- Enumeration literal RED is encoded with the first value 10000,
-- GREEN is encoded with the value 01000, and so on.

User-defined attribute declarations and their specifications shall be ignored.

7.2 Metacomments

Two metacomments provide for conditional synthesis control. They shall be

— RTL_SYNTHESIS OFF
— RTL_SYNTHESIS ON

A synthesis tool shall ignore any VHDL code after the “RTL_SYNTHESIS OFF” directive and before any
subsequent “RTL_SYNTHESIS ON” directive.

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

14 Copyright © 2000 IEEE. All rights reserved.

Metacomments differing only in the use of corresponding uppercase and lowercase letters shall be consid-
ered the same.

The source code as a whole, including ignored constructs, shall conform to IEEE Std 1076-1993. The source
code, exclusive of constructs ignored because of the metacomments, shall be compliant with the terms of
this standard.

NOTES

1—Care should be taken when using these metacomments to ensure that synthesis behavior accurately reflects simula-
tion behavior. Use of these metacomments may lead to simulation mismatches.

2—The interpretation of comments other than RTL_SYNTHESIS OFF and RTL_SYNTHESIS ON by a synthesis tool
is not compliant with this standard.

8. Syntax

8.1 Design entities and configurations

8.1.1 Entity declarations

entity_declaration ::=
 entity identifier is
 entity_header
 entity_declarative_part
[begin
 entity_statement_part]
 end [entity] [entity_simple_name] ;

Supported:

— Entity_declaration

Ignored:

— Entity_statement_part

Not supported:

— Entity_declarative_part
— Reserved word entity after reserved word end

Example:

library IEEE;
use IEEE.std_Logic_1164.all;

entity E is

generic(DEPTH : Integer := 8);
 port (CLOCK : in std_logic;

RESET : in std_logic;
 A : in std_logic_vector(7 downto 0);

B : inout std_logic_vector(7 downto 0);
C : out std_logic_vector(7 downto 0));

end E;

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 15

8.1.1.1 Entity header

entity_header ::=
[formal_generic_clause]
[formal_port_clause]

generic_clause ::= generic(generic_list);

port_clause ::= port(port_list);

Supported:

— Entity_header
— Generic_clause
— Port_clause

a) Generics

generic_list ::= generic_interface_list

Types allowed in the generic interface list of the entity_header shall be those described in 8.4.3.2.

Supported:

— Generic_list

b) Ports

port_list ::= port_interface_list

Supported:

— Port_list

Ignored:

— Initial values in port_list

8.1.1.2 Entity declarative part

entity_declarative_part ::=
 { entity_declarative_item }

entity_declarative_item ::
subprogram_declaration

| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| disconnection_specification
| use_clause
| group_template_declaration
| group_declaration

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

16 Copyright © 2000 IEEE. All rights reserved.

Not supported:

— Entity_declarative_part
— Entity_declarative_item

8.1.1.3 Entity statement part

entity_statement_part ::=
{ entity_statement }

entity_statement ::=
concurrent_assertion_statement

| passive_concurrent_procedure_call
| passive_process_statement

Ignored:

— Entity_statement_part
— Entity_statement

NOTE—The entity statement part describes passive behavior for simulation monitoring purposes. It cannot drive signals
in the architecture; therefore, it has no effect on the behavior of the architecture.

8.1.2 Architecture bodies

architecture_body ::=
architecture identifier of entity_name is
architecture_declarative_part

 begin
 [architecture_statement_part]
 end [architecture] [architecture_simple_name] ;

Supported:

— Architecture_body
— Multiple architectures corresponding to a given entity declaration

Not supported:

— Global signal interactions between architectures
— Reserved word architecture after reserved word end

8.1.2.1 Architecture declarative part

architecture_declarative_part ::=
{ block_declarative_item }

block_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | signal_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | component_declaration

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 17

 | attribute_declaration
 | attribute_specification
 | configuration_specification
 | disconnection_specification

| use_clause
 | group_template_declaration
 | group_declaration

Supported:

— Architecture_declarative_part
— Block_declarative_item

Ignored:

— File_declaration
— Alias_declaration
— Configuration_specification
— Disconnection_specification
— User-defined attribute declarations and their specifications, except as described in 7.1.

Not supported:

— Shared_variable_declaration
— Group_template_declaration
— Group_declaration

A use clause shall only reference the selected name of a package, which may, in turn, reference all of (or a
particular item_name within) the package.

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in 7.1. All other attribute declarations and attribute specifications shall be ignored.

8.1.2.2 Architecture statement part

architecture_statement_part ::=
 { concurrent_statement }

Supported:

— Architecture_statement_part

as defined in 8.9.

8.1.3 Configuration declaration

configuration_declaration ::=
 configuration identifier of entity_name is
 configuration_declarative_part
 block_configuration
 end [configuration] [configuration_simple_name];

configuration_declarative_part ::=
 { configuration_declarative_item }

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

18 Copyright © 2000 IEEE. All rights reserved.

configuration_declarative_item ::=
 use_clause
 | attribute_specification
 | group_declaration

Supported:

— Configuration_declaration

Not supported:

— Configuration_declarative_part
— Configuration_declarative_item
— Reserved word configuration after reserved word end

Configuration declaration shall be supported to the extent of specifying the architecture to be associated with
the top-level entity of a synthesized design hierarchy.

8.1.3.1 Block configuration

block_configuration ::=
 for block_specification
 { use_clause }
 { configuration_item }
 end for ;

block_specification ::=
 architecture_name
 | block_statement_label
 | generate_statement_label [(index_specification)]

index_specification ::=
 discrete_range
 | static_expresion

configuration_item ::=
 block_configuration
 | component_configuration

Supported:

— Block_configuration
— Block_specification

Not supported:
— Use_clause
— Index_specification
— Configuration_item
— Block_statement_label
— Generate_statement_label

Use clause shall not be supported in this context.

Block specification shall only be an architecture name.

Configuration declaration shall only be used to select the architecture to be used with the top-level entity.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 19

8.1.3.2 Component configuration

component_configuration ::=
 for component_specification
 [binding_indication ;]
 [block_configuration]
 end for ;

Not supported:

— Component_configuration

8.2 Subprograms and packages

8.2.1 Subprogram declarations

subprogram_declaration ::=
 subprogram_specification ;

subprogram_specification ::=
 procedure designator [(formal_parameter_list)]
 | [pure | impure] function designator [(formal_parameter_list)]
 return type_mark

designator ::= identifier | operator_symbol

operator_symbol ::= string_literal

Supported:

— Subprogram_declaration
— Subprogram_specification
— Designator
— Operator_symbol

Not supported:

— Reserved words pure and impure

8.2.1.1 Formal parameters

formal_parameter_list ::= parameter_interface_list

Supported:

— Formal_parameter_list

A subprogram shall not assign to an element or a slice of an unconstrained out parameter, unless the corre-
sponding actual parameter in each call of the subprogram is an identifier.

a) Constant and variable parameters

Constant and variable parameters shall be supported.

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

20 Copyright © 2000 IEEE. All rights reserved.

b) Signal parameters

Signal parameters shall be supported.

c) File parameters

File parameters shall not be supported.

8.2.2 Subprogram bodies

subprogram_body ::=
 subprogram_specification is
 subprogram_declarative_part
 begin
 [subprogram_statement_part]
 end [subprogram_kind] [designator] ;

subprogram_declarative_part ::=
 { subprogram_declarative_item }

subprogram_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | variable_declaration
 | file_declaration
 | alias_declaration
 | attribute_declaration
 | attribute_specification
 | use_clause
 | group_template_declaration
 | group_declaration

subprogram_statement_part ::=
 { sequential_statement }

subprogram_kind ::= procedure | function

Supported:

— Subprogram_body
— Subprogram_specification
— Subprogram_declarative_part
— Subprogram_declarative_item
— Subprogram_statement_part

Ignored:

— File_declaration
— Alias_declaration

Not supported:

— Subprogram_kind
— Group_template_declaration
— Group_declaration

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 21

A use clause shall only reference the selected name of a package, which may, in turn, reference all of (or a
particular item_name within) the package.

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in 7.1. All other attribute declarations and attribute specifications shall be ignored.

Subprogram recursion shall be supported when the number of recursions is bounded by a static value.

A subprogram statement part shall not include a wait statement.

8.2.3 Subprogram overloading

8.2.3.1 Operator overloading

Operator overloading shall be supported.

a) Signatures

Signatures shall not be supported.

NOTE—In the presence of a user-defined function representing an operator (i.e., a function defined outside any of the
standard packages named in Clause 4), the RTL synthesis tool must honor the functionality of the user-defined function.

8.2.4 Resolution functions

The resolution function RESOLVED is supported in subtype STD_LOGIC. All other resolution functions
shall be ignored.

8.2.5 Package declarations

package_declaration ::=
 package identifier is
 package_declarative_part
 end [package] [package_simple_name] ;

package_declarative_part ::=
 { package_declarative_item }

package_declarative_item ::=
 subprogram_declaration
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | signal_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | component_declaration
 | attribute_declaration
 | attribute_specification
 | disconnection_specification
 | use_clause
 | group_template_declaration
 | group_declaration

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

22 Copyright © 2000 IEEE. All rights reserved.

Supported:

— Package_declaration
— Package_declarative_part
— Package_declarative_item

Ignored:

— File_declaration
— Alias_declaration
— Disconnection_specification
— User-defined attribute declarations and their specifications, except as described in 7.1

Not supported:

— Reserved word package after reserved word end
— Shared_variable_declaration
— Group_template_declaration
— Group_declaration

Signal declarations shall have an initial value expression. Furthermore, a signal declared in a package shall
have no sources. A constant declaration must include the initial value expression; that is, deferred constants
are not supported.

A use clause shall only reference the selected name of a package, which may, in turn, reference all of (or a
particular item_name within) the package.

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in 7.1. All other attribute declarations and attribute specifications shall be ignored.

8.2.6 Package bodies

package_body ::=
 package body package_simple_name is
 package_body_declarative_part
 end [package body] [package_simple_name] ;

package_body_declarative_part ::=
 { package_body_declarative_item }

package_body_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | use_clause
 | group_template_declaration
 | group_declaration

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 23

Supported:

— Package_body
— Package_body_declarative_part
— Package_body_declarative_item

Ignored:

— Alias_declaration
— File_declaration

Not supported:

— Shared_variable_declaration
— Group_template_declaration
— Group_declaration
— Reserved words package body after reserved word end

A use clause shall only reference the selected name of a package, which may, in turn, reference all of (or a
particular item_name within) the package.

8.3 Types

8.3.1 Scalar types

scalar_type_definition ::=
 enumeration_type_definition
 | integer_type_definition
 | physical_type_definition
 | floating_type_definition

range_constraint ::= range range

range ::=
 range_attribute_name
 | simple_expression direction simple_expression

direction ::= to | downto

Supported:

— Scalar_type_definition
— Range_constraint
— Range
— Direction

Ignored:

— Physical_type_definition
— Floating_type_definition

Null ranges shall not be supported.

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

24 Copyright © 2000 IEEE. All rights reserved.

8.3.1.1 Enumeration types

enumeration_type_definition ::=
 (enumeration_literal { , enumeration_literal })

enumeration_literal ::= identifier | character_literal

Supported:

— Enumeration_type_definition
— Enumeration_literal

Elements of the following enumeration types (and their subtypes) shall be mapped to single bits, as specified
in IEEE Std 1076.3-1997:

a) BIT and BOOLEAN
b) STD_ULOGIC.

The synthesis tool may select a default mapping for elements of other enumeration types. The user may
override the default mapping by means of the ENUM_ENCODING attribute (see 7.1.1).

a) Predefined enumeration types

Supported:

— CHARACTER

Ignored:

— SEVERITY_LEVEL

Not supported:

— FILE_OPEN_KIND
— FILE_OPEN_STATUS

8.3.1.2 Integer types

integer_type_definition ::= range_constraint

Supported:

— Integer_type_definition

It is recommended that a synthesis tool should convert a signal or variable that has an integer subtype indica-
tion to a corresponding vector of bits. If the range contains no negative values, the object should have an
unsigned binary representation. If the range contains one or more negative values, the object should have a
twos-complement implementation. The vector should have a width that is capable of representing all possi-
ble values in the range specified for the integer type definition. The synthesis tool should support integer
types and positive, negative, and unconstrained (universal) integers whose bounds lie within the range
-2,147,483,648 to +2,147,483,647 inclusive (the range that successfully maps 32-bit twos-complement
numbers).

Subtypes NATURAL and POSITIVE are supported.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 25

NOTE—Integer ranges may be synthesized as if the zero value is included. For example, “INTEGER range 9 to 10”
may be synthesized using an equivalent vector length of 4 bits, just as if it had been defined with a subtype indication of
“INTEGER range 0 to 15.”

8.3.1.3 Physical types

physical_type_definition ::=
 range_constraint
 units
 primary_unit_declaration
 { secondary_unit_declaration }
 end units [physical_type_simple_name]

primary_unit_declaration ::= identifier ;

secondary_unit_declaration ::= identifier = physical_literal ;

physical_literal ::= [abstract_literal] unit_name

Ignored:

— Physical_type_definition
— Physical_literal

Physical objects and literals other than the predefined physical type TIME shall not be supported.

Declarations of objects of type TIME shall be ignored. References to objects and literals of type TIME may
occur only within the time_expression following the reserved word after, or the timeout_clause of a wait
statement, and shall be ignored.

8.3.1.4 Floating point types

floating_type_definition ::= range_constraint

Ignored:

— Floating_type_definition

Floating point type declarations shall be ignored. Reference to objects and literals of a floating point type
may occur only within ignored constructs (for example, after the after clause).

8.3.2 Composite types

composite_type_definition ::=
 array_type_definition
 | record_type_definition

Supported:

— Composite_type_definition

8.3.2.1 Array types

array_type_definition ::=
 unconstrained_array_definition
 | constrained_array_definition

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

26 Copyright © 2000 IEEE. All rights reserved.

unconstrained_array_definition ::=
 array (index_subtype_definition { , index_subtype_definition })
 of element_subtype_indication

constrained_array_definition ::=
 array index_constraint of element_subtype_indication

index_subtype_definition ::= type_mark range <>

index_constraint ::= (discrete_range { , discrete_range })

discrete_range ::= discrete_subtype_indication | range

range ::= range_attribute_name |
 simple_expression direction simple_expression

Supported:

— Array_type_definition
— Unconstrained_array_definition
— Constrained_array_definition
— Index_subtype_definition
— Index_constraint
— Discrete_range

The index constraint shall contain exactly one discrete range. The bounds of the discrete range shall be
specified directly or indirectly as static values belonging to an integer type. The element subtype indication
shall denote either a subtype of a scalar (integer or enumeration) type, or a one-dimensional vector of an
enumeration type whose elements denote single bits.

Null ranges shall not be supported.

If a discrete range is specified using a discrete subtype indication, the discrete subtype indication shall name
a subtype of an integer type.

In an unconstrained array definition, exactly one index subtype definition shall be supported.

A range shall comprise integer values.

a) Index constraints and discrete ranges

These shall be supported.

b) Predefined array types

Predefined array types shall be supported.

8.3.2.2 Record types

record_type_definition ::=
 record
 element_declaration
 { element_declaration }
 end record [record_type_simple_name]

element_declaration ::= identifier_list : element_subtype_definition ;

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 27

identifier_list ::= identifier { , identifier }

element_subtype_definition ::= subtype_indication

Supported:

— Record_type_definition
— Element_declaration
— Identifier_list
— Element_subtype_definition

8.3.3 Access types

access_type_definition ::= access subtype_indication

Ignored:

— Access_type_definition

The use of access types shall not be supported.

8.3.3.1 Incomplete type declarations

incomplete_type_declaration ::= type identifier ;

Ignored:

— Incomplete_type_declaration

8.3.3.2 Allocation and deallocation of objects

Allocation and deallocation shall not be supported.

8.3.4 File types

file_type_definition ::= file of type_mark

Ignored:

— File_type_definition

Use of file objects (objects declared as belonging to a file type) shall not be supported.

8.3.4.1 File operations

Not supported:

— File operations

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

28 Copyright © 2000 IEEE. All rights reserved.

8.4 Declarations

declaration ::=
 type_declaration
 | subtype_declaration
 | object_declaration
 | interface_declaration
 | alias_declaration
 | attribute_declaration
 | component_declaration
 | group_template_declaration
 | group_declaration
 | entity_declaration
 | configuration_declaration
 | subprogram_declaration
 | package_declaration

Supported:

— Declaration

Ignored:

— Alias_declaration

Not supported:

— Group_template_declaration
— Group_declaration

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in 7.1. All other attribute declarations and attribute specifications shall be ignored.

8.4.1 Type declarations

type_declaration ::=
 full_type_declaration
 | incomplete_type_declaration

full_type_declaration ::=
 type identifier is type_definition ;

type_definition ::=
 scalar_type_definition
 | composite_type_definition
 | access_type_definition
 | file_type_definition

Supported:

— Type_declaration
— Full_type_declaration
— Type_definition

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 29

Ignored:

— Incomplete_type_declaration
— Access_type_definition
— File_type_definition

Full type declarations containing access type definition or file type definition shall be ignored.

8.4.2 Subtype declarations

subtype_declaration ::=
 subtype identifier is subtype_indication ;

subtype_indication ::=
 [resolution_function_name] type_mark [constraint]

type_mark ::=
 type_name
 | subtype_name

constraint ::=
 range_constraint
 | index_constraint

Supported:

— Subtype_declaration
— Subtype_indication
— Type_mark
— Constraint

Ignored:

— User-defined resolution functions

8.4.3 Objects

8.4.3.1 Object declarations

object_declaration ::=
 constant_declaration
 | signal_declaration
 | variable_declaration
 | file_declaration

Supported:

— Object_declaration

Ignored:

— File_declaration

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

30 Copyright © 2000 IEEE. All rights reserved.

a) Constant declarations

constant_declaration ::=
 constant identifier_list : subtype_indication := expression ;

Supported:

— Constant_declaration

Deferred constant declaration shall not be supported. That is, the expression shall be present in the constant
declaration.

b) Signal declarations

signal_declaration ::=
 signal identifier_list : subtype_indication [signal_kind] [:= expression] ;

signal_kind ::= register | bus

Supported:

— Signal_declaration

Ignored:

— Expression

Not supported:

— Signal_kind

The initial value expression shall be ignored unless the declaration is in a package, where it shall have an ini-
tial value expression.

The subtype indication shall be a globally static type. An assignment to a signal declared in a package shall
not be supported.

c) Variable declarations

variable_declaration ::=
 [shared] variable identifier_list : subtype_indication [:= expression] ;

Supported:

— Variable_declaration

Ignored:

— Expression

Not supported:

— Reserved word shared

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 31

The reserved word shared shall not be supported. The initial value expression shall be ignored. The subtype
indication shall be a globally static type.

The use of access objects shall not be supported.

d) File declarations

file_declaration ::=
 file identifier_list : subtype_indication [file_open_information] ;

file_open_information ::=
 [open file_open_kind_expression] is file_logical_name

file_logical_name ::= string_expression

Ignored:

— File_declaration

The use of file objects shall not be supported.

8.4.3.2 Interface declarations

interface_declaration ::=
 interface_constant_declaration
 | interface_signal_declaration
 | interface_variable_declaration
 | interface_file_declaration

interface_constant_declaration ::=
 [constant] identifier_list : [in] subtype_indication [:= static_expression]

interface_signal_declaration ::=
 [signal] identifier_list : [mode] subtype_indication [bus]
 [:= static_expression]

interface_variable_declaration ::=
 [variable] identifier_list : [mode] subtype_indication
 [:= static_expression]

interface_file_declaration ::=
 file identifier_list : subtype_indication

mode ::= in | out | inout | buffer | linkage

Supported:

— Interface_declaration
— Interface_constant_declaration
— Interface_signal_declaration
— Interface_variable_declaration

Ignored:

— Static_expression (interface signal declarations and interface variable declarations)

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

32 Copyright © 2000 IEEE. All rights reserved.

Not supported:

— Interface_file_declaration
— Mode linkage
— Reserved word bus

Generic interface constant declarations shall have a subtype indication of an integer type or of a subtype
thereof.

The static expression shall be ignored in port interface lists and formal parameter lists, except for interface
constant declarations that shall be supported.

a) Interface lists

interface_list ::=
 interface_element {; interface_element}

interface_element ::= interface_declaration

Supported:

— Interface_list
— Interface_element

b) Association lists

association_list ::=
 association_element {, association_element}

association_element ::=
 [formal_part =>] actual_part

formal_part ::=
 formal_designator
 | function_name(formal_designator)
 | type_mark(formal_designator)

formal_designator ::=
 generic_name
 | port_name
 | parameter_name

actual_part ::=
 actual_designator
 | function_name(actual_designator)
 | type_mark(actual_designator)

actual_designator ::=
 expression
 | signal_name
 | variable_name
 | file_name
 | open

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 33

Supported:

— Association_list
— Association_element
— Formal_part
— Formal_designator
— Actual_part
— Actual_designator

Not supported:

— Function_name
— Type_mark
— File_name

The formal part may only be a formal designator, and the actual part shall only be an actual designator.

8.4.3.3 Alias declarations

alias_declaration ::=
 alias alias_designator [: subtype_indication] is name [signature];

alias_designator ::= identifier | character_literal | operator_symbol

Ignored:

— Alias_declaration
— Alias_designator

Not supported:

— Signature

Use of aliases shall not be supported.

8.4.4 Attribute declarations

attribute_declaration ::=
 attribute identifier : type_mark ;

Ignored:

— Attribute_declaration

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in 7.1. All other attribute declarations and attribute specifications shall be ignored.

8.4.5 Component declarations

component_declaration ::=
 component identifier [is]
 [local_generic_clause]
 [local_port_clause]
 end component [component_simple_name] ;

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

34 Copyright © 2000 IEEE. All rights reserved.

Supported:

— Component_declaration

Not supported:

— Reserved word is
— Component_simple_name

8.4.6 Group template declarations

group_template_declaration ::=
 group identifier is (entity_class_entry_list) ;

entity_class_entry_list ::=
 entity_class_entry {, entity_class_entry }

entity_class_entry ::= entity_class [<>]

Not supported:

— Group_template_declaration
— Entity_class_entry_list
— Entity_class_entry

8.4.7 Group declarations

group_declaration ::=
 group identifier : group_template_name(group_consituent_list);

group_constituent_list ::= group_constituent {, group_constituent }

group_constituent ::= name | character_literal

Not supported:

— Group_declaration
— Group_constituent_list
— Group_constituent

8.5 Specifications

8.5.1 Attribute specification

attribute_specification ::=
 attribute attribute_designator of entity_specification is expression;

entity_specification ::=
 entity_name_list : entity_class

entity_class ::=
 entity| architecture| configuration
| procedure| function| package
| type| subtype| constant
| signal| variable| component
| label| literal| units
| group| file

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 35

entity_name_list ::=
 entity_designator {, entity_designator}
 | others
 | all

entity_designator ::= entity_tag [signature]

entity_tag ::= simple_name | character_literal | operator_symbol

Supported:

— Attribute_specification
— Entity_specification
— Entity_class
— Entity_name_list
— Entity_designator
— Entity_tag

Ignored:

— User-defined attribute declarations

Not supported:

— Signature
— Entity class group and file
— Use of user-defined attributes
— Reserved words other and all in entity_name_list

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in 7.1. All other attribute declarations and attribute specifications shall be ignored.

8.5.2 Configuration specification

configuration_specification ::=
 for component_specification binding_indication;

component_specification ::=
 instantiation_list : component_name

instantiation_list ::=
 instantiation_label {, instantiation_label}
 | others
 | all

Ignored:

— Configuration_specification
— Component_specification
— Instantiation_list

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

36 Copyright © 2000 IEEE. All rights reserved.

8.5.2.1 Binding indication

binding_indication ::=
 [use entity_aspect]
 [generic_map_aspect]
 [port_map_aspect]

Ignored:

— Binding_indication

Not supported:

— Generic_map_aspect
— Port_map_aspect

a) Entity aspect

entity_aspect ::=
 entity entity_name [(architecture_identifier)]

| configuration configuration_name
| open

Not supported:

— Entity_aspect

b) Generic map and port map aspects

generic_map_aspect ::=
 generic map (generic_association_list)

port_map_aspect ::=
 port map (port_association_list)

8.5.2.2 Default binding indication

Default binding shall be supported.

8.5.3 Disconnection specification

Disconnection specifications shall be ignored.

8.6 Names

8.6.1 Names

name ::=
 simple_name
 | operator_symbol
 | selected_name
 | indexed_name
 | slice_name
 | attribute_name

prefix ::=
 name
 | function_call

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 37

Supported:

— Name
— Prefix

8.6.2 Simple names

simple_name ::= identifier:

Supported:

— Simple_name

8.6.3 Selected names

selected_name ::= prefix.suffix

suffix ::=
 simple_name
 | character_literal
 | operator_symbol
 | all

Supported:

— Selected_name
— Suffix

8.6.4 Indexed names

indexed_name ::= prefix (expression {, expression })

Supported:

— Indexed_name

Using an indexed name of an unconstrained out parameter in a procedure shall not be supported.

Only a single expression shall be permitted (no multidimensional objects).

8.6.5 Slice names

slice_name ::= prefix (discrete_range)

Supported:

— Slice_name

Using a slice name of an unconstrained out parameter in a procedure shall not be supported.

Null slices shall not be supported.

For a discrete range that appears as part of a slice name, the bounds of the discrete range shall be specified
directly or indirectly as static values belonging to an integer type.

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

38 Copyright © 2000 IEEE. All rights reserved.

8.6.6 Attribute names

attribute_name ::=
 prefix [signature]’attribute_designator [(expression)]

attribute_designator ::= attribute_simple_name

Supported attribute designators:

— 'BASE
— 'LEFT
— 'RIGHT
— 'HIGH
— 'LOW
— 'RANGE
— 'REVERSE_RANGE
— 'LENGTH
— 'EVENT
— 'STABLE

Supported:

— Attribute_name
— Attribute_designator

Not supported:

— Signature
— Expression

Attributes ‘EVENT’ and ‘STABLE’ shall be used as specified in 6.1.

8.7 Expressions

8.7.1 Expressions

expression ::=
 relation { and relation }
 | relation { or relation }
 | relation { xor relation }
 | relation [nand relation]
 | relation [nor relation]
 | relation { xnor relation }

relation ::=
 shift_expression [relational_operator shift_expression]

shift_expression ::=
 simple_expression [shift_operator simple_expression]

simple_expression ::=
 [sign] term { adding_operator term }
term ::=
 factor { multiplying_operator factor }

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 39

factor ::=
 primary [** primary]
 | abs primary
 | not primary

primary ::=
 name
 | literal
 | aggregate
 | function_call
 | qualified_expression
 | type_conversion
 | allocator
 | (expression)

Supported:

— Expression
— Relation
— Shift_expression
— Simple_expression
— Term
— Factor
— Primary

Not supported:

— xnor operator
— All shift operators
— Allocator in a primary

8.7.2 Operators

logical_operator ::= and | or | nand | nor | xor | xnor
relational_operator ::= = | /= | < | <= | > | >=
shift_operator ::= sll | srl | sla | sra | rol | ror
adding_operator ::= + | - | &
sign ::= + | -
multiplying_operator ::= * | / | mod | rem
miscellaneous_operator ::= ** | abs | not

Supported:

— Logical_operator
— Relational_operator
— Adding_operator
— Sign
— Multiplying_operator
— Miscellaneous_operator

Not supported:

— xnor operator
— Shift_operator

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

40 Copyright © 2000 IEEE. All rights reserved.

8.7.2.1 Logical operators

Not supported:

— xnor operator

8.7.2.2 Relational operators

No restriction.

NOTE—Using relational operators for enumerated type that has an explicit encoding specified via the
ENUM_ENCODING attribute may lead to simulation mismatches (see 7.1.1).

8.7.2.3 Shift operators

Supported:

— All SHIFT_LEFT and SHIFT_RIGHT functions defined in packages NUMERIC_BIT and
NUMERIC_STD as part of IEEE Std 1076.3-1997

Not supported:

— All shift operators

8.7.2.4 Adding operators

No restriction.

8.7.2.5 Sign operators

No restriction.

8.7.2.6 Multiplying operators

Supported:

— * (multiply) operator
— / (division), mod, and rem operators
— All multiplying operators defined in IEEE Std 1076.3-1997

The / (division), mod, and rem operators shall be supported only when both operands are static or when the
right operand is a static power of two.

8.7.2.7 Miscellaneous operators

Supported:

— ** (exponentiation) operator
— abs operator

The ** (exponentiation) operator shall be supported only when both operands are static or when the left
operand has the static value of two.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 41

8.7.3 Operands

8.7.3.1 Literals

literal ::=
 numeric_literal
 | enumeration_literal
 | string_literal
 | bit_string_literal

| null

numeric_literal ::=
 abstract_literal
 | physical_literal

Supported:

— Literal
— Numeric_literal

Not supported:

— Null

References to objects and literals of type TIME may occur only within the time_expression following the
reserved word after or the timeout_clause of a wait statement, and shall be ignored.

8.7.3.2 Aggregates

aggregate ::=
 (element_association {, element_association})

element_association ::=
 [choices =>] expression

choices ::= choice { | choice }

choice ::=
 simple_expression
 | discrete_range
 | element_simple_name
 | others

Supported:

— Aggregate
— Element_association
— Choices
— Choice
— Use of a type as a choice

Example:

subtype Src_Typ is Integer range 7 downto 4;
 subtype Dest_Typ is Integer range 3 downto 0;

-- Constant definition with aggregates
 constant Data_c : Std_Logic_Vector(7 downto 0) := (Src_Typ => '1', Dest_Typ => '0');

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

42 Copyright © 2000 IEEE. All rights reserved.

a) Record aggregates

Not supported:

— Record aggregates

b) Array aggregates

No restriction.

8.7.3.3 Function calls

function_call ::=
 function_name [(actual_parameter_part)]

actual_parameter_part ::= parameter_association_list

Supported:

— Function_call
— Actual_parameter_part

Restrictions exist for the actual parameter part and are described in 8.4.3.2.

8.7.3.4 Qualified expressions

qualified_expression ::=
 type_mark’(expression)
 | type_mark’aggregate

Supported:

— Qualified_expression

8.7.3.5 Type conversions

type_conversion ::= type_mark(expression)

Supported:

— Type_conversion

8.7.3.6 Allocators

allocator ::=
 new subtype_indication
 | new qualified_expression

Not supported:

— Allocator

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 43

8.7.4 Static expressions

8.7.4.1 Locally static primaries

Locally static primaries shall be supported.

8.7.4.2 Globally static primaries

Globally static primaries shall be supported.

8.7.5 Universal expressions

Floating-point expressions shall not be supported. Precision shall be limited to 32 bits.

8.8 Sequential statements

sequence_of_statements ::=
 { sequential_statement }

sequential_statement ::=
 wait_statement
 | assertion_statement
 | report_statement
 | signal_assignment_statement
 | variable_assignment
 | procedure_call_statement
 | if_statement
 | case_statement
 | loop_statement
 | next_statement
 | exit_statement
 | return_statement
 | null_statement

Supported:

— Sequence_of_statements
— Sequential_statement

8.8.1 Wait statement

wait_statement ::=
 [label:] wait [sensitivity_clause] [condition_clause] [timeout_clause] ;

sensitivity_clause ::= on sensitivity_list

sensitivity_list ::= signal_name {, signal_name}

condition_clause ::= until condition

condition ::= boolean_expression

timeout_clause ::= for time_expression

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

44 Copyright © 2000 IEEE. All rights reserved.

Supported:

— Wait_statement
— Sensitivity_list
— Condition_clause
— Condition

Ignored:

— Timeout_clause

Not supported:

— Label
— Sensitivity_clause

Only one wait until statement shall be allowed per process statement, and it shall be the first statement in
the process.

Use of timeout clause may lead to simulation mismatches.

8.8.2 Assertion statement

assertion_statement ::= [label:] assertion ;

assertion ::=
 assert condition
 [report expression]
 [severity expression]

Ignored:

— Assertion_statement
— Assertion

Not supported:

— Label

8.8.3 Report statement

report_statement ::=
 [label:] report expression
 [severity expression] ;

Not supported:

— Report_statement

8.8.4 Signal assignment statement

signal_assignment_statement ::=
 [label:] target <= [delay_mechanism] waveform ;

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 45

delay_mechanism ::=
 transport
 | [reject time_expression] inertial

target ::=
 name
 | aggregate

waveform ::=
 waveform_element {, waveform_element}
 | unaffected

Supported:

— Signal_assignment_statement
— Target
— Waveform

Ignored:

— Delay_mechanism

Not supported:

— Label
— Reserved words reject, inertial and unaffected
— Time_expression
— Multiple waveform_elements

An assignment to a signal declared in a package shall not be supported.

8.8.4.1 Updating a projected output waveform

waveform_element ::=
 value_expression [after time_expression]

| null [after time_expression]

Supported:

— Waveform_element

Ignored:

— Time expression after reserved word after

Not supported:

— Null waveform elements

8.8.5 Variable assignment statement

variable_assignment_statement ::=
 [label:] target := expression ;

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

46 Copyright © 2000 IEEE. All rights reserved.

Supported:

— Variable_assignment_statement

Not supported:

— Label

8.8.5.1 Array variable assignments

Array variable assignment shall be supported.

8.8.6 Procedure call statement

procedure_call_statement ::= [label:] procedure_call ;

procedure_call ::= procedure_name [(actual_parameter_part)]

Supported:

— Procedure_call_statement
— Procedure_call

Not supported:

— Label

Restrictions for the actual parameter part are described in 8.4.3.2, item (b).

8.8.7 If statement

if_statement ::=
 [if_label:]
 if condition then
 sequence_of_statements
 { elsif condition then
 sequence_of_statements }
 [else
 sequence_of_statements]
 end if [if_label] ;

Supported:

— If_statement

Not supported:

— If_label

If a signal or variable is assigned under some values of the conditional expressions in the if statement, but
not for all values, then storage elements may result (see 6.2).

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 47

8.8.8 Case statement

case_statement ::=
 [case_label:]
 case expression is
 case_statement_alternative
 { case_statement_alternative }
 end case [case_label] ;

case_statement_alternative ::=
 when choices =>
 sequence_of_statements

Supported:

— Case_statement
— Case_statement_alternative

Not supported:

— Label

If a signal or variable is assigned values in some branches of a case statement, but not in all cases, then level-
sensitive storage elements may result (see 6.2). This is true only if the assignment does not occur under the
control of a clock edge.

If a metalogical value occurs as a choice (or as an element of a choice) in a case statement that is interpreted
by a synthesis tool, the synthesis tool shall interpret the choice as one that may never occur. That is, the
interpretation that is generated shall not be required to contain any constructs corresponding to the presence
or absence of the sequence of statements associated with the choice.

NOTES

1—If the type of the case expression includes metalogical values, and if not all the metalogical values are included
among the case choices, then the case statement must include an others choice to cover the missing metalogical choice
values (see IEEE Std 1076-1993).

2—A case choice (such as “1X1”) that includes a metalogical value indicates a branch that can never be taken by the
synthesized circuit (see IEEE Std 1076.3-1997).

8.8.9 Loop statement

loop_statement ::=
 [loop_label:]
 [iteration_scheme] loop
 sequence_of_statements
 end loop [loop_label] ;

iteration_scheme ::=
 while condition
 | for loop_parameter_specification

parameter_specification ::=
 identifier in discrete_range

discrete_range ::= discrete_subtype_indication | range

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

48 Copyright © 2000 IEEE. All rights reserved.

Supported:

— Loop_statement
— Iteration_scheme
— Parameter_specification
— Discrete_range

Not supported:

— While

The iteration scheme shall not be omitted.

For a discrete range that appears as part of a parameter specification, the bounds of the discrete range shall
be specified directly or indirectly as static values belonging to an integer type.

8.8.10 Next statement

next_statement ::=
 [label:] next [loop_label] [when condition] ;

Supported:

— Next_statement

Not supported:

— Label

8.8.11 Exit statement

exit_statement ::=
 [label:] exit [loop_label] [when condition] ;

Supported:

— Exit_statement

Not supported:

— Label

8.8.12 Return statement

return_statement ::=
 [label:] return [expression] ;

Supported:

— Return_statement

Not supported:

— Label

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 49

8.8.13 Null statement

null_statement ::=
 [label:] null ;

Supported:

— Null_statement

Not supported:

— Label

8.9 Concurrent statements

concurrent_statement ::=
 block_statement
 | process_statement
 | concurrent_procedure_call_statement
 | concurrent_assertion_statement
 | concurrent_signal_assignment_statement
 | component_instantiation_statement
 | generate_statement

Supported:

— Concurrent_statement

8.9.1 Block statement

block_statement ::=
 block_label:
 block [(guard_expression)] [is]
 block_header
 block_declarative_part
 begin
 block_statement_part
 end block [block_label] ;

block_header ::=
 [generic_clause
 [generic_map_clause ;]]
 [port_clause
 [port_map_clause ;]]

block_declarative_part ::=
 { block_declarative_item }

block_statement_part ::=
 { concurrent_statement }

Supported:

— Block_statement
— Block_declarative_part
— Block_statement_part

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

50 Copyright © 2000 IEEE. All rights reserved.

Not supported:

— Block_header
— Guard_expression
— Reserved word is

8.9.2 Process statement

process_statement ::=
 [process_label:]
 [postponed] process [(sensitivity_list)] [is]
 process_declarative_part
 begin
 process_statement_part
 end process [process_label] ;

process_declarative_part ::=
 { process_declarative_item }

process_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | variable_declaration
 | file_declaration
 | alias_declaration
 | attribute_declaration
 | attribute_specification
 | use_clause
 | group_template_declaration
 | group_declaration

process_statement_part ::=
 { sequential_statement }

Supported:

— Process_statement
— Sensitivity_list
— Process_declarative_part
— Process_declarative_item
— Process_statement_part

Ignored:

— File_declaration
— Alias_declaration
— User-defined attribute declarations and their specifications

Not supported:

— Reserved words postponed and is
— Group_template_declaration
— Group_declaration

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 51

The sensitivity list must include those signals or elements of signals that are read by the process except for
signals read only under control of a clock edge, as described in Clause 6.

A use clause shall only reference the selected name of a package, which may, in turn, reference all of (or a
particular item_name within) the package.

Attribute declarations and specifications as described in 7.1 shall be the only ones supported.

Use of file objects, access objects (variables of access type), and aliases in a process are not supported.

8.9.3 Concurrent procedure call statement

concurrent_procedure_call_statement ::=
 [label:] [postponed] procedure_call ;

Supported:

— Concurrent_procedure_call_statement

Not supported:

— Reserved word postponed

8.9.4 Concurrent assertion statement

concurrent_assertion_statement ::=
 [label:] [postponed] assertion ;

Ignored:

— Concurrent_assertion_statement

Not supported:

— Reserved word postponed

8.9.5 Concurrent signal assignment statement

concurrent_signal_assignment_statement ::=
 [label:] [postponed] conditional_signal_assignment
 | [label:] [postponed] selected_signal_assignment

options ::= [guarded] [delay_mechanism]

Supported:

— Concurrent_signal_assignment_statement

Ignored:

— Options

Not supported:

— Reserved words postponed and guarded

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

52 Copyright © 2000 IEEE. All rights reserved.

Any after clauses shall be ignored.

Multiple waveform elements shall not be supported.

The value unaffected shall not be supported.

Edge specifications (<clock_edge> or <clock_level>) shall not be allowed in concurrent signal assignments.

Example:

architecture ARCH of ENT is
begin

 B(7) <= A(6);
 B(3 downto 0) <= A(7 downto 4);

 C <= not A;

end ARCH;

8.9.5.1 Conditional signal assignment

conditional_signal_assignment ::=
 target <= options conditional_waveforms ;

conditional_waveforms ::=
 { waveform when condition else }
 waveform [when condition]

Supported:

— Conditional_signal_assignment
— Conditional_waveforms

Ignored:

— Options

Not supported:

— Last when condition

Conditional signal assignments that satisfy either of the following conditions shall not be supported:

a) The conditional waveforms contain a reference to one or more elements of the target signal.
b) The conditional waveforms contain an expression that represents a clock edge as defined in 6.1.2.

Example:

architecture ARCH of ENT is
begin

 C <= B when A(0) = '1' else
not B when A(1) = '1' else
"00000000" when A(2) = '1' and RESET = '1' else
(others => ('1'));

end ARCH;

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 53

8.9.5.2 Selected signal assignments

selected_signal_assignment ::=
 with expression select
 target <= options selected_waveforms ;

selected_waveforms ::=
 { waveform when choices , }
 waveform when choices

Supported:

— Selected_signal_assignment
— Selected_waveforms

Ignored:

— Options

Selected signal assignments that satisfy either of the following conditions shall not be supported:

a) The selected waveforms contain a reference to one or more elements of the target signal.
b) The selected waveforms contain an expression that represents a clock edge as defined in 6.1.2.

Example:

architecture A of E is
begin

with A select
C <= B when "00000000",
not B when "10101010",
(others => ('1')) when "11110001",
not A when others;

end A;

8.9.6 Component instantiation statement

component_instantiation_statement ::=
 instantiation_label:
 instantiated_unit
 [generic_map_aspect]
 [port_map_aspect] ;

instantiated_unit ::=
 [component] component_name
 | entity entity_name [(architecture_name)]
 | configuration configuration_name

Supported:

— Component_instantiation_statement
— Instantiated_unit

Not supported:

— Entity and configuration forms of instantiated unit
— Reserved word component

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

54 Copyright © 2000 IEEE. All rights reserved.

Restrictions exist for the generic map aspect and the port map aspect and are described in 8.4.3.2.

Type conversions on a formal port shall not be supported.

8.9.6.1 Instantiation of a component

Component instantiation shall be supported.

8.9.6.2 Instantiation of a design entity

Not supported:

— Instantiation of a design entity

8.9.7 Generate statement

generate_statement ::=
 generate_label:
 generation_scheme generate
 [{ block_declarative_item }
 begin]
 { concurrent_statement }
 end generate [generate_label] ;

generation_scheme ::=
 for generate_parameter_specification
 | if condition

label ::= identifier

Supported:

— Generate_statement
— Generate_scheme
— Label

Not supported:

— Block_declarative_item (the declarative region)
— Reserved word begin

The generate parameter specification shall be statically computable and of the form “identifier in range”
only.

8.10 Scope and visibility

8.10.1 Declarative region

Declarative regions shall be supported.

8.10.2 Scope of declarations

The scope of declarations shall be supported.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 55

8.10.3 Visibility

Visibility rules shall be supported.

8.10.4 Use clause

use_clause ::=
 use selected_name {, selected_name} ;

Supported:

— Use_clause

8.10.5 The context of overloaded resolution

The context of overloaded resolution shall be supported.

8.11 Design units and their analysis

8.11.1 Design units

design_file ::= design_unit { design_unit }

design_unit ::= context_clause library_unit
library_unit ::=
 primary_unit
 | secondary_unit

primary_unit ::=
 entity_declaration
 | configuration_declaration
 | package_declaration

secondary_unit ::=
 architecture_body
 | package_body

Supported:

— Design_file
— Design_unit
— Library_unit
— Primary_unit
— Secondary_unit

8.11.2 Design libraries

library_clause ::= library logical_name_list ;

logical_name_list ::= logical_name {, logical_name}

logical_name ::= identifier

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

56 Copyright © 2000 IEEE. All rights reserved.

Supported:

— Library_clause
— Logical_name_list
— Logical_name

8.11.3 Context clauses

context_clause ::= { context_item }

context_item ::=
 library_clause
 | use_clause

Supported:

— Context_clause
— Context_item

8.11.4 Order of analysis

The order of analysis shall be supported.

8.12 Elaboration

No constraints shall be put on elaboration for synthesis.

8.13 Lexical elements

Real literals are only allowed in after clauses.

Extended identifiers shall not be supported.

8.14 Predefined language environment

8.14.1 Predefined attributes

8.14.1.1 Attributes whose prefix is a type t

— t'BASE
— t'LEFT
— t'RIGHT
— t'HIGH
— t'LOW
— t'ASCENDING
— t'IMAGE
— t'VALUE(x)
— t'POS(x)
— t'VAL(x)
— t'SUCC(x)

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 57

— t'PRED(x)
— t'LEFTOF(x)
— t'RIGHTOF(x)

8.14.1.2 Attributes whose prefix is an array object a, or attributes of a constrained array
subtype a

— a'LEFT[(n)]
— a'RIGHT[(n)]
— a'HIGH[(n)]
— a'LOW[(n)]
— a'RANGE[(n)]
— a'REVERSE_RANGE[(n)]
— a'LENGTH[(n)]
— a'ASCENDING[(n)]

8.14.1.3 Attributes whose prefix is a signal s

— s'DELAYED[(t)]
— s'STABLE[(t)]
— s'QUIET
— s'TRANSACTION
— s'EVENT
— s'ACTIVE
— s'LAST_EVENT
— s'LAST_ACTIVE
— s'LAST_VALUE
— s'DRIVING
— s'DRIVING_VALUE

Attributes STABLE and EVENT may be used only as described in Clause 6.

8.14.1.4 Attributes whose prefix is a named object e

— e'SIMPLE_NAME
— e'INSTANCE_NAME
— e'PATH_NAME

8.14.2 Package STANDARD

Functions in the package STANDARD shall be either supported or not supported as defined below.

Supported:

— Functions with arguments of type CHARACTER

— Functions with arguments of type STRING

— All functions whose arguments are only of type BOOLEAN

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

58 Copyright © 2000 IEEE. All rights reserved.

— All functions whose arguments are only of type BIT

— The following functions with arguments of type “universal integer” or INTEGER:

Relational operator functions
“+”, “-”, “abs”, “*”
“/”, “mod”, and “rem” when both operands are static or the second argument is a static power of two
“**” provided both operands are static, or the first argument is a static value of two

— All functions with an argument of type BIT_VECTOR

Ignored:

— The attribute ‘FOREIGN’

Not supported:

— Functions with arguments of type SEVERITY_LEVEL

— The following functions with arguments of type “universal integer” or INTEGER:

“/”, “mod”, and “rem” when neither operand is static, or the second argument is not a static power of
two

“**” when the first argument is not a static value of two, or when neither operand is static

— Functions with arguments of type “universal real” or of type REAL

— Functions with arguments of type TIME

— The function NOW

— Functions with arguments of type FILE_OPEN_KIND

— Functions with arguments of type FILE_OPEN_STATUS

8.14.3 Package TEXTIO

The subprograms defined in package TEXTIO shall not be supported.

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 59

Annex A

(informative)

Syntax summary

This annex summarizes the VHDL syntax that is supported.

abstract_literal ::= decimal_literal | based_literal

access_type_definition ::= access subtype_indication

actual_designator ::=
 expression
 | signal_name
 | variable_name
 | file_name
 | open

actual_parameter_part ::= parameter_association_list

actual_part ::=
 actual_designator
 | function_name(actual_designator)
 | type_mark(actual_designator)

adding_operator ::= + | - | &

aggregate ::=
 (element_association {, element_association})

alias_declaration ::=
 alias alias_designator [: subtype_indication] is name [signature];

alias_designator ::= identifier | character_literal | operator_symbol

allocator ::=
 new subtype_indication
 | new qualified_expression

architecture_body ::=
 architecture identifier of entity_name is
 architecture_declarative_part
 begin
 architecture_statement_part]
 end [architecture] [architecture_simple_name] ;

architecture_declarative_part ::=
 { block_declarative_item }

architecture_statement_part ::=
 { concurrent_statement }

array_type_definition ::=
 unconstrained_array_definition
 | constrained_array_definition

assertion ::=
 assert condition
 [report expression]
 [severity expression]

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

60 Copyright © 2000 IEEE. All rights reserved.

assertion_statement ::= [label:] assertion ;

association_element ::=
 [formal_part =>] actual_part

association_list ::=
 association_element {, association_element}

attribute_declaration ::=
 attribute identifier : type_mark ;

attribute_designator ::= attribute_simple_name

attribute_name ::=
 prefix [signature]’attribute_designator [(expression)]

attribute_specification ::=
 attribute attribute_designator of entity_specification is expression;

base ::= integer

base_specifier ::= B | O | X

base_unit_declaration ::= identifier ;

based_integer ::=
 extended_digit { [underline] extended_digit }

based_literal ::=
 base # based_integer [. based_integer] # [exponent]

basic_character ::=
 basic_graphic_character | format_effector

basic_graphic_character ::=
 upper_case_letter | digit | special_character| space_character

basic_identifier ::=
 letter { [underline] letter_or_digit }

binding_indication ::=
 [use entity_aspect]
 [generic_map_aspect]
 [port_map_aspect]

bit_string_literal :: base_specifier “ [bit_value] “

bit_value ::= extended_digit { [underline] extended_digit }

block_configuration ::=
 for block_specification
 { use_clause }
 { configuration_item }
 end for ;

block_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | signal_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 61

 | component_declaration
 | attribute_declaration
 | attribute_specification
 | configuration_specification
 | disconnection_specification
 | use_clause
 | group_template_declaration
 | group_declaration

block_declarative_part ::=
 { block_declarative_item }

block_header ::=
 [generic_clause
 [generic_map_clause ;]]
 [port_clause
 [port_map_clause ;]]

block_specification ::=
 architecture_name
 | block_statement_label
 | generate_statement_label [(index_specification)]

block_statement ::=
 block_label:
 block [(guard_expression)] [is]
 block_header
 block_declarative_part
 begin
 block_statement_part
 end block [block_label] ;

block_statement_part ::=
 { concurrent_statement }

case_statement ::=
 [case_label:]
 case expression is
 case_statement_alternative
 { case_statement_alternative }
 end case [case_label] ;

case_statement_alternative ::=
 when choices =>
 sequence_of_statements

character_literal ::= ‘ graphic_character ‘

choice ::=
 simple_expression
 | discrete_range
 | element_simple_name
 | others

choices ::= choice { | choice }

component_configuration ::=
 for component_specification
 [binding_indication ;]
 [block_configuration]
 end for ;

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

62 Copyright © 2000 IEEE. All rights reserved.

component_declaration ::=
 component identifier [is]
 [local_generic_clause]
 [local_port_clause]
 end component [component_simple_name];

component_instantiation_statement ::=
 instantiation_label:
 instantiated_unit
 [generic_map_aspect]
 [port_map_aspect] ;

component_specification ::=
 instantiation_list : component_name

composite_type_definition ::=
 array_type_definition
 | record_type_definition

concurrent_assertion_statement ::=
 [label:] [postponed] assertion ;

concurrent_procedure_call_statement ::=
 [label:] [postponed] procedure_call ;

concurrent_signal_assignment_statement ::=
 [label:] [postponed] conditional_signal_assignment
 | [label:] [postponed] selected_signal_assignment

concurrent_statement ::=
 block_statement
 | process_statement
 | concurrent_procedure_call_statement
 | concurrent_assertion_statement
 | concurrent_signal_assignment_statement
 | component_instantiation_statement
 | generate_statement

condition ::= boolean_expression

condition_clause ::= until condition

conditional_signal_assignment ::=
 target <= options conditional_waveforms ;

conditional_waveforms ::=
 { waveform when condition else }
 waveform [when condition]

configuration_declaration ::=
 configuration identifier of entity_name is
 configuration_declarative_part
 block_configuration
 end [configuration] [configuration_simple_name];

configuration_declarative_item ::=
 use_clause
 | attribute_specification
 | group_declaration

configuration_declarative_part ::=
 { configuration_declarative_item }

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 63

configuration_item ::=
 block_configuration
 | component_configuration

configuration_specification ::=
 for component_specification binding_indication;

constant_declaration ::=
 constant identifier_list : subtype_indication := expression ;

constrained_array_definition ::=
 array index_constraint of element_subtype_indication

constraint ::=
 range_constraint
 | index_constraint

context_clause ::= { context_item }

context_item ::=
 library_clause
 | use_clause

decimal_literal ::= integer [. integer] [exponent]

declaration ::=
 type_declaration
 | subtype_declaration
 | object_declaration
 | interface_declaration
 | alias_declaration
 | attribute_declaration
 | component_declaration
 | group_template_declaration
 | group_declaration
 | entity_declaration
 | configuration_declaration
 | subprogram_declaration
 | package_declaration

delay_mechanism ::=
 transport
 | [reject time_expression] inertial

design_file ::= design_unit { design_unit }

design_unit ::= context_clause library_unit

designator ::= identifier | operator_symbol

direction ::= to | downto

disconnection_specification ::=
 disconnect guarded_signal_specification after time_expression ;

discrete_range ::= discrete_subtype_indication | range

element_association ::=
 [choices =>] expression

element_declaration ::= identifier_list : element_subtype_definition ;

element_subtype_definition ::= subtype_indication

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

64 Copyright © 2000 IEEE. All rights reserved.

entity_aspect ::=
 entity entity_name [(architecture_identifier)]
 | configuration configuration_name
 | open

entity_class ::=
 entity| architecture| configuration
| procedure| function| package
| type| subtype| constant
| signal| variable| component
| label| literal| units
| group| file

entity_class_entry ::= entity_class [<>]

entity_class_entry_list ::=
 entity_class_entry {, entity_class_entry }

entity_declaration ::=
 entity identifier is
 entity_header
 entity_declarative_part
[begin
 entity_statement_part]
 end [entity] [entity_simple_name] ;

entity_declarative_item ::
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | signal_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | attribute_declaration
 | attribute_specification
 | disconnection_specification
 | use_clause
 | group_template_declaration
 | group_declaration

entity_declarative_part ::=
 { entity_declarative_item }

entity_designator ::= entity_tag [signature]

entity_header ::=
 [formal_generic_clause]
 [formal_port_clause]

entity_name_list ::=
 entity_designator {, entity_designator}
 | others
 | all

entity_specification ::=
 entity_name_list : entity_class

entity_statement ::=
 concurrent_assertion_statement
 | passive_concurrent_procedure_call
 | passive_process_statement

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 65

entity_statement_part ::=
 { entity_statement }

entity_tag ::= simple_name | character_literal | operator_symbol

enumeration_literal ::= identifier | character_literal

enumeration_type_definition ::=
 (enumeration_literal { , enumeraton_literal })

exit_statement ::=
 [label:] exit [loop_label] [when condition] ;

exponent ::= E [+] integer | E - integer

expression ::=
 relation { and relation }
 | relation { or relation }
 | relation { xor relation }
 | relation [nand relation]
 | relation [nor relation]
 | relation { xnor relation }

extended_digit ::= digit | letter

extended_identifier ::=
\ graphic_character { graphic_character } \

factor ::=
 primary [** primary]
 | abs primary
 | not primary

file_declaration ::=
 file identifier_list : subtype_indication [file_open_information] ;

file_logical_name ::= string_expression

file_open_information ::=
 [open file_open_kind_expression] is file_logical_name

file_type_definition ::= file of type_mark

floating_type_definition ::= range_constraint

formal_designator ::=
 generic_name
 | port_name
 | parameter_name

formal_parameter_list ::= parameter_interface_list

formal_part ::=
 formal_designator
 | function_name(formal_designator)
 | type_mark(formal_designator)

full_type_declaration ::=
 type identifier is type_definition ;

function_call ::=
 function_name [(actual_parameter_part)]

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

66 Copyright © 2000 IEEE. All rights reserved.

generate_statement ::=
 generate_label:
 generation_scheme generate
 [{ block_declarative_item }
 begin]
 { concurrent_statement }
 end generate [generate_label] ;

generation_scheme ::=
 for generate_parameter_specification
 | if condition

generic_clause ::=
 generic(generic_list);

generic_list ::= generic_interface_list

generic_map_aspect ::=
 generic map (generic_association_list)

graphic_character ::=
 basic_graphic_character | lower_case_letter | other_special_character

group_constituent ::= name | character_literal

group_constituent_list ::= group_constituent {, group_constituent }

group_declarataion ::=
 group identifier : group_template_name(group_consituent_list);

group_template_declaration ::=
 group identifier is (entity_class_entry_list) ;

guarded_signal_specification ::=
 guarded_signal_list : type_mark

identifier ::=
 basic_identifier | extended_identifier

identifier_list ::= identifier { , identifier }

if_statement ::=
 [if_label:]
 if condition then
 sequence_of_statements
 { elsif condition then
 sequence_of_statements }
 [else
 sequence_of_statements]
 end if [if_label] ;

incomplete_type_declaration ::= type identifier ;

index_constraint ::= (discrete_range { , discrete_range })

index_specification ::=
 discrete_range
 | static_expression

index_subtype_definition ::= type_mark range <>

indexed_name ::= prefix (expression {, expression })

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 67

instantiated_unit ::=
 [component] component_name
 | entity entity_name [(architecture_name)]
 | configuration configuration_name

instantiation_list ::=
 instantiation_label {, instantiation_label}
 | others
 | all

integer ::= digit { [underline] digit }

integer_type_definition ::= range_constraint

interface_constant_declaration ::=
 [constant] identifier_list : [in] subtype_indication [:= static_expression]

interface_declaration ::=
 interface_constant_declaration
 | interface_signal_declaration
 | interface_variable_declaration
 | interface_file_declaration

interface_element ::= interface_declaration

interface_file_declaration ::=
 file identifier_list : subtype_indication

interface_list ::=
 interface_element {; interface_element}

interface_signal_declaration ::=
 [signal] identifier_list : [mode] subtype_indication [bus]
 [:= static_expression]

interface_variable_declaration ::=
 [variable] identifier_list : [mode] subtype_indication
 [:= static_expression]

iteration_scheme ::=
 while condition
 | for loop_parameter_specification

label ::= identifier

letter ::= upper_case_letter | lower_case_letter

letter_or_digit ::= letter | digit

library_clause ::= library logical_name_list ;

library_unit ::=
 primary_unit
 | secondary_unit

literal ::=
 numeric_literal
 | enumeration_literal
 | string_literal
 | bit_string_literal
 | null

logical_name ::= identifier

logical_name_list ::= logical_name { , logical_name }

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

68 Copyright © 2000 IEEE. All rights reserved.

logical_operator ::= and | or | nand | nor | xor | xnor

loop_statement ::=
 [loop_label:]
 [iteration_scheme] loop
 sequence_of_statements
 end loop [loop_label] ;

miscellaneous_operator ::= ** | abs | not

mode ::= in | out | inout | buffer | linkage

multiplying_operator ::= * | / | mod | rem

name ::=
 simple_name
 | operator_symbol
 | selected_name
 | indexed_name
 | slice_name
 | attribute_name

next_statement ::=
 [label:] next [loop_label] [when condition] ;

null_statement ::=
 [label:] null ;

numeric_literal ::=
 abstract_literal
 | physical_literal

object_declaration ::=
 constant_declaration
 | signal_declaration
 | variable_declaration
 | file_declaration

operator_symbol ::= string_literal

options ::= [guarded] [delay_mechanism]

package_body ::=
 package body package_simple_name is
 package_body_declarative_part
 end [package body] [package_simple_name] ;

package_body_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | use_clause
 | group_template_declaration
 | group_declaration

package_body_declarative_part ::=
 { package_body_declarative_item }

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 69

package_declaration ::=
 package identifier is
 package_declarative_part
 end [package] [package_simple_name] ;

package_declarative_item ::=
 subprogram_declaration
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | signal_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | component_declaration
 | attribute_declaration
 | attribute_specification
 | disconnection_specification
 | use_clause
 | group_template_declaration
 | group_declaration

package_declarative_part ::=
 { package_declarative_item }

parameter_specification ::=
 identifier in discrete_range

physical_literal ::= [abstract_literal] unit_name

physical_type_definition ::=
 range_constraint
 units
 primary_unit_declaration
 { secondary_unit_declaration }
 end units [physical_type_simple_name]

port_clause ::=
 port(port_list);

port_list ::= port_interface_list

port_map_aspect ::=
 port map (port_association_list)

prefix ::=
 name
 | function_call

primary ::=
 name
 | literal
 | aggregate
 | function_call
 | qualified_expression
 | type_conversion
 | allocator
 | (expression)

primary_unit ::=
 entity_declaration
 | configuration_declaration
 | package_declaration

primary_unit_declaration ::= identifier ;

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

70 Copyright © 2000 IEEE. All rights reserved.

procedure_call ::= procedure_name [(actual_parameter_part)]

procedure_call_statement ::= [label:] procedure_call ;

process_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | variable_declaration
 | file_declaration
 | alias_declaration
 | attribute_declaration
 | attribute_specification
 | use_clause
 | group_template_declaration
 | group_declaration

process_declarative_part ::=
 { process_declarative_item }

process_statement ::=
 [process_label:]
 [postponed] process [(sensitivity_list)] [is]
 process_declarative_part
 begin
 process_statement_part
 end process [process_label] ;

process_statement_part ::=
 { sequential_statement }

qualified_expression ::=
 type_mark’(expression)
 | type_mark’aggregate

range ::=
 range_attribute_name
 | simple_expression direction simple_expression

range_constraint ::= range range

record_type_definition ::=
 record
 element_declaration
 { element_declaration }
 end record [record_type_simple_name]

relation ::=
 shift_expression [relational_operator shift_expression]

relational_operator ::= = | /= | < | <= | > | >=

report_statement ::=
 [label:] report expression
 [severity expression] ;

return_statement ::=
 [label:] return [expression] ;

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 71

scalar_type_definition ::=
 enumeration_type_definition
 | integer_type_definition
 | physical_type_definition
 | floating_type_definition

secondary_unit ::=
 architecture_body
 | package_body

secondary_unit_declaration ::= identifier = physical_literal ;

selected_name ::= prefix.suffix

selected_signal_assignment ::=
 with expression select
 target <= options selected_waveforms ;

selected_waveforms ::=
 { waveform when choices , }
 waveform when choices

sensitivity_clause ::= on sensitivity_list

sensitivity_list ::= signal_name {, signal_name}

sequence_of_statements ::=
 { sequential_statement }

sequential_statement ::=
 wait_statement
 | assertion_statement
 | report_statement
 | signal_assignment_statement
 | variable_assignment
 | procedure_call_statement
 | if_statement
 | case_statement
 | loop_statement
 | next_statement
 | exit_statement
 | return_statement
 | null_statement

shift_expression ::=
 simple_expression [shift_operator simple_expression]

shift_operator ::= sll | srl | sla | sra | rol | ror

sign ::= + | -

signal_assignment_statement ::=
 [label:] target <= [delay_mechanism] waveform ;

signal_declaration ::=
 signal identifier_list : subtype_indication [signal_kind] [:= expression] ;

signal_kind ::= register | bus

signal_list ::=
 signal_name {, signal_name }
 | others
 | all

signature ::= [[type_mark { , type_mark }] [return type_mark]

IEEE
Std 1076.6-1999 IEEE STANDARD FOR VHDL

72 Copyright © 2000 IEEE. All rights reserved.

simple_expression ::=
 [sign] term { adding_operator term }

simple_name ::= identifier

slice_name ::= prefix (discrete_range)

string_literal ::= “ { graphic_character } “

subprogram_body ::=
 subprogram_specification is
 subprogram_declarative_part
 begin
 subprogram_statement_part]
 end [subprogram_kind] [designator] ;

subprogram_declaration ::=
 subprogram_specification ;

subprogram_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | variable_declaration
 | file_declaration
 | alias_declaration
 | attribute_declaration
 | attribute_specification
 | use_clause
 | group_template_declaration
 | group_declaration

subprogram_declarative_part ::=
 { subprogram_declarative_item }

subprogram_kind ::= procedure | function

subprogram_specification ::=
 procedure designator [(formal_parameter_list)]
 | [pure | impure] function designator [(formal_parameter_list)]
 return type_mark

subprogram_statement_part ::=
 { sequential_statement }

subtype_declaration ::=
 subtype identifier is subtype_indication ;

subtype_indication ::=
 [resolution_function_name] type_mark [constraint]

suffix ::=
 simple_name
 | character_literal
 | operator_symbol
 | all

target ::=
 name
 | aggregate

term ::=
 factor { multiplying_operator factor }

IEEE
REGISTER TRANSFER LEVEL SYNTHESIS Std 1076.6-1999

Copyright © 2000 IEEE. All rights reserved. 73

timeout_clause ::= for time_expression

type_conversion ::= type_mark(expression)

type_declaration ::=
 full_type_declaration
 | incomplete_type_declaration

type_definition ::=
 scalar_type_definition
 | composite_type_definition
 | access_type_definition
 | file_type_definition

type_mark ::=
 type_name
 | subtype_name

unconstrained_array_definition ::=
 array (index_subtype_definition { , index_subtype_definition })
 of element_subtype_indication

use_clause ::=
 use selected_name {, selected_name} ;

variable_assignment_statement ::=
 [label:] target := expression ;

variable_declaration ::=
 [shared] variable identifier_list : subtype_indication [:= expression] ;

wait_statement ::=
 [label:] wait [sensitivity_clause] [condition_clause] [timeout_clause] ;

waveform ::=
 waveform_element {, waveform_element}
 | unaffected

waveform_element ::=
 value_expression [after time_expression]
 | null [after time_expression]

