
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

June 1993 Verilog–XL Reference i

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Verilog–XL
Reference Manual
1.6c

Contents

Volume 1

Introduction 1–1.

The Verilog Hardware Description Language 1–1.

The Verilog–XL Logic Simulator 1–3.

Major Features of Verilog–XL 1–3.

Verilog–XL Licenses 1–4.

Lexical Conventions 2–1.

Operators 2–1.

White Space and Comments 2–2.

Numbers 2–2.

Strings 2–5.

String Variable Declaration 2–5.

String Manipulation 2–6.

Special Characters in Strings 2–7.

Identifiers, Keywords, and System Names 2–7.

Escaped Identifiers 2–8.

Keywords 2–9.

Text Substitutions 2–9.

Data Types 3–1.

Value Set 3–1.

Registers and Nets 3–2.

�	��
 � ���� ����

Introduction

Lexical Conventions

Data Types

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Contents

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ii Verilog–XL Reference June 1993

Registers 3–2.

Declaration Syntax 3–3.

Declaration Examples 3–4.

Vectors 3–5.

Specifying Vectors 3–5.

Vector Net Accessibility 3–5.

Strengths 3–6.

Charge Strength 3–6.

Drive Strength 3–7.

Implicit Declarations 3–7.

Net Initialization 3–7.

Net Types 3–8.

wire and tri Nets 3–8.

Wired Nets 3–8.

trireg Net 3–9.

tri0 and tri1 Nets 3–13.

supply Nets 3–13.

Memories 3–14.

Integers and Times 3–16.

Real Numbers 3–17.

Declaration Syntax for Real Numbers 3–17.

Specifying Real Numbers 3–17.

Operators and Real Numbers 3–18.

Conversion 3–18.

Parameters 3–19.

Expressions 4–1.

Operators 4–2.

Binary Operator Precedence 4–4.

Numeric Conventions in Expressions 4–5.

Arithmetic Operators 4–5.

Arithmetic Expressions with Registers and Integers . .
4–6

Relational Operators 4–7.

Expressions

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Contents

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

June 1993 Verilog–XL Reference iii

Equality Operators 4–8.

Logical Operators 4–9.

Bit–Wise Operators 4–11.

Reduction Operators 4–12.

Syntax Restrictions 4–14.

Shift Operators 4–15.

Conditional Operator 4–15.

Concatenations 4–16.

Operands 4–17.

Net and Register Bit Addressing 4–17.

Memory Addressing 4–18.

Strings 4–19.

String Operations 4–20.

String Value Padding and Potential Problems 4–20. .

Null String Handling 4–22.

Minimum, Typical, Maximum Delay Expressions 4–22. .

Expression Bit Lengths 4–23.

An Example of an Expression Bit Length Problem . . .
4–24

Verilog Rules for Expression Bit Lengths 4–24.

Assignments 5–1.

Continuous Assignments 5–2.

The Net Declaration Assignment 5–3.

The Continuous Assignment Statement 5–3.

Delays 5–5.

Strength 5–9.

Procedural Assignments 5–9.

Accelerated Continuous Assignments 5–10.

The Restrictions on Accelerated
Continuous Assignments 5–10.
How to Control the Acceleration of
Continuous Assignments 5–22.

The Effects of Accelerated Continuous Assignments 5–24.

Assignments

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Contents

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

iv Verilog–XL Reference June 1993

Gate and Switch Level Modeling 6–1.

Gate and Switch Declaration Syntax 6–2.

and, nand, nor, or, xor, and xnor Gates 6–6.

buf and not Gates 6–8.

bufif1, bufif0, notif1, and notif0 Gates 6–9.

MOS Switches 6–10.

Bidirectional Pass Switches 6–12.

cmos Gates 6–13.

pullup and pulldown Sources 6–14.

Implicit Net Declarations 6–15.

Logic Strength Modeling 6–16.

Strengths and Values of Combined Signals 6–18.

Combined Signals of Unambiguous Strength 6–18. . .

Ambiguous Strengths: Sources and Combinations 6–20

Ambiguous Strength Signals and
Unambiguous Signals 6–26.

Wired Logic Net Types 6–30.

Mnemonic Format 6–33.

Strength Reduction by Non–Resistive Devices 6–33. . . .

Strength Reduction by Resistive Devices 6–33.

Strengths of Net Types 6–34.

tri0 and tri1 Net Strengths 6–34.

trireg Strength 6–34.

supply0 and supply1 Net Strengths 6–34.

Gate and Net Delays 6–34.

min/typ/max Delays 6–37.

trireg Net Charge Decay 6–39.

Gate and Net Name Removal 6–43.

User–Defined Primitives (UDPs) 7–1.

Memory Usage and Performance Considerations 7–2. . . .

Syntax 7–3.

Gate and Switch
Level Modeling

User–Defined
Primitives (UDPs)

De

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Contents

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

June 1993 Verilog–XL Reference v

UDP Definition 7–4.

UDP Terminals 7–5.

UDP Declarations 7–5.

Sequential UDP initial Statement 7–5.

UDP State Table 7–5.

Combinational UDPs 7–6.

Level–Sensitive Sequential UDPs 7–8.

Edge–Sensitive UDPs 7–9.

Sequential UDP Initialization 7–10.

UDP Instances 7–14.

Compilation 7–14.

Symbols to Enhance Readability 7–15.

Mixing Level–Sensitive and Edge–Sensitive Descriptions 7–16.

Reducing Pessimism 7–17.

Level–Sensitive Dominance 7–19.

Processing of Simultaneous Input Changes 7–19.

Summary of Symbols 7–21.

Examples 7–22.

Behavioral Modeling 8–1.

Behavioral Model Overview 8–1.

Procedural Assignments 8–3.

Blocking Procedural Assignments 8–4.

The Non–Blocking Procedural Assignment 8–4.

How the Simulator Processes Blocking and
Non–Blocking Procedural Assignments 8–11. . . .

Conditional Statement 8–11.

if–else–if Construct 8–14.

Example 8–15.

Case Statement 8–16.

Case Statement with Don’t–Cares 8–19.

Looping Statements 8–20.

forever Loop 8–21.

repeat Loop Example 8–22.

Behavioral Modeling

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Contents

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

vi Verilog–XL Reference June 1993

while Loop Example 8–23.

for Loop Examples 8–23.

Procedural Timing Controls 8–25.

Delay Control 8–26.

Zero–Delay control 8–26.

Event Control 8–27.

Named Events 8–28.

Event OR Construct 8–29.

Level–Sensitive Event Control 8–29.

Intra–Assignment Timing Controls 8–30.

Block Statements 8–35.

Sequential Blocks 8–35.

Parallel Blocks 8–37.

Block Names 8–39.

Start and Finish Times 8–39.

Structured Procedures 8–41.

initial Statement 8–42.

always Statement 8–43.

Examples 8–43.

Tasks and Functions 9–1.

Distinctions Between Tasks and Functions 9–1.

Tasks and Task Enabling 9–2.

Defining a Task 9–3.

Task Enabling and Argument Passing 9–4.

Task Example 9–6.

Effect of Enabling an Already Active Task 9–7.

Functions and Function Calling 9–8.

Defining a Function 9–8.

Returning a Value from a Function 9–9.

Calling a Function 9–9.

Function Rules 9–10.

Function Example 9–11.

Tasks and Functions

June 1993 1-1

Introduction
The Verilog Hardware Description Language

1
Figure 1-0

Example 1-0
Syntax 1-0
Table 1-0

Introduction
This reference manual describes the features of the Verilog-XL digital
logic simulator and the Verilog Hardware Description Language you use
to model a design for simulation by Verilog-XL. There are three volumes
in this reference manual. Section 1.3 consists of brief descriptions of all
the chapters and appendices in this reference manual and shows the
divisions between volumes.

The volumes of the reference manual are not separate documents. The
reference manual has a table of contents, located at the front of each
volume, and an index, located at the back of each volume.

1.1
The Verilog Hardware Description Language

The Verilog Hardware Description Language (HDL) describes a hardware
design or part of a design. Descriptions of designs in the Verilog HDL are
Verilog models. The Verilog HDL is both a behavioral and structural
language. Models in the Verilog HDL can describe both the function of a
design and the components and connections to the components in a
design.

1-2 June 1993

Introduction
The Verilog Hardware Description Language

Verilog models can be developed for different levels of abstraction. These
levels of abstraction and their corresponding model types are as follows:

algorithmic a model that implements a design algorithm in
high-level language constructs

RTL a model that describes the flow of data between
registers and how a design processes that data

gate-level a model that describes the logic gates and the
connections between logic gates in a design

switch-level a model that describes the transistors and storage
nodes in a device and the connections between them

The basic building block of the Verilog HDL is the module. The module
format facilitates top-down and bottom-up design. A module contains a
model of a design or part of a design. Modules can incorporate other
modules to establish a model hierarchy that describes how parts of a
design are incorporated in an entire design. The constructs of the Verilog
HDL, such and its declarations and statements, are enclosed in
modules.

The Verilog HDL behavioral language is structured and procedural like
the C programming language. The behavioral language constructs are for
algorithmic and RTL models. The behavioral language provides the
following capabilities:

• structured procedures for sequential or concurrent execution

• explicit control of the time of procedure activation specified by
both delay expressions and by value changes called event
expressions

• explicitly named events to trigger the enabling and disabling of
actions in other procedures

• procedural constructs for conditional, if-else, case, and looping
operations

• procedures called tasks that can have parameters and non-zero
time duration

• procedures called functions that allow the definition of new
operators

• arithmetic, logical, bit-wise, and reduction operators for
expressions

The Verilog HDL structural language constructs are for gate-level and
switch-level models. The structural language provides the following
capabilities:

• a complete set of combinational primitives

• primitives for bidirectional pass and resistive devices

• the ability to model dynamic MOS models with charge sharing and
charge decay

June 1993 1-3

Introduction
The Verilog-XL Logic Simulator

Verilog structural language models can accurately model signal
contention. In the Verilog HDL, structural modeling accuracy is
enhanced by primitive delay and output strength specification. Signal
values can have different strengths and a full range of ambiguous values
to reduce the pessimism of unknown conditions.

1.2
The Verilog-XL Logic Simulator

The Verilog-XL digital logic simulator is a software tool that allows you
to perform the following tasks in the design process without building a
hardware prototype:

• determine the feasibility of new design ideas

• try more than one approach to a design problem

• functional verification

• identify design errors

To use Verilog-XL, you develop models that describe your design and its
environment in the Verilog Hardware Description Language (the Verilog
HDL) and then supply Verilog-XL with the file names that contain these
models. To use Verilog-XL, you also need a Verilog-XL license. This
section describes the major features of Verilog-XL and the Verilog-XL
license.

1.2.1
Major Features of Verilog-XL

Verilog-XL provides you with the following simulation capabilities:

• set break points during simulation that stop the simulation and
allow you to enter an interactive mode to examine and debug your
design

• display information about the current state of the design and to
specify the format of that information

• apply stimulus during simulation

• circuit patching during simulation

• tracing the execution flow of the statements in your model

• traversing the model hierarchy to various regions of your design to
examine the state of the simulation in that region

• stepping through the statements of a design and executing them
one at a time

• displaying the active statements in a design

• displaying and disabling the operations you entered in interactive
mode

1-4 June 1993

Introduction
The Contents of the Reference Manual

• reading data from a file and writing data to that file

• saving the current state of a simulation in a file and restoring that
simulation at another time

• investigating the performance ramifications of architectural
decision—stochastic modeling

1.2.2
Verilog-XL Licenses

To get permission to simulate with the Verilog-XL logic simulator you
need a license. SoftShare handles all licenses for Verilog-XL 1.6c.
Highland’s FLEXlm (Flexible License Manager) software is the core of
SoftShare technology.

Licenses for Verilog-XL 1.6c are all floating XL licenses, but it is possible
to lock a license to a node. A Verilog-XL invocation causes SoftShare
processes to seek a license file, and check out a license for you if one is
available.

1.3
The Contents of the Reference Manual

Volume 1
• Chapter 1 – Introduction

This chapter discusses the major features of the Verilog HDL and
the Verilog-XL logic simulator. It also discusses the contents of the
reference manual.

• Chapter 2 – Lexical Conventions
This chapter describes how the language interprets and how to
specify lexical tokens. A lexical token is one or more characters.
Lexical tokens include white space, comments, numbers,
character strings, identifiers, keywords, and operators. The
chapter also describes the text macro substitution facility.

• Chapter 3 – Data Types
This chapter describes the Verilog HDL data types. The Verilog
HDL has two main groups of data types: registers and nets.
Registers and nets model storage devices and physical
connections. The chapter also discusses the parameter data type
for constant values and describes drive and charge strength of the
values on nets.

• Chapter 4 – Expressions
This chapter describes the operators and operands that can be
used in expressions.

June 1993 1-5

Introduction
The Contents of the Reference Manual

• Chapter 5 – Assignments
This chapter compares the two main types of assignment
statements in the Verilog HDL—continuous assignments and
procedural assignments. It describes the continuous assignment
statement that drives values onto nets.

• Chapter 6 – Gate and Switch Level Modeling
This chapter describes the gate and switch level primitive and their
declarations and specifications.

• Chapter 7 – User-Defined Primitives (UDPs)
This chapter describes how a primitive can be defined in the
Verilog HDL and how these primitives are included in Verilog
models.

• Chapter 8 – Behavioral Modeling
This chapter describes procedural assignments and the behavioral
language statements.

• Chapter 9 – Tasks and Functions
This chapter describes tasks and functions—procedures that can
be called from more than one place in a behavioral model. It
describes how tasks can be used like subroutines and how
functions can be used to define new operators.

• Chapter 10 – Disabling of Named Blocks and Tasks
This chapter describes how to disable the execution of a task and
a block of statements that has a specified name.

• Chapter 11 – Procedural Continuous Assignments
This chapter describes a type of procedural assignment called a
procedural continuous assignment.

• Chapter 12 – Hierarchical Structures
This chapter describes how model hierarchies are created in the
Verilog HDL and how parameter values declared in a module can
be overridden. The chapter also discusses macro modules—a
construct that saves memory and port collapsing—a technique
that improves simulator efficiency.

Volume 2

• Chapter 13 – Specify Blocks (SDPDs)
This chapter describes the Verilog HDL constructs that belong in
a construct called a specify block. Specify blocks contain
pin-to-pin delays and timing checks.

• Chapter 14 – State-dependent Path Delays
This chapter describes pin-to-pin delays whose validity is
conditioned by the values at pins.

• Chapter 15 – Module Input Port Delays (MIPDs)
This chapter describes modeling delays between certain drivers
and their loads with Module Input Port Delays (MIPDs). It
discusses the use of PLI access routines to insert MIPDs.

1-6 June 1993

Introduction
The Contents of the Reference Manual

• Chapter 16 – Timescales
This chapter describes how you can use models that were
developed with different time units together in a simulation.

• Chapter 17 – Delay Mode Selection
This chapter describes how you use command line options and
compiler directives to alter the delay values in your models.

• Chapter 18 – The Behavior Profiler
This chapter describes how you can identify the behavioral
modules and statements in your design that use the most CPU
time during simulation.

• Chapter 19 – Value Change Dump File
This chapter describes how you can produce a file that contains
information about value changes during simulation nets and
registers that you select.

• Chapter 20 – Source Protection
This chapter describes how to protect proprietary Verilog HDL
source descriptions from being accessed or modified.

• Chapter 21 – System Tasks and Functions
This chapter describes the general purpose system tasks and
functions that are built into Verilog-XL.

• Chapter 22 – Programmable Logic Arrays
This chapter describes the system tasks that you can use to model
PLA devices.

• Chapter 23 – Stochastic Analysis
This chapter describes the system tasks that you can use for
stochastic analysis—investigating the performance ramifications
of architectural decisions.

• Chapter 24 – Compilation and Execution
This chapter describes the compiler directives and command line
options that control how Verilog-XL compiles and simulates your
model.

Volume 3

• Chapter 25 – Library Management
This chapter describes two different schemes that enable you to
save compilation time and memory by controlling what modules,
in the source description file or directory, Verilog-XL compiles. The
newer of the two schemes provides greater control over library
scanning.

• Chapter 26 – Interactive Control and Debugging
This chapter describes the how to use the features of Verilog-XL ’s
interactive mode.

• Chapter 27 – XL Usage and Performance
This chapter describes the high-speed XL algorithm that
accelerates the simulation of gate and switch-level primitives and
certain continuous assignments in a model. It discusses how you

June 1993 1-7

Introduction
The Contents of the Reference Manual

invoke the XL algorithm, the primitives and continuous
assignments whose simulation it accelerates, and performance
expectations.

• Chapter 28 – Switch-level Simulation
This chapter describes three algorithms that simulate
channel-connected switch networks, one of which is default. The
first non-default algorithm, named the Switch-XL algorithm,
employs the XL algorithm to simulate bidirectional switches and a
strength model that allows you to specify a wide range of
capacitances and conductances. The other non-default algorithm,
named the Switch-RC algorithm, enables you to simulate with real
resistances and capacitances and to describe the electrical
characteristics of manufacturing technologies.

• Chapter 29 – Software Behavior and Recommendations
This chapter discusses software behavior that it is helpful to be
aware of and some methods for dealing with it.

• Appendix A – Formal Syntax Definition
This appendix describes in the Baccus-Naur Format (BNF), the
syntax of the Verilog HDL.

• Appendix B – The Switch-RC Algorithm
This appendix discusses the equations in the Switch-RC
algorithm.

• Appendix C – Switch-RC Technology Characterization
This appendix describes how to derive values that describe
Switch-RC technologies.

June 1993 2-1

Lexical Conventions
Operators

2
Figure 2-0

Example 2-0
Syntax 2-0
Table 2-0

Lexical Conventions
Verilog language source text files are a stream of lexical tokens. A token
consists of one or more characters, and each single character is in
exactly one token. The layout of tokens in a source file is free
format—that is, spaces and newlines are not syntactically significant.
However, spaces and newlines are very important for giving a visible
structure and format to source descriptions. A good style of format, and
consistency in that style, are an essential part of program readability.

The types of lexical tokens in the language are:

• operator

• white space

• comment

• number

• string

• identifier

• keyword

The rest of this chapter defines these tokens.

This manual uses a syntax formalism based on the Backus-Naur Form
(BNF) to define the Verilog language syntax. Appendix A contains the
complete set of syntax definitions in this format, plus a description of the
BNF conventions used in the syntax definitions.

2.1
Operators

Operators are single, double, or triple character sequences and are used
in expressions. Chapter 4 discusses the use of operators in expressions.

2-2 June 1993

Lexical Conventions
White Space and Comments

Unary operators appear to the left of their operand. Binary operators
appear between their operands. A ternary operator has two operator
characters that separate three operands. The Verilog language has one
ternary operator the—conditional operator. See Section 4.1.12 for an
explanation of the conditional operator.

2.2
White Space and Comments

White space can contain the characters for blanks, tabs, newlines, and
formfeeds. The Verilog language ignores these characters except when
they serve to separate other tokens. However, blanks and tabs are
significant in strings.

The Verilog language has two forms to introduce comments. A one-line
comment starts with the two characters // and ends with a newline. A
block comment starts with /* and ends with */. Block comments cannot
be nested, but a one-line comment can be nested within a block
comment.

2.3
Numbers

Constant numbers can be specified in decimal, hexadecimal, octal, or
binary format. The Verilog language defines two forms to express
numbers. The first form is a simple decimal number specified as a
sequence of the digits 0 to 9 which can optionally start with a plus or
minus. The second takes the following form:

<size><base_format><number>

The <size> element contains decimal digits that specify the size of the
constant in terms of its exact number of bits. For example, the <size>
specification for two hexadecimal digits is 8, because one hexadecimal
digit requires four bits. The <size> specification is optional. The
<base_format> contains a letter specifying the number’s base,
preceded by the single quote character (’). Legal base specifications are
one of d, h, o, or b, for the bases decimal, hexadecimal, octal, and binary
respectively. (Note that these base identifiers can be upper- or
lowercase.)

The <number> element contains digits that are legal for the specified
<base_format>. The <number> element must physically follow the
<base_format>, but can be separated from it by spaces. No spaces can
separate the single quote and the base specifier character.

Alphabetic letters used to express the <base_format> or the
hexadecimal digits a to f can be in upper- or lowercase.

June 1993 2-3

Lexical Conventions
Numbers

Example 2-1 shows unsized constant numbers.

Example 2-1: Unsized constant numbers

Example 2-2 shows sized constant numbers.

Example 2-2: Sized constant numbers

In the Verilog language a plus or minus preceding the size constant is a
sign for the constant number—the size constant does not take a sign. A
plus or minus between the <base_format> and the <number> is illegal
syntax. In Example 2-3, the first expression is a syntax error. The
second expression legally defines an 8-bit number with a value of minus
6.

Example 2-3: A plus or minus between the <base_format> and the
<number> is illegal

The number of bits that make up an un-sized number (which is a simple
decimal number or a number without the <size> specification) is the
host machine word size—for most machines this is 32 bits.

659 // is a decimal number

’h 837FF // is a hexadecimal number

’o7460 // is an octal number

4af // is illegal (hexadecimal format requires ’h)

4’b1001 // is a 4-bit binary number

5 ’D 3 // is a 5-bit decimal number

3’b01x // is a 3-bit number with the least

// significant bit unknown

12’hx // is a 12-bit unknown number

16’hz // is a 16-bit high impedance number

8 ’d -6 // this is illegal syntax

-8 ’d 6 // this defines the two’s complement of 6,

// held in 8 bits—equivalent to -(8’d 6)

2-4 June 1993

Lexical Conventions
Numbers

In the Verilog language, an x expresses the unknown value in
hexadecimal, octal, and binary constants. A z expresses the high
impedance value. See Section 3.1 for a discussion of the Verilog value
set. An x sets four bits to unknown in the hexadecimal base, three bits
in the octal base, and one bit in the binary base. Similarly, a z sets four,
three, and one bit, respectively, to the high impedance value. If the most
significant specified digit of a constant number is an x or a z, then
Verilog-XL automatically extends the x or z to fill the higher order bits
of the constant. This makes it easy to specify complete vectors of the
unknown and high impedance values. Example 2-4 illustrates this value
extension:

Example 2-4: Automatic extension of x values

The question mark (?) character is a Verilog HDL alternative for the z
character. It sets four bits to the high impedance value in hexadecimal
numbers, three in octal, and one in binary. Use the question mark to
enhance readability in cases where the high impedance value is a
don’t-care condition. See the discussion of casez and casex in
Section 8.4.1 and the discussion on personality files in Section 22.5.

The underline character is legal anywhere in a number except as the first
character. Use this feature to break up long numbers for readability
purposes. Example 2-5 illustrates this.

Example 2-5: Use of underline in constant numbers

reg [11:0] a;

initial

begin

a = ’h x; // yields xxx

a = ’h 3x; // yields 03x

a = ’h 0x; // yields 00x

end

27_195_000

16’b0011_0101_0001_1111

32 ’h 12ab_f001

June 1993 2-5

Lexical Conventions
Strings

Underline characters are also legal in numbers in text files read by the
$readmemb and $readmemh system tasks.

Please note: A sized negative number is not sign-extended when
assigned to a register data type.

2.4
Strings

A string is a sequence of characters enclosed by double quotes and must
all be contained on a single line. Verilog treats strings used as operands
in expressions and assignments as a sequence of eight-bit ASCII values,
with one eight-bit ASCII value representing one character.

Examples of strings:

”this is a string”

”print out a message\n”

”bell!\007”

2.4.1
String Variable Declaration

To declare a variable to store a string, declare a register large enough to
hold the maximum number of characters the variable will hold. Note that
no extra bits are required to hold a termination character; Verilog does
not store a string termination character.

For example, to store the string “Hello world!” requires a register
8*12, or 96 bits wide, as shown in Example 2-6.

Example 2-6: Storage needed for strings

reg [8*12:1] stringvar;

initial

begin

stringvar = ”Hello world!”;

end

2-6 June 1993

Lexical Conventions
Strings

2.4.2
String Manipulation

Verilog permits strings to be manipulated using the standard Verilog
HDL operators. Keep in mind that the value being manipulated by an
operator is a sequence of 8-bit ASCII values, with no special termination
character.

The code in Example 2-7 declares a string variable large enough to hold
14 characters and assigns a value to it. The code then manipulates this
string value using the concatenation operator.

Note that when a variable is larger than required to hold a value being
assigned, Verilog pads the contents on the left with zeros after the
assignment. This is consistent with the padding that occurs during
assignment of non-string values.

Example 2-7: String manipulation

The following strings display as a result of executing Verilog-XL on
Example 2-7:

Hello world is stored as 00000048656c6c6f20776f726c64
Hello world!!! is stored as 48656c6c6f20776f726c64212121

module string_test;

reg [8*14:1] stringvar;

initial

begin

stringvar = ”Hello world”;

$display(”%s is stored as %h”,

stringvar,stringvar);

stringvar = {stringvar,”!!!”};

$display(”%s is stored as %h”,

stringvar,stringvar);

end

endmodule

June 1993 2-7

Lexical Conventions
Identifiers, Keywords, and System Names

2.4.3
Special Characters in Strings

Certain characters can only be used in strings when preceded by an
introductory character called an escape character. Table 2-1 lists these
characters in the right-hand column with the escape sequence that
represents the character in the left-hand column.

Table 2-1: Specifying special characters in strings

2.5
Identifiers, Keywor ds, and System Names

An identifier is used to give an object, such as a register or a module, a
name so that it can be referenced from other places in a description. An
identifier is any sequence of letters, digits, dollar signs ($), and the
underscore (_) symbol.

The first character must NOT be a digit or $; it can be a letter or an
underscore.

Upper- and lowercase letters are considered to be different (unless the
upper case option is used when compiling). Identifiers can be up to 1024
characters long.

EscapeString Character Produced by Escape String

\n new line character

\t tab character

\\ \ character

\” ” character

\ddd a character specified in 1-3 octal digits

(0 <= d <= 7)

%% % character

2-8 June 1993

Lexical Conventions
Identifiers, Keywords, and System Names

Examples of identifiers follow:

shiftreg_a

busa_index

error_condition

merge_ab

_bus3

n$657

2.5.1
Escaped Identifiers

Escaped identifiers start with the backslash character (\) and provide a
means of including any of the printable ASCII characters in an identifier
(the decimal values 33 through 126, or 21 through 7E in hexadecimal).
An escaped identifier ends with white space (blank, tab, newline).
Neither the leading back-slash character nor the terminating white
space is considered to be part of the identifier.

The primary application of escaped identifiers is for translators from
other hardware description languages and CAE systems, where special
characters may be allowed in identifiers. Escaped identifiers should not
be used under normal circumstances.

Examples of escaped identifiers follow:

\busa+index

\-clock

error-condition

\net1/\net2

\{a,b}

\a*(b+c)

Please note: Remember to terminate escaped identifiers with white
space, otherwise characters that should follow the identifier are
considered as part of it.

June 1993 2-9

Lexical Conventions
Text Substitutions

2.5.2
Keywords

Keywords are predefined non-escaped identifiers that are used to define
the language constructs. A Verilog HDL keyword preceded by an escape
character is not interpreted as a keyword.

All keywords are defined in lowercase only and therefore must be typed
in lowercase in source files (unless the upper case option is used when
compiling).

2.6
Text Substitutions

A text macro substitution facility has been provided so that meaningful
names can be used to represent commonly used pieces of text. For
example, in the situation where a constant number is repetitively used
throughout a description, a text macro would be useful in that only one
place in the source description would need to be altered if the value of
the constant needed to be changed. Text macros can also be defined and
used in the interactive mode where they can be helpful for predefining
those interactive commands that you use often.

The syntax for text macro definitions is as follows:

Syntax 2-1: Syntax for <text_macro_definition>

<MACRO_TEXT> is any arbitrary text specified on the same line as the
<text_macro_name>. If a one-line comment (that is, a comment specified
with the characters //) is included in the text, then the comment does
not become part of the text substituted. The text for <MACRO_TEXT> can
be blank, in which case the text macro is defined to be empty and no text
is substituted when the macro is used.

The syntax for using a text macro is as follows:

Syntax 2-2: Syntax for <text_macro_usage>

<text_macro_definition>
::= ‘define <text_macro_name> <MACRO_TEXT>

<text_macro_name>
::= <IDENTIFIER>

<text_macro_usage>
::= ‘<text_macro_name>

2-10 June 1993

Lexical Conventions
Text Substitutions

Once a text macro name has been defined (that is, assigned
<MACRO_TEXT>), it can be used anywhere in a source description or in
an interactive command; that is, there are no scope restrictions.
However, to use a text macro the compiler directive symbol ‘ (open
quote, also known as “accent grave”) must precede the text macro name.

Example 2-8 shows two definitions of macro text and a use of each of the
defined macros.

Example 2-8: Using macro text

The text specified for <MACRO_TEXT> must not be split across the
following lexical tokens:

• comments

• numbers

• strings

• identifiers

• keywords

• double or triple character operators

For example, the following is illegal syntax in the Verilog language
because it is split across a string:

‘define first_half ”start of string
$display(‘first_half end of string”);

Text macro names can re-use names being used as ordinary identifiers.
For example, signal_name and ‘signal_name are different.
Redefinition of text macros is allowed; the latest definition of a particular
text macro read by the compiler prevails when the macro name is
encountered in the source text.

‘define wordsize 8
reg [1:‘wordsize] data;

‘define typ_nand nand #5 //define a nand w/typical delay
‘typ_nand g121 (q21, n10, n11);

June 1993 3-1

Data Types
Value Set

3
Figure 3-0

Example 3-0
Syntax 3-0
Table 3-0

Data Types
The set of Verilog HDL data types is designed to represent the data
storage and transmission elements found in digital hardware.

3.1
Value Set

The Verilog HDL value set consists of four basic values:

0 - represents a logic zero, or false condition
1 - represents a logic one, or true condition
x - represents an unknown logic value
z - represents a high-impedance state

The values 0 and 1 are logical complements of one another.

When the z value is present at the input of a gate, or when it is
encountered in an expression, the effect is usually the same as an x
value. Notable exceptions are the MOS primitives, which can pass the z
value.

Almost all of the data types in the Verilog language store all four basic
values. The exceptions are the event type, which has no storage, and
the trireg net data type, which retains its first state when all of its
drivers go to the high impedance value, and z. All bits of vectors can be
independently set to one of the four basic values.

The language includes strength information in addition to the basic
value information for scalar net variables. This is described in detail in
Chapter 6, Gate and Switch Level Modeling.

3-2 June 1993

Data Types
Registers and Nets

3.2
Registers and Nets

There are two main groups of data types: the register data types and the
net data types. These two groups differ in the way that they are assigned
and hold values. They also represent different hardware structures.

3.2.1
Nets

The net data types represent physical connections between structural
entities, such as gates. A net does not store a value (except for the
trireg net, discussed in Section 3.7.3). Instead, it must be driven by a
driver, such as a gate or a continuous assignment. See Chapter 6, Gate
and Switch Level Modeling, and Chapter 5, Assignments, for definitions
of these constructs. If no driver is connected to a net, its value will be
high-impedance (z)—unless the net is a trireg.

3.2.2
Registers

A register is an abstraction of a data storage element. The keyword for
the register data type is reg. A register stores a value from one
assignment to the next. An assignment statement in a procedure acts as
a trigger that changes the value in the data storage element. The Verilog
language has powerful constructs that allow you to control when and if
these assignment statements are executed. These control constructs are
used to describe hardware trigger conditions, such as the rising edge of
a clock, and decision-making logic, such as a multiplexer. Chapter 8,
Behavioral Modeling, describes these control constructs.

The default initialization value for a reg data type is the unknown value,
x.

CAUTION
Registers can be assigned negative values, but, when a
register is an operand in an expression, its value is treated
as an unsigned (positive) value. For example, a minus one
in a four-bit register functions as the number 15 if the
register is an expression operand. See Section 4.1.2 for
more information on numeric conventions in expressions.

June 1993 3-3

Data Types
Registers and Nets

3.2.3
Declaration Syntax

The syntax for net and register declarations is as follows:

Syntax 3-1: Syntax for <net_declaration>

<net_declaration>
::= <NETTYPE> <expandrange>? <delay>? <list_of_variables> ;
||= trireg <charge_strength>? <expandrange>? <delay>? <list_of_variables> ;
||= <NETTYPE> <drive_strength>?

<expandrange>? <delay>? <list_of_assignments> ;

<reg_declaration>
::= reg <range>? <list_of_register_variables> ;

<list_of_variables>
::= <name_of_variable> <,<name_of_variable>>*

<name_of_variable>
::= <IDENTIFIER>

<list_of_register_variables>
::= <register_variable> <,<register_variable>>*

<register_variable>
::= <name_of_register>

<name_of_register>
::= <IDENTIFIER>

<expandrange>
::= <range>
||= scalared <range>

iff [the data type is not a trireg] the following syntax is available:
||= vectored <range>

<range>
::= [<constant_expression> : <constant_expression>]

<list_of_assignments>
::= <assignment> <,<assignment>>*

<charge_strength>
::= (<CAPACITOR_SIZE>)

<drive_strength>
::= (<STRENGTH0> , <STRENGTH1>)
||= (<STRENGTH1> , <STRENGTH0>)

3-4 June 1993

Data Types
Registers and Nets

Syntax 3-2: Definitions for <net_declaration> syntax

3.2.4
Declaration Examples

The following are examples of register and net declarations:

Example 3-1: Register and net declarations

<NETTYPE> is one of the following keywords:
wire tri tri1 supply0
wand triand tri0 supply1
wor trior trireg

<IDENTIFIER> is the name of the net that is being declared. See
Chapter 2, Lexical Conventions, for a discussion of
identifiers.

<delay> specifies the propagation delay of the net (as explained in
Chapter 6, Gate and Switch Level Modeling), or, when
associated with a <list_of_assignments>, it specifies
the delay executed before the assignment (as
explained in Chapter 5, Assignments).

<CAPACITOR_SIZE> is one of the following keywords:
small medium large

<STRENGTH0> is one of the following keywords:
supply0 strong0 pull0 weak0 highz0

<STRENGTH1> is one of the following keywords:
supply1 strong1 pull1 weak1 highz1

reg a; // a scalar register
wand w; // a scalar net of type ’wand’
reg[3:0] v; // a 4-bit vector register made up of

// (from most to least significant)
// v[3], v[2], v[1] and v[0]

tri [15:0] busa; // a tri-state 16-bit bus
reg [1:4] b; // a 4-bit vector register
trireg (small) storeit; // a charge storage node

// of strength small

June 1993 3-5

Data Types
Vectors

If a set of nets or registers shares the same characteristics, they can be
declared in the same declaration statement. The following is an example:

wire w1, w2; // declares 2 wires
reg [4:0] x, y, z; // declares 3 5-bit registers

3.3
Vectors

A net or reg declaration without a <range> specification is one bit wide;
that is, it is scalar. Multiple bit net and reg data types are declared by
specifying a <range>, and are known as vectors.

3.3.1
Specifying Vectors

The <range> specification gives addresses to the individual bits in a
multi-bit net or register. The most significant bit (msb) is the left-hand
value in the <range> and the least significant bit (lsb) is the right-hand
value in the <range>.

The range is specified as follows:

[msb_expr : lsb_expr]

Both msb_expr and lsb_expr are non-negative constant expressions.
There are no restrictions on the values of the indices. The msb and lsb
expressions can be any value, and lsb_expr can be a greater value than
msb_expr, if desired.

Vector nets and registers obey laws of arithmetic modulo 2 to the power
n, where n is the number of bits in the vector. Vector nets and registers
are treated as unsigned quantities.

3.3.2
Vector Net Accessibility

A vector can be used as a single entity or as a group of n scalars, where
n is the number of bits in the vector. The keyword vectored allows you
to specify that a vector can be modified only as an indivisible entity. The
keyword scalared explicitly allows access to bit and parts. This is also
the default case. The Verilog-XL process of accessing bits within a vector
is known as vector expansion.

3-6 June 1993

Data Types
Strengths

Only when a net is not specified as vectored can bit selects and part
selects be driven by outputs of gates, primitives, and modules—or be on
the left-hand side of continuous assignments. You cannot declare a
trireg with the vectored keyword.

The following are examples of vector net declarations:

Example 3-2: Vector net declarations

3.4
Strengths

There are two types of strengths that can be specified in a net
declaration. They are as follows:

• charge strength used when declaring a net of type trireg

• drive strength used when placing a continuous assignment
on a net in the same statement that declares
the net

Gate declarations can also specify a drive strength. See Chapter 6, Gate
and Switch Level Modeling, for more information on gates and for
important information on strengths.

3.4.1
Charge Strength

The <charge_strength> specification can be used only with trireg nets.
A trireg net is used to model charge storage; <charge_strength>
specifies the relative size of the capacitance. The <CAPACITOR_SIZE>
declaration is one of the following keywords:

• small

• medium

• large

When no size is specified in a trireg declaration, its size is medium.

The following is a syntax example of a strength declaration:

trireg (small) st1 ;

tri1 scalared [63:0] bus64;//a bus that will be expanded

tri vectored [31:0] data; //a bus that will not be expanded

June 1993 3-7

Data Types
Implicit Declarations

A trireg net can model a charge storage node whose charge decays over
time. The simulation time of a charge decay is specified in the trireg
net’s delay specification (see Section 6.16.2).

3.4.2
Drive Strength

The <drive_strength> specification allows a continuous assignment to be
placed on a net in the same statement that declares that net. See
Chapter 5, Assignments, for more details.

Net strength properties are described in detail in Chapter 6, Gate and
Switch Level Modeling.

3.5
Implicit Declarations

The syntax shown in Section 3.2.3, Declaration Syntax, is used to
explicitly declare variables. In the absence of an explicit declaration of a
variable, statements for gate, user-defined primitive, and module
instantiations assume an implicit variable declaration. This happens if
you do the following: in the terminal list of an instance of a gate, a
user-defined primitive, or a module, specify a variable that has not been
explicitly declared previously in one of the declaration statements of the
instantiating module.

These implicitly declared variables are scalar nets of type wire.

3.6
Net Initialization

The default initialization value for a net is the value z. Nets with drivers
assume the output value of their drivers, which defaults to x. The
trireg net is an exception to these statements. The trireg defaults to
the value x, with the strength specified in the net declaration (small,
medium, or large).

3-8 June 1993

Data Types
Net Types

3.7
Net Types

There are several distinct types of nets. Each is described in the sections
that follow.

3.7.1
wire and tri Nets

The wire and tri nets connect elements. The net types wire and tri
are identical in their syntax and functions; two names are provided so
that the name of a net can indicate the purpose of the net in that model.
A wire net is typically used for nets that are driven by a single gate or
continuous assignment. The tri net type might be used where multiple
drivers drive a net.

Logical conflicts from multiple sources on a wire or a tri net result in
unknown values unless the net is controlled by logic strength.

Table 3-1 is a truth table for wire and tri nets. Note that it assumes
equal strengths for both drivers. Please refer to Section 6.10 for a
discussion of logic strength modeling.

Table 3-1: Truth table for wire and tri nets

3.7.2
Wired Nets

Wired nets are of type wor, wand, trior, and triand, and are used to
model wired logic configurations. Wired nets resolve the conflicts that
result when multiple drivers drive the same net. The wor and trior nets
create wired or configurations, such that when any of the drivers is 1,
the net is 1. The wand and triand nets create wired and configurations,
such that if any driver is 0, the net is 0.

wire/
tri 0 1 x z

0 0 x x 0

1 x 1 x 1

x x x x x

z 0 1 x z

June 1993 3-9

Data Types
Net Types

The net types wor and trior are identical in their syntax and
functionality—as are the wand and triand. Table 3-2 gives the truth
tables for wired nets. Note that it assumes equal strengths for both
drivers. Please refer to Section 6.10 for a discussion of logic strength
modeling.

Table 3-2: Truth tables for wand/triand and wor/trior nets

3.7.3
trireg Net

The trireg net stores a value and is used to model charge storage
nodes. A trireg can be one of two states:

The Driven State When at least one driver of a trireg has a value
of 1, 0, or x, that value propagates into the
trireg and is the trireg’s driven value.

Capacitive State When all the drivers of a trireg net are at the
high impedance value (z), the trireg net
retains its last driven value; the high impedance
value does not propagate from the driver to the
trireg.

The strength of the value on the trireg net in the capacitive state is
small, medium, or large, depending on the size specified in the
declaration of the trireg. The strength of a trireg in the driven state
is strong, pull, or weak depending on the strength of the driver. You
cannot declare a trireg with the vectored keyword.

wand/
triand 0 1 x z

0 0 0 0 0

1 0 1 x 1

x 0 x x x

z 0 1 x z

wor/
trior 0 1 x z

0 0 1 x 0

1 1 1 1 1

x x 1 x x

z 0 1 x z

3-10 June 1993

Data Types
Net Types

Figure 3-1 shows a schematic that includes the following items: a
trireg net whose size is medium, its driver, and the simulation results.

Figure 3-1: Simulation values of a trireg and its driver

Simulation of the design in Figure 3-1 reports the following results:

1. At simulation time 0, wire a and wire b have a value of 1. A value
of 1 with a strong strength propagates from the AND gate through
the NMOS switches connected to each other by wire c, into
trireg d.

2. At simulation time 10, wire a changes value to 0, disconnecting
wire c from the AND gate. When wire c is no longer connected
to the AND gate, its value changes to HiZ. The wire b’s value
remains 1 so wire c remains connected to trireg d through the
NMOS2 switch. The HiZ value does not propagate from wire c into
trireg d. Instead, trireg d enters the capacitive state, storing
its last driven value of 1. It stores the 1 with a medium strength.

Capacitive networks

A capacitive network is a connection between two or more triregs. In a
capacitive network whose trireg’s are in the capacitive state, logic and
strength values can propagate between triregs. Figure 3-2 shows a
capacitive network in which the logic value of some triregs change the
logic value of other triregs of equal or smaller size.

nmos1 nmos2
wire c

trireg d

wire a wire b

simulation time wire a wire b wire c trireg d

1 1 strong 1 strong 1

0 1 HiZ medium 110

0

June 1993 3-11

Data Types
Net Types

Figure 3-2: Simulation results of a capacitive network

In Figure 3-2, trireg la’s size is large, triregs me1 and me2 are size
medium, and trireg sm’s size is small. Simulation reports the following
sequence of events:

1. At simulation time 0, wire a and wire b have a value of 1. The
wire c drives a value of 1 into triregs la and sm, wire d drives
a value of 1 into triregs me1 and me2.

2. At simulation time 10, wire b’s value changes to 0, disconnecting
trireg sm and me2 from their drivers. These triregs enter the
capacitive state and store the value 1, their last driven value.

3. At simulation time 20, wire c drives a value of 0 into trireg la.
4. At simulation time 30, wire d drives a value of 0 into trireg me1.
5. At simulation time 40, wire a’s value changes to 0, disconnecting

trireg la and me1 from their drivers. These triregs enter the
capacitive state and store the value 0.

40 0 0 0 0 0 1 0 1

trireg smtrireg la

trireg me2trireg me1

wire a

wire b

wire c

wire d

simulation
time wire a wire b wire c wire d trireg la trireg sm trireg me1 trireg me2

0 1 1 1 1 1 1 1 1

10 0 1 111 1 11

20 1 0 1 110 0 1

30 1 0 0 0 0 1 0 1

nmos1

nmos3 tranif1_2

50 0 1 0 0 0 0 x x

tranif1_1

3-12 June 1993

Data Types
Net Types

6. At simulation time 50, the wire b’s value changes to 1. This change
of value in wire b connects trireg sm to trireg la; these
triregs have different sizes and stored different values. This
connection causes the smaller trireg to store the larger trireg’s
value and trireg sm now stores a value of 0.This change of value
in wire b also connects trireg me1 to trireg me2; these
triregs have the same size and stored different values. The
connection causes both trireg me1 and me2 to change value to x.

In a capacitive network, charge strengths propagate from a larger
trireg to a smaller trireg. Figure 3-3 shows a capacitive network and
its simulation results.

Figure 3-3: Simulation results of charge sharing

tranif2

trireg sm

simulation
time

wire a

wire b wire c

tranif1

wire a wire b trireg la trireg sm

0 strong 1

wire c

strong 1 strong 111

0 1 large 1 large 1strong 110

20 00 small 1large 1strong 1

30 1 large 1large 1strong 1 0

40 00 small 1large 1strong 1

trireg la

June 1993 3-13

Data Types
Net Types

In Figure 3-3, trireg la’s size is large and trireg sm’s size is small.
Simulation reports the following results:

1. At simulation time 0, the value of wire a, b, and c is 1 and wire
a drives a strong 1 into trireg la and sm.

2. At simulation time 10, wire b’s value changes to 0, disconnecting
trireg la and sm from wire a. The triregs la and sm enter the
capacitive state. Both triregs share the large charge of
trireg la because they remain connected through tranif2.

3. At simulation time 20, wire c’s value changes to 0, disconnecting
trireg sm from trireg la. The trireg sm no longer shares
trireg la’s large charge and now stores a small charge.

4. At simulation time 30, wire c’s value changes to 1, connecting the
two triregs. These triregs now share the same charge.

5. At simulation time 40, wire c’s value changes again to 0,
disconnecting trireg sm from trireg la. Once again, trireg sm
no longer shares trireg la’s large charge and now stores a small
charge.

Ideal capacitive state and charge decay

A trireg net can retain its value indefinitely or its charge can decay
over time. The simulation time of charge decay is specified in the trireg
net’s delay specification.

3.7.4
tri0 and tri1 Nets

The tri0 and tri1 nets model nets with resistive pulldown and
resistive pullup devices on them. When no driver drives a tri0 net, its
value is 0. When no driver drives a tri1 net, its value is 1. The strength
of this value is pull. See Chapter 6, Gate and Switch Level Modeling, for
a description of strength modeling.

3.7.5
supply Nets

The supply0 and supply1 nets model the power supplies in a circuit.
The supply0 nets are used to model Vss (ground) and supply1 nets are
used to model Vdd or Vcc (power). These nets should never be connected
to the output of a gate or continuous assignment, because the strength
they possess will override the driver. They have supply0 or supply1
strengths.

3-14 June 1993

Data Types
Memories

3.8
Memories

The Verilog HDL models memories as an array of register variables.
These arrays can be used to model read-only memories (ROMs), random
access memories (RAMs), and register files. Each register in the array is
known as an element or word and is addressed by a single array index.
There are no multiple dimension arrays in the Verilog Language.

Memories are declared in register declaration statements by specifying
the element address range after the declared identifier. Syntax 3-3 gives
the syntax for a register declaration statement. Note that this syntax
extends the <register_variable> definition given in Section 3.2.3,
Declaration Syntax.

Syntax 3-3: Syntax for <register_variable>

The following example illustrates a memory declaration:

reg[7:0] mema[0:255];

This example declares a memory called mema consisting of 256 eight-bit
registers. The indices are 0 through 255. The expressions that specify
the indices of the array must be constant expressions.

Note that within the same declaration statement both registers and
memories can be declared. This makes it convenient to declare both a
memory and some registers that will hold data to be read from and
written to the memory in the same declaration statement, as in
Example 3-3.

<register_variable>
::= <name_of_register>
||= <name_of_memory> [<constant_expression> : <constant_expression>]

<constant_expression>
::=<expression>

<name_of_memory>
::= <IDENTIFIER>

June 1993 3-15

Data Types
Memories

Example 3-3: Declaring memory

Note that a memory of n 1-bit registers is different from an n-bit vector
register, as shown in the following example:

An n-bit register can be assigned a value in a single assignment, but a
complete memory cannot; thus the following assignment to rega is legal
and the succeeding assignment that attempts to clear all of the memory
mema is illegal, as shown in the following example:

To assign a value to a memory element, an index must be specified, as
shown in the following example:

parameter // parameters are run-time
// constants - see Section 3.11

wordsize = 16,
memsize = 256;

// Declare 256 words of 16-bit memory plus two registers
reg [wordsize-1:0] // equivalent to [15:0]

mem [memsize-1:0], // equivalent to [255:0]
writereg,
readreg;

reg [1:n] rega;

reg mema [1:n];

an n-bit register is not
the same as a memory
of n 1-bit registers

rega = 0;
mema = 0; illegal syntax

legal syntax

mema[1] = 0;
assigns 0 to the first
element of mema

3-16 June 1993

Data Types
Integers and Times

The index can be an expression. This option allows you to reference
different memory elements, depending on the value of other registers and
nets in the circuit. For example, a program counter register could be
used to index into a RAM.

3.9
Integers and Times

In addition to modeling hardware, there are other uses for variables in
an HDL model. Although you can use the reg variables for general
purposes such as counting the number of times a particular net changes
value, the integer and time register data types are provided for
convenience and to make the description more self-documenting.

The syntax for declaring integer and time variables is as follows:

Syntax 3-4: Syntax for time and integer declarations

The <list_of_register_variables> item is defined in Section 3.2.3,
Declaration Syntax.

A time variable is used for storing and manipulating simulation time
quantities in situations where timing checks are required and for
diagnostics and debugging purposes. This data type is typically used in
conjunction with the $time system function. The size of a time variable
is 64 bits.

An integer is a general purpose variable used for manipulating
quantities that are not regarded as hardware registers. The size of an
integer variable is 32 bits.

Arrays of integer and time variables are allowed. They are declared in
the same manner as arrays of reg variables, as in the following example:

integer a[1:64]; // an array of 64 integers
time change_history[1:1000]; // an array of 1000 times

The integer and time variables are assigned values in the same
manner as reg variables. Procedural assignments are used to trigger
their value changes.

<time_declaration>
::= time <list_of_register_variables> ;

<integer_declaration>
::= integer <list_of_register_variables> ;

June 1993 3-17

Data Types
Real Numbers

Time variables behave the same as 64 bit reg variables. They are
unsigned quantities, and unsigned arithmetic is performed on them. In
contrast, integer variables are signed quantities. Arithmetic operations
performed on integer variables produce 2’s complement results.

3.10
Real Numbers

The Verilog HDL supports real number constants and variables in
addition to integers and time variables. The syntax for real numbers is
the same as the syntax for register types, and is described in
Section 3.10.1. Except for the following restrictions, real number
variables can be used in the same places that integers and time variables
are used.

• Not all Verilog HDL operators can be used with real number values.
See the tables in Section 4.1 for lists of valid and invalid operators
for real numbers.

• Ranges are not allowed on real number variable declarations.

• Real number variables default to an initial value of zero.

3.10.1
Declaration Syntax for Real Numbers

The syntax for declaring real number variables is as follows:

Syntax 3-5: Syntax for real number variable declarations

The <list_of_variables> item is defined in Section 3.2.3, Declaration
Syntax.

3.10.2
Specifying Real Numbers

Real numbers can be specified in either decimal notation (for example,
14.72) or in scientific notation (for example, 39e8, which indicates 39
multiplied by 10 to the 8th power). Real numbers expressed with a
decimal point must have at least one digit on each side of the decimal
point.

<real_declaration>
::=real<list_of_variables>;

3-18 June 1993

Data Types
Real Numbers

The following are some examples of valid real numbers in the Verilog
language:

1.2
0.1
2394.26331
1.2E12 (the exponent symbol can be e or E)
1.30e-2
0.1e-0
23E10
29E-2
236.123_763_e-12 (underscores are ignored)

The following are invalid real numbers in the Verilog HDL because they
do not have a digit to the left of the decimal point:

.12

.3E3

.2e-7

3.10.3
Operators and Real Numbers

The result of using logical or relational operators on real numbers is a
single-bit scalar value. Not all Verilog operators can be used with real
number expressions. Table 4-2 in Section 4.1 lists the valid operators
for use with real numbers. Real number constants and real number
variables are also prohibited in the following contexts:

• edge descriptors (posedge, negedge) applied to real number
variables

• bit-select or part-select references of variables declared as real

• real number index expressions of bit-select or part-select
references of vectors

• real number memories (arrays of real numbers)

3.10.4
Conversion

The Verilog language converts real numbers to integers by rounding a
real number to the nearest integer, rather than by truncating it. For
example, the real numbers 35.7 and 35.5 both become 36 when
converted to an integer, and 35.2 becomes 35. Implicit conversion takes
place when you assign a real to an integer.

June 1993 3-19

Data Types
Parameters

3.11
Parameters

Verilog parameters do not belong to either the register or the net group.
Parameters are not variables, they are constants. The syntax for
parameter declarations is as follows:

Syntax 3-6: Syntax for <parameter_declaration>

The <list_of_assignments> is a comma-separated list of assignments,
where the right-hand side of the assignment must be a constant
expression, that is, an expression containing only constant numbers and
previously defined parameters. Example 3-4 shows examples of
parameter declarations:

Example 3-4: Parameter declarations

Even though they represent constants, Verilog parameters can be
modified at compilation time to have values that are different from those
specified in the declaration assignment. This allows you to customize
module instances. You can modify the parameter with the defparam
statement, or you can modify the parameter in the module instance
statement. Typical uses of parameters are to specify delays and width of
variables. See Chapter 12, Hierarchical Structures, for complete details
on parameter value assignment.

<parameter_declaration>
::= parameter <list_of_assignments> ;

parameter msb = 7; // defines msb as a constant value 7

parameter e = 25, f = 9;// defines two constant numbers

parameter average_delay = (r + f) / 2;

parameter byte_size = 8, byte_mask = byte_size - 1;

parameter r = 5.7; //declares r as a ’real’

// parameter

June 1993 4-1

Expressions

4
Figure 4-0

Example 4-0
Syntax 4-0
Table 4-0

Expressions
This chapter describes the operators and operands available in the
Verilog HDL, and how to use them to form expressions.

An expression is a construct that combines operands with operators to
produce a result that is a function of the values of the operands and the
semantic meaning of the operator. Alternatively, an expression is any
legal operand—for example, a net bit-select. Wherever a value is needed
in a Verilog HDL statement, an expression can be given. However, several
statement constructs limit an expression to a constant expression. A
constant expression consists of constant numbers and predefined
parameter names only, but can use any of the operators defined in
Table 4-1.

For their use in expressions, integer and time data types share the
same traits as the data type reg. Descriptions pertaining to register
usage apply to integers and times as well.

An operand can be one of the following:

• number (including real)

• net

• register, integer, time

• net bit-select

• register bit-select

• net part-select

• register part-select

• memory element

• a call to a user-defined function or system defined function that
returns any of the above

4-2 June 1993

Expressions
Operators

4.1
Operators

The symbols for the Verilog HDL operators are similar to those in the C
language. Table 4-1 lists these operators.

Table 4-1: Operators for Verilog language

{} concatenation
+ - * / arithmetic
% modulus
> >= < <= relational
! logical negation
&& logical and
|| logical or
== logical equality
!= logical inequality
=== case equality
!== case inequality
~ bit-wise negation
& bit-wise and
| bit-wise inclusive or
^ bit-wise exclusive or
^~ or ~^ bit-wise equivalence
& reduction and
~& reduction nand
| reduction or
~| reduction nor
^ reduction xor
~^ or ^~ reduction xnor
<< left shift
>> right shift
? : conditional

Verilog Language Operators

June 1993 4-3

Expressions
Operators

Not all of the operators listed above are valid with real expressions.
Table 4-2 is a list of the operators that are legal when applied to real
numbers.

Table 4-2: Legal operators for use in real expressions

The result of using logical or relational operators on real numbers is a
single-bit scalar value.

Table 4-3 lists operators that are not allowed to operate on real
numbers.

Table 4-3: Operators not allowed for real expressions

See Section 3.10.3 for more information on use of real numbers.

Operators for Real Expressions

unary + unary - unary operators

+ - * / arithmetic

> >= < <= relational

! && || logical

== != logical equality

?: conditional

or logical

Disallowed Operators for Real Expressions

{} concatenate

% modulus

=== !== case equality

~ & | bit-wise

^ ^~ ~^
& ~& | ~| reduction

<< >> shift

4-4 June 1993

Expressions
Operators

4.1.1
Binary Operator Precedence

The precedence order of binary operators (and the ternary operator ?:)
is the same as the precedence order for the matching operators in the C
language. Verilog has two equality operators not present in C; they are
discussed in Section 4.1.6. Table 4-4 summarizes the precedence rules
for Verilog’s binary and ternary operators.

Table 4-4: Precedence rules for operators

Operators on the same line in Table 4-4 have the same precedence. Rows
are in order of decreasing precedence, so, for example, *, /, and % all
have the same precedence, which is higher than that of the binary + and
- operators.

All operators associate left to right. Associativity refers to the order in
which a language evaluates operators having the same precedence.
Thus, in the following example B, is added to A and then C is subtracted
from the result of A+B.

A + B - C

Operator Precedence Rules

! ~ highest precedence
* / %
+ -
<< >>
< <= > >=
== != === !==
&
^ ^~
|
&&
||
?: (ternary lowest precedence

operator)

June 1993 4-5

Expressions
Operators

When operators differ in precedence, the operators with higher
precedence apply first. In the following example, B is divided by C
(division has higher precedence than addition) and then the result is
added to A.

A + B / C

Parentheses can be used to change the operator precedence.

(A + B) / C // not the same as A + B / C

4.1.2
Numeric Conventions in Expressions

Operands can be expressed as based and sized numbers—with the
following restriction: The Verilog language interprets a number of the
form sss ’f nnn, when used directly in an expression , as the unsigned
number represented by the two’s complement of nnn. Example 4-1
shows two ways to write the expression “minus 12 divided by 3.” Note
that -12 and -d12 both evaluate to the same bit pattern, but in an
expression -d12 loses its identity as a signed, negative number.

Example 4-1: Number format in expressions

4.1.3
Arithmetic Operators

The binary arithmetic operators are the following:

+ - * / % (the modulus operator)

integer IntA;

IntA = -12 / 3;

IntA = -’d 12 / 3;

The result is -4.

The result is 1431655761.

4-6 June 1993

Expressions
Operators

Integer division truncates any fractional part. The modulus
operator—for example, y % z, gives the remainder when the first
operand is divided by the second, and thus is zero when z divides y
exactly. The result of a modulus operation takes the sign of the first
operand. Table 4-5 gives examples of modulus operations.

Table 4-5: Examples of modulus operations

The unary arithmetic operators take precedence over the binary
operators. The unary operators are the following:

+ -

For the arithmetic operators, if any operand bit value is the unknown
value x, then the entire result value is x.

4.1.4
Arithmetic Expressions with Registers and Integers

An arithmetic operation on a register data type behaves differently than
an arithmetic operation on an integer data type. The Verilog language
sees a register data type as an unsigned value and an integer type as a
signed value. As a result, when you assign a value of the form
-<size><base_format><number> to a register and then use that register
as an expression operand, you are actually using a positive number that
is the two’s complement of nnn. In contrast, when you assign a value of

10 % 3 1 10/3 yields a remainder of 1

11 % 3 2 11/3 yields a remainder of 2

12 % 3 0 12/3 yields no remainder

-10 % 3 -1 the result takes the sign of the
first operand

11 % -3 2 the result takes the sign of the
first operand

-4’d12 % 3 1 -4’d12 is seen as a large, positive
number that leaves a remainder
of 1 when divided by 3

Result CommentsModulus
Expression

June 1993 4-7

Expressions
Operators

the form -<size><base_format><number> to an integer and then use that
integer as an expression operand, the expression evaluates using signed
arithmetic. Example 4-2 shows various ways to divide minus twelve by
three using integer and register data types in expressions.

Example 4-2: Modulus operation with registers and integers

4.1.5
Relational Operators

Table 4-2 lists and defines the relational operators.

Table 4-6: The relational operators defined

integer intA;
reg [15:0] regA;
intA = -4’d12;
regA = intA / 3;

regA = -4’d12;
intA = regA / 3;

intA = -4’d12 / 3;

regA = -12 / 3;

result is -4 because
intA is an integer
data type

result is 21841 because
regA is a register
data type

result is 21841 because
-4d’12 is effectively a
register data type

result is -4 because -12
is effectively an integer
data type

Relational Operators

a < b a less than b
a > b a greater than b
a <= b a less than or equal to b
a >= b a greater than or equal to b

4-8 June 1993

Expressions
Operators

The relational operators in Table 4-2 all yield the scalar value 0 if the
specified relation is false, or the value 1 if the specified relation is true.
If, due to unknown bits in the operands, the relation is ambiguous, then
the result is the unknown value (x).

Please note: If Verilog-XL tests a value that is x or z, then the result
of that test is False.

All the relational operators have the same precedence. Relational
operators have lower precedence than arithmetic operators. The
following examples illustrate the implications of this precedence rule:

a < size - 1 // this construct is the same as

a < (size - 1) // this construct, but . . .

size - (1 < a) // this construct is not the same

size - 1 < a // as this construct

Note that when size - (1 < a) evaluates, the relational expression
evaluates first and then either zero or one is subtracted from size. When
size - 1 < a evaluates, the size operand is reduced by one and then
compared with a.

4.1.6
Equality Operators

The equality operators rank just lower in precedence than the relational
operators. Table 4-2 lists and defines the equality operators.

Table 4-7: The equality operators defined

All four equality operators have the same precedence. These four
operators compare operands bit for bit, with zero filling if the two
operands are of unequal bit-length. As with the relational operators, the
result is 0 if false, 1 if true.

Equality Operators

a ===b a equal to b, including x and z
a !==b a not equal to b, including x and z
a ==b a equal to b, result may be unknown
a != b a not equal to b, result may be unknown

June 1993 4-9

Expressions
Operators

For the == and != operators, if either operand contains an x or a z, then
the result is the unknown value (x).

For the === and !== operators, the comparison is done just as it is in
the procedural case statement. Bits that are x or z are included in the
comparison and must match for the result to be true. The result of these
operators is always a known value, either 1 or 0.

4.1.7
Logical Operators

The operators logical AND (&&) and logical OR (||) are logical
connectives. Expressions connected by && or || are evaluated left to
right, and evaluation stops as soon as the truth or falsehood of the result
is known. The result of the evaluation of a logical comparison is one
(defined as true), zero (defined as false), or, if the result is ambiguous,
then the result is the unknown value (x). For example, if register alpha
holds the integer value 237 and beta holds the value zero, then the
following examples perform as described:

regA = alpha && beta; // regA is set to 0
regB = alpha || beta; // regB is set to 1

The precedence of && is greater than that of ||, and both are lower than
relational and equality operators. The following expression ANDs three
sub-expressions without needing any parentheses:

a < size-1 && b != c && index != lastone

However, it is recommended for readability purposes that parentheses be
used to show very clearly the precedence intended, as in the following
rewrite of the above example:

(a < size-1) && (b != c) && (index != lastone)

A third logical operator is the unary logical negation operator !. The
negation operator converts a non-zero or true operand into 0 and a zero
or false operand into 1. An ambiguous truth value remains as x. A
common use of ! is in constructions like the following:

if (!inword)

4-10 June 1993

Expressions
Operators

In some cases, the preceding construct makes more sense to someone
reading the code than the equivalent construct shown below:

if (inword == 0)

Constructions like if (!inword) read quite nicely (“if not inword”), but
more complicated ones can be hard to understand. The first form is
slightly more efficient in simulation speed than the second.

June 1993 4-11

Expressions
Operators

4.1.8
Bit-Wise Operators

The bit operators perform bit-wise manipulations on the operands—that
is, the operator compares a bit in one operand to its equivalent bit in the
other operand to calculate one bit for the result. The logic tables in
Table 4-8 show the results for each possible calculation.

Table 4-8: Bit-wise operators logic tables

~

0 1

1 0

x x

& 0 1 x

0 0 0 0

1 0 1 x

x 0 x x

| 0 1 x

0 0 1 x

1 1 1 1

x x 1 x

bit-wise unary negation bit-wise binary AND operator

bit-wise binary inclusive
OR operator

^ 0 1 x

0 0 1 x

1 1 0 x

x x x x

bit-wise binary exclusive
OR operator

^~ 0 1 x

0 1 0 x

1 0 1 x

x x x x

bit-wise binary exclusive
NOR operator

4-12 June 1993

Expressions
Operators

Care should be taken to distinguish the bit-wise operators & and | from
the logical operators && and ||. For example, if x is 1 and y is 2, then
x & y is 0, while x && y is 1. When the operands are of unequal bit
length, the shorter operand is zero-filled in the most significant bit
positions.

4.1.9
Reduction Operators

The unary reduction operators perform a bit-wise operation on a single
operand to produce a single bit result. The first step of the operation
applies the operator between the first bit of the operand and the
second—using the logic tables in Table 4-9. The second and subsequent
steps apply the operator between the one-bit result of the prior step and
the next bit of the operand—still using the same logic table.

Table 4-9: Reduction operators logic tables

& 0 1 x

0 0 0 0

1 0 1 x

x 0 x x

reduction unary
AND operator

| 0 1 x

0 0 1 x

1 1 1 1

x x 1 x

reduction unary inclusive
OR operator

^ 0 1 x

0 0 1 x

1 1 0 x

x x x x

reduction unary exclusive
OR operator

June 1993 4-13

Expressions
Operators

Note that the reduction unary NAND and reduction unary NOR operators
operate the same as the reduction unary AND and OR operators,
respectively, but with their outputs negated. The effective results
produced by the unary reduction operators are listed in Table 4-10 and
Table 4-11.

Table 4-10: AND, OR, NAND, and NOR unary reduction operations

Table 4-11: Exclusive OR and exclusive NOR unary reduction operations

Results of Unary &, |, ~&, and ~|
Reduction Operations

Operand & | ~& ~|

no bits set 0 0 1 1

all bits set 1 1 0 0

some bits set, 0 1 1 0
but not all

Results of Unary ^ and ~^
Reduction Operators

Operand ^ ~^

odd number of bits set 1 0

even number of bits set 0 1
(or none)

4-14 June 1993

Expressions
Operators

4.1.10
Syntax Restrictions

The Verilog language imposes two syntax restrictions intended to protect
description files from a typographical error that is particularly hard to
find. The error consists of transposing a space and a symbol. Note that
the constructs on line 1 below do not represent the same syntax as the
similar constructs on line 2.

1. a & &b a | |b
2. a && b a || b

In order to protect users from this type of error, Verilog requires the use
of parentheses to separate a reduction or or and operator from a bit-wise
or or and operator. Table 4-12 shows the syntax that requires
parentheses:

Table 4-12: Syntax equivalents for syntax restriction

a & &b a & (&b)
a | |b a | (|b)

Invalid Equivalent
Syntax Syntax

June 1993 4-15

Expressions
Operators

4.1.11
Shift Operators

The shift operators, << and >>, perform left and right shifts of their left
operand by the number of bit positions given by the right operand. Both
shift operators fill the vacated bit positions with zeroes. Example 4-3
illustrates this concept.

Example 4-3: Use of shift operator

In this example, the register result is assigned the binary value 0100,
which is 0001 shifted to the left two positions and zero filled.

4.1.12
Conditional Operator

The conditional operator has three operands separated by two operators
in the following format:

cond_expr ? true_expr : false_expr

If cond_expr evaluates to false, then false_expr is evaluated and used
as the result. If the conditional expression is true, then true_expr is
evaluated and used as the result. If cond_expr is ambiguous, then both
true_expr and false_expr are evaluated and their results are
compared, bit by bit, using Table 4-13 to calculate the final result. If the
lengths of the operands are different, the shorter operand is lengthened
to match the longer and zero filled from the left (the high-order end).

module shift;

reg [3:0] start, result;

initial

begin

start = 1;

result = (start << 2);

end

endmodule

1.) Start is set to 0001.
2.) Result is set to 0100.

4-16 June 1993

Expressions
Operators

Table 4-13: Conditional operator ambiguous condition results

The following example of a tri-state output bus illustrates a common use
of the conditional operator.

wire [15:0] busa = drive_busa ? data : 16’bz;

The bus called data is driven onto busa when drive_busa is 1. If
drive_busa is unknown, then an unknown value is driven onto busa.
Otherwise, busa is not driven.

4.1.13
Concatenations

A concatenation is the joining together of bits resulting from two or more
expressions. The concatenation is expressed using the brace characters
{ and }, with commas separating the expressions within. The next
example concatenates four expressions:

{a, b[3:0], w, 3’b101}

The previous example is equivalent to the following example:

{a, b[3], b[2], b[1], b[0], w, 1’b1, 1’b0, 1’b1}

Unsized constant numbers are not allowed in concatenations. This is
because the size of each operand in the concatenation is needed to
calculate the complete size of the concatenation.

Concatenations can be expressed using a repetition multiplier as shown
in the next example.

{4{w}} // This is equivalent to {w, w, w, w}

?: 0 1 x z

0 0 x x x

1 x 1 x x

x x x x x

z x x x x

June 1993 4-17

Expressions
Operands

The next example illustrates nested concatenations.

{b, {3{a, b}}} // This is equivalent to
// {b, a, b, a, b, a, b}

The repetition multiplier must be a constant expression.

4.2
Operands

As stated before, there are several types of operands that can be
specified in expressions. The simplest type is a reference to a net or
register in its complete form—that is, just the name of the net or register
is given. In this case, all of the bits making up the net or register value
are used as the operand.

If just a single bit of a vector net or register is required, then a bit-select
operand is used. A part-select operand is used to reference a group of
adjacent bits in a vector net or register.

A memory element can be referenced as an operand.

A concatenation of other operands (including nested concatenations) can
be specified as an operand.

A function call is an operand.

4.2.1
Net and Register Bit Addressing

Bit-selects extract a particular bit from a vector net or register. The bit
can be addressed using an expression. The next example specifies the
single bit of acc that is addressed by the operand index.

acc[index]

The actual bit that is accessed by an address is, in part, determined by
the declaration of acc. For instance, each of the declarations of acc
shown in the next example causes a particular value of index to access
a different bit:

reg [15:0] acc;
reg [1:16] acc;

If the bit select is out of the address bounds or is x, then the value
returned by the reference is x.

4-18 June 1993

Expressions
Operands

Several contiguous bits in a vector register or net can be addressed, and
are known as part-selects. A part-select of a vector register or net is
given with the following syntax:

vect[ms_expr:ls_expr]

Both expressions must be constant expressions. The first expression
must address a more significant bit than the second expression.
Compiler errors result if either of these rules is broken.

The next example and the bullet items that follow it illustrate the
principles of bit addressing. The code declares an 8-bit register called
vect and initializes it to a value of 4. The bullet items describe how the
separate bits of that vector can be addressed.

reg [7:0] vect;
vect = 4;

• if the value of addr is 2, then vect[addr] returns 1

• if the value of addr is out of bounds, then vect[addr] returns x

• if addr is 0, 1, or 3 through 7, vect[addr] returns 0

• vect[3:0] returns the bits 0100

• vect[5:1] returns the bits 00010

• vect[<expression that returns x>] returns x

• vect[<expression that returns z>] returns x

• if any bit of addr is x/z, then the value of addr is x

4.2.2
Memory Addressing

Section 3.8 discussed the declaration of memories. This section
discusses memory addressing. The next example declares a memory of
1024 8-bit words:

reg [7:0] mem_name[0:1023];

The syntax for a memory address consists of the name of the memory
and an expression for the address—specified with the following format:

mem_name[addr_expr]

June 1993 4-19

Expressions
Operands

The addr_expr can be any expression; therefore, memory indirections
can be specified in a single expression. The next example illustrates
memory indirection:

mem_name[mem_name[3]]

In the above example, mem_name[3]addresses word three of the memory
called mem_name. The value at word three is the index into mem_name
that is used by the memory address mem_name[mem_name[3]]. As with
bit-selects, the address bounds given in the declaration of the memory
determine the effect of the address expression. If the index is out of the
address bounds or is x, then the value of the reference is x.

There is no mechanism to express bit-selects or part-selects of memory
elements directly. If this is required, then the memory element has to be
first transferred to an appropriately sized temporary register.

4.2.3
Strings

String operands are treated as constant numbers consisting of a
sequence of 8-bit ASCII codes, one per character, with no special
termination character.

Any Verilog HDL operator can manipulate string operands. The operator
behaves as though the entire string were a single numeric value.

Example 4-4 declares a string variable large enough to hold 14
characters and assigns a value to it. The example then manipulates the
string using the concatenation operator.

Note that when a variable is larger than required to hold the value being
assigned, the contents after the assignment are padded on the left with
zeros. This is consistent with the padding that occurs during assignment
of non-string values.

4-20 June 1993

Expressions
Operands

Example 4-4: Concatenation of strings

The result of running Verilog on the above description is:

4.2.4
String Operations

The common string operations copy, concatenate, and compare are
supported by Verilog operators. Copy is provided by simple assignment.
Concatenation is provided by the concatenation operator. Comparison is
provided by the equality operators. Example 4-4 and Example 4-5
illustrate assignment, concatenation, and comparison of strings.

When manipulating string values in vector variables, at least 8*n bits
are required in the vector, where n is the number of characters in the
string.

4.2.5
String Value Padding and Potential Problems

When strings are assigned to variables, the values stored are padded on
the left with zeros. Padding can affect the results of comparison and
concatenation operations. The comparison and concatenation operators
do not distinguish between zeros resulting from padding and the original
string characters.

module string_test;

reg [8*14:1] stringvar;

initial

begin

stringvar = ”Hello world”;

$display(”%s is stored as %h”,

stringvar,stringvar);

stringvar = {stringvar,”!!!”};

$display(”%s is stored as %h”,

stringvar,stringvar);

end

endmodule

Hello world is stored as 00000048656c6c6f20776f726c64

Hello world!!! is stored as 48656c6c6f20776f726c64212121

June 1993 4-21

Expressions
Operands

Example 4-5 illustrates the potential problem.

Example 4-5: Comparing string variables

The comparison in the example above fails because during the
assignment the string variables get padded as illustrated in the next
example:

s1 = 000000000048656c6c6f
s2 = 00000020776f726c6421

The concatenation of s1 and s2 includes the zero padding, resulting in
the following value:

000000000048656c6c6f00000020776f726c6421

Since the string “Hello world” contains no zero padding, the comparison
fails, as shown below:

The above comparison yields a result of zero, which is equivalent to false.

reg [8*10:1] s1, s2;

initial

begin

s1 = ”Hello”;

s2 = ” world!”;

if ({s1,s2} == ”Hello world!”)

$display(”strings are equal”);

end

s1 s2 ”Hello world!”

000000000048656c6c6f00000020776f726c6421 == 48656c6c6f20776f726c6421

”Hello” ” world!”

4-22 June 1993

Expressions
Minimum, Typical, Maximum Delay Expressions

4.2.6
Null String Handling

The null string (””) is equivalent to the value zero (0).

4.3
Minimum, Typical, Maximum Delay
Expressions

Verilog HDL delay expressions can be specified as three expressions
separated by colons. This triple is intended to represent minimum,
typical, and maximum values—in that order. The appropriate expression
is selected by the compiler when Verilog-XL is run. The user supplies a
command-line option to select which of the three expressions will be
used on a global basis. In the absence of a command-line option,
Verilog-XL selects the second expression (the “typical” delay value). The
syntax is as follows:

Syntax 4-1: Syntax for <mintypmax_expression>

The three expressions follow these conventions:

• expression1 is less than or equal to expression2

• expression2 is less than or equal to expression3

Verilog models typically specify three values for delay expressions. The
three values allow a design to be tested with minimum, typical, or
maximum delay values. In the following example, one of the three
specified delays will be executed before the simulation executes the
assignment; if the user does not select one, the simulator will take the
default.

always @A
X = #(3:4:5) A;

<mintypmax_expression>
::= <expression>
||= <expression1> : <expression2> : <expression3>

June 1993 4-23

Expressions
Expression Bit Lengths

The command-line option +mindelays selects the minimum expression
in all expressions where min:typ:max values have been specified.
Likewise, +typdelays selects all the typical expressions and
+maxdelays selects all the maximum expressions. Verilog-XL defaults to
the second value when a two or three-part delay expression is specified.

Values expressed in min:typ:max format can be used in expressions.
The next example shows an expression that defines a single triplet of
delay values. The minimum value is the sum of a+d; the typical value is
b+e; the maximum value is c+f, as follows:

a:b:c + d:e:f

The next example shows some typical expressions that are used to
specify min:typ:max format values:

val - 32’d 50: 32’d 75: 32’d 100

The min:typ:max format can be used wherever expressions can appear,
both in source text files and in interactive commands.

4.4
Expression Bit Lengths

Controlling the number of bits that are used in expression evaluations
is important if consistent results are to be achieved. Some situations
have a simple solution, for example, if a bit-wise AND operation is
specified on two 16-bit registers, then the result is a 16-bit value.
However, in some situations it is not obvious how many bits are used to
evaluate an expression, what size the result should be, or whether
signed or unsigned arithmetic should be used.

For example, when is it necessary to perform the addition of two 16-bit
registers in 17 bits to handle a possible carry overflow? The answer
depends on the context in which the addition takes place. If the 16-bit
addition is modeling a real 16-bit adder that loses or does not care about
the carry overflow, then the model must perform the addition in 16 bits.
If the addition of two 16-bit unsigned numbers can result in a significant
17th bit, then assign the answer to a 17-bit register.

4-24 June 1993

Expressions
Expression Bit Lengths

4.4.1
An Example of an Expression Bit Length Problem

During the evaluation of an expression, interim results take the size of
the largest operand (in the case of an assignment, this also includes the
left-hand side). You must therefore take care to prevent loss of a
significant bit during expression evaluation. This section describes an
example of the problems that can occur.

The expression (a + b >> 1) yields a 16-bit result, but cannot be
assigned to a 16-bit register without the potential loss of the high-order
bit. If a and b are 16-bit registers, then the result of (a+b) is 16 bits
wide—unless the result is assigned to a register wider than 16 bits. If
answer is a 17-bit register, then (answer = a + b) yields a full 17-bit
result. But in the expression (a + b >> 1), the sum of (a + b)
produces an interim result that is only 16 bits wide. Therefore, the
assignment of (a + b >> 1) to a 16-bit register loses the carry bit before
the evaluation performs the one-bit right shift.

There are two solutions to a problem of this type. One is to assign the
sum of (a+b) to a 17-bit register before performing the shift and then
shift the 17-bit answer into the 16-bits that your model requires. An
easier solution is to use the following trick.

The problem:

Evaluate the expression (a+b)>>1, assigning the result to a 16-bit
register without losing the carry bit. Variables a and b are both 16-bit
registers.

The solution:
Add the integer zero to the expression. The expression evaluates as
follows:

1. 0 + (a+b) evaluates—the result is as wide as the widest term,
which is the 32-bit zero

2. the 32-bit sum of 0 + (a+b) is shifted right one bit

This trick preserves the carry bit until the shift operation can move it
back down into 16 bits.

4.4.2
Verilog Rules for Expression Bit Lengths

In the Verilog language, the rules governing the expression bit lengths
have been formulated so that most practical situations have a natural
solution.

The number of bits of an expression (known as the size of the expression)
is determined by the operands involved in the expression and the context
in which the expression is given.

June 1993 4-25

Expressions
Expression Bit Lengths

A self-determined expression is one where the bit length of the
expression is solely determined by the expression itself—for example, an
expression representing a delay value.

A context-determined expression is one where the bit length of the
expression is determined by the bit length of the expression and by the
fact that it is part of another expression. For example, the bit size of the
right-hand side expression of an assignment depends on itself and the
size of the left-hand side.

4-26 June 1993

Expressions
Expression Bit Lengths

Table 4-14 shows how the form of an expression determines the bit
lengths of the results of the expression. In Table 4-14, i, j, and k
represent expressions of an operand, and L(i) represents the bit length
of the operand represented by i.

Table 4-14: Bit lengths resulting from expressions

Expression Bit length Comments

unsized same as
constant integer
number (usually 32)

sized as given
constant
number

i op j max (L(i), L(j))
where op is:
+ - * / %
& | ^ ^~

+i and -i L(i)

~i L(i)

i op j 1 bit all operands are
where op is self-determined
=== !== == != && ||
> >= < <=
op i 1 bit all operands are
where op is self-determined
& ~& | ~| ^ ~^

i >> j L(i) j is self-determined
i << j

i ? j : k max (L(j), L(k)) i is self-determined

{i,..,j} L(i)+..+L(j) all operands are
self-determined

{ i { j, .. , k } } i*(L(j)+..+L(k)) all operands are
self-determined

June 1993 5-1

Assignments

5
Figure 5-0

Example 5-0
Syntax 5-0
Table 5-0

Assignments
The assignment is the basic mechanism for getting values into nets and
registers. There are two basic forms of the assignment:

• the continuous assignment, which assigns values to nets

• the procedural assignment, which assigns values to registers

An assignment consists of two parts, a left-hand side and a right-hand
side, separated by the equal (=) character. The right-hand side can be
any expression that evaluates to a value. The left-hand side indicates the
variable that the right-hand side is to be assigned to. The left-hand side
can take one of the following forms, depending on whether the
assignment is a continuous assignment or a procedural assignment.

Table 5-1: Legal left-hand side forms in assignment statements

continuous net (vector or scalar)
assignment constant bit-select of a vector net

constant part-select of a vector net
concatenation of any of the above 3

procedural register (vector or scalar)
assignment bit-select of a vector register

constant part-select of a vector register
memory element
concatenation of any of the above 4

Statement type Left-hand side

5-2 June 1993

Assignments
Continuous Assignments

5.1
Continuous Assignments

Continuous assignments drive values onto nets, both vector and scalar.
The significance of the word “continuous” is that the assignment occurs
whenever simulation causes the value of the right-hand side to change.
Continuous assignments provide a way to model combinational logic
without specifying an interconnection of gates. Instead, the model
specifies the logical expression that drives the net. The expression on the
right-hand side of the continuous assignment is not restricted in any
way. It can even contain a reference to a function. Thus, the result of a
case statement, if statement, or other procedural construct can drive
a net.

The syntax for continuous assignments is as follows:

Syntax 5-1: Syntax for <net_declaration>

<net_declaration>
::= <NETTYPE> <expandrange>? <delay>? <list_of_variables> ;
||= trireg <charge_strength>? <expandrange>? <delay>? <list_of_variables> ;
||= <NETTYPE> <drive_strength>? <expandrange>? <delay>?

<list_of_assignments> ;

<continuous_assign>
::= assign <drive_strength>? <delay>? <list_of_assignments> ;

<expandrange>
::= <range>
||= scalared <range>
||= vectored <range>

<range>
::= [<constant_expression> : <constant_expression>]

<list_of_assignments>
::= <assignment> <,<assignment>>*

<charge_strength>
::= (small)
||= (medium)
||= (large)

<drive_strength>
::= (<STRENGTH0> , <STRENGTH1>)
||= (<STRENGTH1> , <STRENGTH0>)

June 1993 5-3

Assignments
Continuous Assignments

5.1.1
The Net Declaration Assignment

The first two alternatives in the <net_declaration> are discussed in
Chapter 3, Data Types (see Section 3.2.3). The third alternative, the net
declaration assignment, allows a continuous assignment to be placed on
a net in the same statement that declares that net. The following is an
example of the <net_declaration> form of a continuous assignment:

wire (strong1, pull0) mynet = enable;

Please note: Because a net can be declared only once, only one
net declaration assignment can be made for a particular net. This
contrasts with the continuous assignment statement; one net can
receive multiple assignments of the continuous assignment form.

5.1.2
The Continuous Assignment Statement

The <continuous_assign> statement places a continuous assignment on
a net that has been previously declared, either explicitly by declaration
or implicitly by using its name in the terminal list of a gate, a
user-defined primitive or module instance. The following is an example
of a continuous assignment to a net that has been previously declared:

assign (strong1, pull0) mynet = enable;

Assignments on nets are continuous and automatic. This means that
whenever an operand in the right-hand side expression changes value
during simulation, the whole right-hand side is evaluated and assigned
to the left-hand side.

The following is an example of the use of a continuous assignment to
model a four bit adder with carry. Note that the assignment could not be
specified directly in the declaration of the nets because it requires a
concatenation on the left-hand side.

5-4 June 1993

Assignments
Continuous Assignments

Example 5-1: Use of continuous assign statement

The following example describes a module with one 16-bit output bus. It
selects between one of four input busses and connects the selected bus
to the output bus.

Example 5-2: Net declaration assignment and continuous assign statement

module adder (sum_out, carry_out, carry_in, ina, inb) ;

output [3:0]sum_out;

input [3:0]ina, inb;

output carry_out;

input carry_in;

wire carry_out, carry_in;

wire[3:0] sum_out, ina, inb;

assign

{carry_out, sum_out} = ina + inb + carry_in;

endmodule

module select_bus(busout, bus0, bus1, bus2, bus3, enable, s);
parameter n = 16;
parameter Zee = 16’bz;
output [1:n] busout;
input [1:n] bus0, bus1, bus2, bus3;
input enable;
input [1:2] s;

tri [1:n] data; // net declaration.
tri [1:n] busout = enable ? data : Zee;// net declaration with

// continuous assignment.

assign // assignment statement with
data = (s == 0) ? bus0 : Zee, // 4 continuous assignments.
data = (s == 1) ? bus1 : Zee,
data = (s == 2) ? bus2 : Zee,
data = (s == 3) ? bus3 : Zee;

endmodule

June 1993 5-5

Assignments
Continuous Assignments

The following sequence of events is experienced during simulation of the
description in Example 5-2:

1. The value of s, a bus selector input variable, is checked in the
assign statement; based on the value of s, the net data receives the
data from one of the four input busses.

2. The setting of data triggers the continuous assignment in the net
declaration for busout; if enable is set, the contents of data are
assigned to busout; if enable is clear, the contents of Zee are
assigned to busout.

Note that the parameter Zee has an explicit width specification on the
high impedance value. This is recommended practice, because it avoids
mistakes where extra bits of a value would cause erroneous results. The
default width of the high-impedance value (z) is the word size of the host
machine, typically 32 bits.

Please note: There is a functional difference between a net
declaration assignment and a continuous assignment statement. In
net declaration assignments, all changes during a time unit in the
expression on the right-hand side of the assignment operator (=)
propagate to the net. In continuous assignment statements, the value
in the expression on the right-hand side of the assignment operator (=)
propagates to the net after the final change to the value of the
expression.

5.1.3
Delays

A delay given to a continuous assignment specifies the time duration
between a right-hand side operand value change and the assignment
made to the left-hand side. If the left-hand side references a scalar net,
then the delay is treated in the same way as for gate delays—that is,
different delays can be given for the output rising, falling, and changing
to high impedance (see Chapter 6, Gate and Switch Level Modeling).

If the left-hand side references a vector net, then up to three delays can
also be applied. The following rules determine which delay controls the
assignment:

• If the right-hand side LSB is non-zero or becomes zero, then the
falling delay is used.

• If the right-hand side LSB is z or becomes z, then the turn-off
delay is used.

• If the right-hand side LSB is a one or becomes a one, then the
rising delay is used.

• If the right-hand side LSB is an x or becomes an x, then the lesser
of the delay values is used.

When different rise and fall delays are specified for a vector net, the actual
delay choosen is based on the value or value change of the least significant
bit. An example of this is shown in Example 5-3.

5-6 June 1993

Assignments
Continuous Assignments

Example 5-3: Delay based on the value or value change of the least significant bit

In order to model rise and fall delay for individual bits, you need to expand
the register expression to a single bit expression as shown in Example 5-4.

module least_significant_bit (out);
output [3:0] out;
reg [3:0] a;
wire [3:0] b;

assign #(10,20) b = a;

initial
begin

a = ‘b0000;
#100 a = ‘b1101;
#100 a = ‘b0111;
#100 a = ‘b1110;
end

initial
begin
$monitor($time, , “a=%b, b=%b”,a, b);
#1000 $finish;
end

endmodule

Compiling source file
Highest level modules:
least_significant_bit

0 a=0000, b=xxxx
20 a=0000, b=0000

100 a=1101, b=0000
110 a=1101, b=1101 // LSB is high so uses a rise delay
200 a=0111, b=1101
210 a=0111, b=0111 // LSB is high so uses a rise delay
300 a=1110, b=0111
320 a=1110, b=1110 // LSB is low so uses a fall delay

June 1993 5-7

Assignments
Continuous Assignments

Example 5-4: Delay based on the rise and fall delay for individualbits

module least_significant_bit (out);
output [3:0] out;
reg [3:0] a;
wire [3:0] b;

assign #(10,20) b[0] = a[0],
b[1] = a[1],
b[2] = a[2],
b[3] = a[3];

initial
begin

a =‘b0000;
#100 a =’b1101;
#100 a =’b0111;
#100 a =’b1110;
end

initial
begin

$monitor($time, , “a=%b, b=%b”,a, b);
#1000 $finish;

end

endmodule

Compiling source file
Highest level modules:
least_significant_bit

0 a=0000, b=xxxx
20 a=0000, b=0000
100 a=1101, b=0000
110 a=1101, b=1101 // rise delay of 10 time units
200 a=0111, b=1101
210 a=0111, b=1111 // rise delay of 10 time units
220 a=0111, b=0111 // fall delay of 20 time units
300 a=1110, b=0111
310 a=1110, b=1111 // rise delay of 10 time units
320 a=1110, b=1110 // fall delay of 20 time units

5-8 June 1993

Assignments
Continuous Assignments

Note that specifying the delay in a continuous assignment that is part of
the net declaration is different from specifying a net delay and then
making a continuous assignment to the net. A delay value can be applied
to a net in a net declaration, as in the following example:

wire #10 wireA;

This syntax, called a net delay, means that any value change that is to
be applied to wireA by some other statement is delayed for ten time
units before it takes effect. When there is a continuous assignment in a
declaration, the delay is part of the continuous assignment and is not a
net delay. Thus, it is not added to the delay of other drivers on the net.
Furthermore, if the assignment is to an expanded vector net (a net not
specified with the keyword vectored), then the rising and falling delays
are not applied to the individual bits if the assignment is included in the
declaration.

In situations where a right-hand side operand changes before a previous
change has had time to propagate to the left-hand side, then the latest
value change is the only one to be applied. That is, only one assignment
occurs. This effect is known as inertial delay.

The following example implements a vector exclusive OR. The size and
delay of the operation are controlled by parameters, which can be
changed when instances of this module are created. See Section 12.2 for
details on Overriding Module Parameter Values.

Example 5-5: Use of delays with assignments

module modxor(axorb, a, b);

parameter size = 8, delay = 15;

output [size-1:0] axorb;

input [size-1:0] a, b;

wire [size-1:0] #delay axorb = a ^ b;

endmodule

June 1993 5-9

Assignments
Procedural Assignments

5.1.4
Strength

The driving strength of a continuous assignment can be specified by the
user. This applies only to assignments to scalar nets of the types listed
below:

wire wand tri trireg
wor triand tri0

trior tri1

Continuous assignments driving strengths can be specified in either a
net declaration or in a stand-alone assignment, using the assign
keyword. The strength specification, if provided, must immediately
follow the keyword (either the keyword for the net type or the assign
keyword) and must precede any delay specified. Whenever the
continuous assignment drives the net, the strength of the value will
simulate as specified.

A <drive_strength> specification contains one strength value that
applies when the value being assigned to the net is 1 and a second
strength value that applies when the assigned value is 0. The following
keywords specify the strength value for an assignment of 1:

supply1 strong1 pull1 weak1 highz1

The following keywords specify the strength value for an assignment of 0:

supply0 strong0 pull0 weak0 highz0

The order of the two strength specifications is arbitrary. The following
two rules constrain the use of drive strength specifications:

• The strength specifications (highz1, highz0) and (highz0,
highz1) are illegal language constructs.

• When the keyword vectored is specified together with a
specification of strength on a continuous assignment, the keyword
vectored is ignored.

5.2
Procedural Assignments

The primary discussion of procedural assignments is in Section 8.2.
However, a description of the basic ideas here will highlight the
differences between continuous assignments and procedural
assignments.

5-10 June 1993

Assignments
Accelerated Continuous Assignments

As stated above, continuous assignments drive nets in a manner similar
to the way gates drive nets. The expression on the right-hand side can
be thought of as a combinatorial circuit that drives the net continuously.
The word continuous is important; continuous assignments cannot be
disabled.

In contrast, procedural assignments put values in registers. The
assignment does not have duration; instead, the register holds the value
of the assignment until the next procedural assignment to that register.

Procedural assignments occur within procedures such as always,
initial, task, and function (these procedures are described in later
chapters), and can be thought of as ”triggered” assignments. The trigger
occurs when the flow of execution in the simulation reaches an
assignment within a procedure. Reaching the assignment can be
controlled by conditional statements. Event controls, delay controls, if
statements, case statements, and looping statements can all be used to
control whether assignments get evaluated. Chapter 8, Behavioral
Modeling, gives details and examples.

5.3
Accelerated Continuous Assignments

This section describes how you can accelerate continuous assignments
to make your designs simulate faster. This chapter also explains the
following:

• the restrictions on accelerated continuous assignments

• how to accelerate continuous assignments

• the kinds of designs that simulate faster with this feature and the
kind of design that simulates slower

• how accelerated continuous assignments affect simulation

5.3.1
The Restrictions on Accelerated Continuous Assignments

You can accelerate continuous assignments only if they meet the
restrictions described in this section. These restrictions apply to the
following syntax elements of a continuous assignment statement:

• the types of nets on the left-hand side of the assignment operator

• the operators and operands in the expressions on the right-hand
side of the assignment operator

• the contents and use of a delay expression

June 1993 5-11

Assignments
Accelerated Continuous Assignments

Left-hand side restrictions

You can accelerate a continuous assignment if it assigns a value to one
of the following types of nets:

• a scalar net

• a expanded vector net that contains less than 64 bits

• a bit-select of an expanded vector net

• a part-select that is less than 64 bits of an expanded vector net

You can also accelerate a continuous assignment if it assigns a value to
a concatenation of these types of nets, provided that the concatenation
contains fewer than 64 bits.

An expanded vector net is a vector net that Verilog-XL converts to a
group of scalar nets. This group contains one scalar net for each bit of
the vector net. Verilog-XL automatically converts or “expands” a vector
net for a number of reasons, which include the following:

• to handle bit-selects and part-selects

• to improve performance and to accelerate continuous assignments

You can require Verilog-XL to expand a vector net by including the
keyword scalared in the net’s declaration.

An unexpanded vector net is a vector net that Verilog-XL does not
convert to scalar nets. You can prevent Verilog-XL from expanding a
vector net by including the keyword vectored in its declaration.

Example 5-6 shows continuous assignments that you can accelerate
because the left-hand side meets these restrictions.

5-12 June 1993

Assignments
Accelerated Continuous Assignments

Example 5-6: Left-hand sides of continuous assignments
that can be accelerated

Verilog-XL cannot accelerate a continuous assignment to the following
types of vector nets:

• vector nets with 64 or more bits

• vector nets declared with the keyword vectored

To accelerate a continuous assignment to a vector net, Verilog-XL must
expand that vector net. If you declare a vector net with the keyword
vectored, Verilog-XL cannot accelerate a continuous assignment to it.

module aca1;
reg r1,r2,r3,r4;
wire c;
wire [3:0]a,d;
wire scalared [3:0] e,f,g;

assign #5 c=a[0],

d={r1,r2,r3,r4},

e={r1,r2,r3,r4},

f[0]=r2,

f[3:2]={r3,r4},

{f[1],g[2:0]}=d;
•
•
•
endmodule

continuous assignment to a
scalar net

continuous assignment to a
bit-select of an expanded
vector net

continuous assignment to
expanded vector nets

continuous assignment to a
part-select of an expanded
vector net

continuous assignment to a
concatenation of valid nets

June 1993 5-13

Assignments
Accelerated Continuous Assignments

Example 5-7 shows continuous assignments that you cannot accelerate
because the left-hand side does not meet these restrictions.

Example 5-7: Left-hand side of continuous assignments
that cannot be accelerated

Right-hand side restrictions

You can accelerate a continuous assignment only if the expression on
the right-hand side contains certain operands and operators.

The right-hand expression of a continuous assignment can contain any
of the following operands:

• scalar nets

• expanded vector nets that contain less than 64 bits

• bit-selects of expanded vector nets

• part-selects that are less than 64 bits of expanded vector nets

• scalar registers

• constants

You can also accelerate a continuous assignment where the right-hand
side is a concatenation of these types of nets, provided that the
concatenation contains fewer than 64 bits.

module aca2;
reg r1,r2,r3,r4;
wire [63:0] a;
wire vectored [3:0] b;

assign a = r1,

b={r1,r2,r3,r4};
•
•
•
endmodule

unaccelerated continuous
assignment to an unexpanded
vector net

unaccelerated continuous
assignment to an expanded
vector net with more than 63 bits

5-14 June 1993

Assignments
Accelerated Continuous Assignments

Example 5-8 shows continuous assignments that you can accelerate
because the operands in the expression on the right-hand side meet
these restrictions.

Example 5-8: Operands in continuous assignments that can be accelerated

In Example 5-8, all operands are less than 64 bits.

The prohibited operands are as follows:

• expanded vector nets that contain more than 63 bits

• unexpanded vector nets

• bit-selects of unexpanded vector nets

• part-selects of unexpanded vector nets

• vector registers

• bit-selects of vector registers

• part-selects of vector registers

module aca3;
reg r1;
wire a,b;
wire [3:0] c,d;
wire scalared [3:0] e,f;
wire scalared [31:23] g,h;

assign
h[31]=a & b,

h[31:28]=c | d,

h[27]=e[0] ^ f[1],

h[26:24]=e[2:0],

h[23]=r1;
•
•
•

endmodule

operands are scalar nets

operands are expanded
vector nets

operands are bit-selects of
expanded vector nets

operand is a part-select of
an expanded vector net

operand is a scalar reg

June 1993 5-15

Assignments
Accelerated Continuous Assignments

Example 5-9 shows continuous assignments that you cannot accelerate
because the operands in the expression of the right-hand side do not
meet these restrictions.

Example 5-9: Operands in continuous assignments that cannot be accelerated

module aca4;
reg [7:0]a,b;
wire vectored [7:0] c;
wire vectored [4:0] d;
wire [7:0] e,f;
wire [3:0] g,h,i;
wire [63:0] j;
assign

i = j,

e=c,

f[0]=c[0] & d[0],

g=d[3:0],

e=a,

g[0]=b[1],

h=b[3:0];
•
•
•

endmodule

unaccelerated because
operand is a vector reg

unaccelerated because
operand is an unexpanded
vector net

unaccelerated because
operands are bit-selects of
an unexpanded vector net

unaccelerated because
operand is a part-select of
an unexpanded vector net

unaccelerated because
operand is a bit-select of a
vector reg

unaccelerated because
operand is a part-select of
a vector reg

unaccelerated because
operand is a vector net
with more than 63 bits

5-16 June 1993

Assignments
Accelerated Continuous Assignments

The expression on the right-hand side of a continuous assignment can
only contain the following operators:

& bit-wise and reduction AND

&& logical AND

~& reduction NAND

| bit-wise and reduction OR

|| logical OR

~| reduction NOR

^ bit-wise and reduction XOR

~^ bit-wise and reduction XNOR

~ bit-wise NOT

! logical NOT

{} concatenation

{{}} duplicate concatenation

?: conditional

== logical equality

!= logical inequality

Example 5-10 shows continuous assignments that you can accelerate
because the operators in the expression on the right-hand side meet
these restrictions.

June 1993 5-17

Assignments
Accelerated Continuous Assignments

Example 5-10: Operators in continuous assignments that can be accelerated

module aca5;
reg r1,r2,r3,r4,r5,r6,r7;
wire a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,s,t;
wire [1:0]u,v,w,y;
assign

a=r1 & r2,

b=&s,

c=r1 && r2,

d=~&u,

e=r2 | r3,

f=r3 || r4,

g=|u,

h=~|u,

i=r4 ^ r5,

j=^u,

k=r5 ~^r6,

l=~^v,

m=~j,

n = !r1,

w={a,b},

y={2{r7}},

q=r1 ? a : b,

s= r1 == r2,

t= r3 != r4;
endmodule

bit-wise AND operator

unary reduction NAND operator

bit-wise OR operator

unary reduction OR operator

bit-wise XOR operator

unary reduction XNOR operator

bit-wise XNOR operator

unary reduction XNOR operator

bit-wise NOT operator

concatenation operator

duplicate concatenation operator

conditional operator

unary reduction AND operator

unary reduction NOR operator

logical AND operator

logical OR operator

logical NOT operator

logical equality operator

logical inequality operator

5-18 June 1993

Assignments
Accelerated Continuous Assignments

You can enter other operators in the right-hand side of accelerated
continuous assignments, but only in an expression or sub-expression
whose operands are constants. (A sub-expression is a part of an
expression that Verilog-XL can evaluate separately.) The prohibition
against other operators does not apply in these expressions or
sub-expressions because Verilog-XL evaluates them at compile time.
Example 5-11 shows how you can use other operators in accelerated
continuous assignments.

Example 5-11: Other operators in accelerated continuous assignments

module aca6;
parameter p1=8,p2=15;
reg r1;
wire [3:0] a,b,c;

assign
a = 1 + p1,

b = r1 | (p2 << 1),

c {r1,(p2 % p1)};
•
•
•

endmodule

expression with addition
operator and constant
operands

sub-expression with shift
operator and constant
operands

sub-expression with
modulo operator and
constant operands

June 1993 5-19

Assignments
Accelerated Continuous Assignments

Example 5-12 shows continuous assignments that you cannot
accelerate because they use other operators with variable operands.

Example 5-12: Operators in continuous assignments that cannot be accelerated

Delay expression restrictions

You can accelerate a continuous assignment that includes a delay only
if that delay is a constant or an expression whose operands are
constants.

module aca7;
reg r1,r2;
reg [3:0] r3;
wire a,b,c;
wire [4:0] d;
wire [31:0] e;

assign
e = r1 * r2,

a = (b <= c),

d = r3 << 1;
endmodule

expression with an
arithmetic operator and
variable operands

expression with a relational
operator and variable
operands

expression with a shift
operator and variable
operands

5-20 June 1993

Assignments
Accelerated Continuous Assignments

Example 5-13 shows continuous assignments that you can accelerate
because the delay expression meets this restriction.

Example 5-13: Delay expressions in continuous assignments
that can be accelerated

Example 5-14 shows continuous assignments that you cannot
accelerate because the delay expression does not meet this restriction.

Example 5-14: Delay expressions in continuous assignments
that cannot be accelerated

Restriction summary

Figure 5-1 summarizes the valid syntax elements in accelerated
continuous assignments.

module aca8;
reg r1,r2;
wire a,b,q,qb;
parameter p=10;

assign #p q = ~(a & qb);

assign #(p+1) qb = ~(b & q);
•
•
•

endmodule

delay expression with
constant operands

delay is a constant

module aca9;
wire a,b,c,d;

reg r1,r2;

assign #r1 a=c;

assign #(a & r2) b=d;
•
•
•

endmodule

delay is not a constant

operands in delay
expression are variables

June 1993 5-21

Assignments
Accelerated Continuous Assignments

Figure 5-1: Syntax elements of an accelerated continuous assignment

assign

#delay net = expression;

constant or
expression
whose operands
are constants

scalar net

expanded vector net that is less than 64 bits

bit-select of an expanded vector net

part-select that is less than 64 bits of an expanded
vector net

concatenation of these types of nets

operators

& bit-wise and reduction AND

&& logical AND

~& reduction NAND

| bit-wise and reduction OR

|| logical OR

~| reduction NOR

^ bit-wise and reduction XOR

~^ bit-wise and reduction XNOR

~ bit-wise NOT

! logical NOT

? : conditional

{} concatenation

{{}} duplicate concatenation

?: conditional

== logical equality

!= logical inequality

operands

scalar nets

expanded vector nets that are less
than 64 bits

bit-selects of expanded vector nets

part-selects that are less than 64
bits of expanded vector nets

scalar registers

constants

5-22 June 1993

Assignments
Accelerated Continuous Assignments

5.3.2
How to Control the Acceleration of Continuous
Assignments

Accelerate continuous assignments in your design by entering the +caxl
command line option. When you enter this option, you accelerate the
continuous assignments in the regions of your design that can contain
accelerated primitives. You specify these regions with the following
mechanisms:

• -a command line option

• ‘accelerate compiler directive

• ‘noaccelerate compiler directive

The following command line shows how the -a option works with the
+caxl option:

verilog source.v -a +caxl

This command line tells Verilog-XL to accelerate all the primitives and
continuous assignments in source.v that it can.

Example 5-15 shows the regions of a sample design, delimited by
‘accelerate and ‘noaccelerate, whose continuous assignments you
can accelerate if you enter the +caxl option, without the -a option, on
the command line. In Example 5-15, the continuous assignments in the
grey regions can be accelerated, and the other continuous assignments
cannot be accelerated.

June 1993 5-23

Assignments
Accelerated Continuous Assignments

Example 5-15: Design regions that you can accelerate

‘accelerate
module mod1;
·
·
·

assign a = b & c;
·
·
·

endmodule
‘noaccelerate
module mod2;
·
·
·

assign d = e | f;
·
·
·

endmodule
‘accelerate
module mod3 (v,l,g);
·
·
·

assign g =h ^ i;
·
·
·

endmodule
‘noaccelerate
module mod4(j,t,v);
·
·
·

assign j = e ~^ k;
·

·

·

endmodule

‘noaccelerate prevents
accelerated continuous
assignments in this region

‘noaccelerate prevents
accelerated continuous
assignments in this region

‘accelerate permits
accelerated continuous
assignments in this region

‘accelerate permits
accelerated continuous
assignments in this region

5-24 June 1993

Assignments
Accelerated Continuous Assignments

5.3.3
The Effects of Accelerated Continuous Assignments

Accelerating continuous assignments can have the following effects on
your simulation:

• faster simulation

• slightly slower compilation

• slightly more memory use

• simulation results that are different from the results when you do
not accelerate continuous assignments

These effects are described in the following subsections.

Simulation speed

Accelerating continuous assignments does not increase the simulation
speed of all designs. The types of designs that simulate faster, and the
one type that simulates slower, are described in this subsection.

Designs that simulate faster
The following is a list of the kinds of designs that simulate faster when
you accelerate continuous assignments:

• designs that consist entirely of accelerated continuous
assignments to scalar nets

• designs that are a combination of gate-level and accelerated
continuous assignments

• gate-level designs that are stimulated by accelerated continuous
assignments

• designs that consist of accelerated continuous assignments to
large vector nets

June 1993 5-25

Assignments
Accelerated Continuous Assignments

The following are examples of these designs and an explanation of how
accelerated continuous assignment increases their simulation speed.

1. Accelerating continuous assignments is what most increases the
simulation speed of designs that consist entirely of accelerated
continuous assignments to scalar nets. These designs simulate
approximately eight times faster when you accelerate all their
continuous assignments. The following source description shows a
design of a multiplexer that consists of accelerated continuous
assignments to scalar nets:

Example 5-16: Design that consists entirely of
accelerated continuous assignments

In this source description, data flows through a path of accelerated
continuous assignments.

module aca10 (op1,op2,s1,s2,out,cr);
input op1,op2,s1,s2;
output out,cr;
wire nop1,nop2,mx1,mx2;
assign

nop1 = ~op1,
nop2 = ~op2,
mx1 = ((op1 & s1)|(nop1 & ~s1)),
mx2 = ((op2 & s2)|(nop2 & ~s2)),
out = mx1 ^ mx2,
cr = mx1 & mx2;

endmodule

5-26 June 1993

Assignments
Accelerated Continuous Assignments

2. Accelerating continuous assignments also increases the simulation
speed of designs whose logic is a combination of gate-level and
accelerated continuous assignments. How much the acceleration of
the continuous assignments increases the simulation speed
depends on the proportion of continuous assignments to gate
instances. The following source description shows a design that is
a combination of accelerated continuous assignments and gate
instances:

Example 5-17: Design that consists of accelerated continuous
assignments and gate instances

In this source description, data flows from gates to continuous
assignments and back to gates.

module aca11 (op1,op2,s1,s2,out,cr);
input op1,op2,s1,s2;
output out,cr;
wire nop1,nop2,mx1,mx2;
assign

mx1 = ((op1 & s1)|(nop1 & ~s1)),
mx2 = ((op2 & s2)|(nop2 & ~s2));

not nt1 (nop1,op1),
nt2 (nop2,op2);

xor xr1 (out,mx1,mx2);
and ad1 (cr,mx1,mx2);

endmodule

June 1993 5-27

Assignments
Accelerated Continuous Assignments

3. Accelerating continuous assignments also increases the simulation
speed of gate-level designs that are stimulated by accelerated
continuous assignments. How much the acceleration of the
continuous assignments increases the simulation speed of these
designs also depends on the proportion of continuous assignments
to gate instances, as in the following source description:

Example 5-18: Design that contains only one
accelerated continuous assignment

This design includes one accelerated continuous assignment.
Accelerating this continuous assignment does little to increase the
design’s simulation speed because the accelerated continuous
assignment is such a small proportion of this design.

module aca13;
reg r1,r2,r3;
wire a;
assign a=r3;

twoway t1 (r1,r2,a,o);
initial

•
•
•

endmodule

module twoway(r1,r2,a,o);
input r1,r2;
output o;
inout a;

bufif1(a,r1,r2);
bufif0(o,a,r2);

endmodule

one accelerated continuous
assignment that drives an
inout port

5-28 June 1993

Assignments
Accelerated Continuous Assignments

4. Accelerating the continuous assignments in designs that consist of
continuous assignments to large vector nets results in the smallest
increase in simulation speed. Continuous assignments to vector
nets 64 bits wide and larger cannot be accelerated. The closer the
left-hand side of a continuous assignment comes to this limit of 63
bits, the more time the XL algorithm needs to simulate the
continuous assignment, as in the following source description:

Example 5-19: Design that consists of continuous
assignments to large vector nets

This source description shows the continuous assignment of expressions
with large operands and several operators to very large vector nets. The
greater the complexity of the expression on the right-hand side and the
larger the vector net on the left-hand side, the more time the XL
algorithm needs to simulate the continuous assignment.

module aca14;
wire [30:0]
a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t;
wire [61:0] m1,m2,m3,m4,m5;
assign m1=~(({a,b}&{d,e})|({c,d}^{e,f})),

m2={e,f}&{h,i},
m3=~{i,j},
m4=~({m,n}|{a,b}),
m5=((q & r)^(p | t)~^{q,r});

endmodule

June 1993 5-29

Assignments
Accelerated Continuous Assignments

Designs that simulate slower

Not all designs with continuous assignments that can be accelerated
simulate faster with the XL algorithm. XL speeds up the simulation when
it processes a continuous assignment, but transitions between the XL
and non-XL algorithms slow down the simulation. A large number of
transitions can make a simulation run slower than if no part of it is
simulated by the XL algorithm. The following is a list of designs that
contain continuous assignments that you can accelerate, but which
simulate faster without accelerating these continuous assignments.

1. Designs whose data flows many times from accelerated to
nonaccelerated continuous assignments simulate at a slower speed
than if you did not accelerate any continuous assignment. This
slower speed is caused by the performance cost of a large number
of transitions between algorithms. The following source description
shows data flowing through a path of continuous assignments that
cause Verilog-XL to transition frequently between algorithms.

Example 5-20: Design whose data flows from accelerated
to nonaccelerated continuous assignments

module aca15;
wire a,b,c,d,e,f,g,h,i,j,k,l,m,n,o;
assign

a = b & c,
b = d + e,
d = f | g,
f = h - i,
h = j ^ k,
j = l * m,
l = n ~^ o;

•
•
•

endmodule

accelerated
continuous
assignments

nonaccelerated
continuous
assignments

5-30 June 1993

Assignments
Accelerated Continuous Assignments

2. Designs whose data flows many times from accelerated continuous
assignments to procedural assignments also simulate at a slower
speed that if you did not accelerate any continuous assignment.
This slower speed is also caused by transitions between algorithms.
In the following source description, data flows between both kinds
of assignments.

Example 5-21: Design whose simulation causes
transitions between algorithms

In this source description, a value of 1 propagates through several wires
and registers. Data flow begins with a procedural assignment to reg r5,
then through a path of registers and wires that are driven by alternating
continuous and procedural assignments.

module aca16;
reg r1,r2,r3,r4,r5;
wire a,b,c,d,e;
assign

a = r1,
b = r2,
c = r3,
d = r4,
e = r5;

always
begin
#10 r1 = b;
#10 r2 = c;
#10 r3 = d;
#10 r4 = e;
#10 r5 = ~r5;
end

initial
begin
r5=1;

•
•
•

endmodule

accelerated continuous
assignments

procedural assignments

June 1993 5-31

Assignments
Accelerated Continuous Assignments

Compilation speed

During compilation, Verilog-XL processes accelerated continuous
assignments so that they can be simulated by the XL algorithm.
Therefore, compilation time increases as the number of accelerated
continuous assignments increases. A design that consists entirely of
continuous assignments that can be accelerated takes approximately
twice as long to compile if you accelerate these continuous assignments.
(In a typical worst-case design, compilation without accelerated
continuous assignments took 19 seconds; compilation with accelerated
continuous assignments took 41 seconds.)

Memory usage
Accelerated continuous assignments cause Verilog-XL to use more
memory at compile time, but less memory at run time.

Verilog-XL needs more memory to compile a design with accelerated
continuous assignments. A design that consists entirely of accelerated
continuous assignments needs 20% more memory to compile.

Accelerated continuous assignments reduce Verilog-XL’s memory
requirements during simulation.

The possibility of different results

Accelerating continuous assignments to vector nets when these
continuous assignments include delay expressions can produce
simulation results that differ from the results produced without
accelerating these continuous assignments. This possible difference is
caused by the difference between how the XL and non-XL algorithm
simulate these continuous assignments.

In both the XL and non-XL algorithms, when a continuous assignment
statement includes a delay expression, Verilog-XL evaluates the
right-hand side and schedules the assignment to occur after the delay
elapses. In the non-XL algorithm, if any of the bits of the right-hand side
change before the delay elapses, Verilog-XL re-evaluates the entire
right-hand side and reschedules the assignment. In the XL algorithm, if
any of the bits of the right-hand side change before the delay elapses,
Verilog-XL schedules a subsequent assignment to those bits.

Example 5-22 and Example 5-23 show how accelerating continuous
assignments can produce different simulation results.

Example 5-22 shows a module that contains accelerated and
unaccelerated continuous assignments that assign the same values and
include the same delay expression. The accelerated continuous
assignments propagate value changes at simulation times when the
unaccelerated continuous assignments do not propagate these value
changes.

5-32 June 1993

Assignments
Accelerated Continuous Assignments

Example 5-22: Module with accelerated and unaccelerated
continuous assignments

In Example 5-22, the continuous assignment to wire a1 of the
concatenation of scalar registers c1 and c2 can be accelerated. The
continuous assignment to wire b1 cannot be accelerated because it
assigns a value to an unexpanded vector net; the continuous assignment
to wire a2 cannot be accelerated because its operand is a vector reg. The
delay expression in these continuous assignments is 10 time units.

Procedural assignments assign the same values to the right-hand sides
of these continuous assignments. These procedural assignments specify
a five time unit interval between bit changes of the right-hand sides of
the continuous assignments.

module dif;
wire [1:0] a1, a2;
wire vectored [1:0] b1;
reg c1,c2;
reg [1:0] d1;

assign #10 a1 = {c1,c2};

assign
#10 b1 = {c1,c2},

a2 = d1;

initial
begin
$monitor(”At simulation time %0d\n”,
$time,
” accelerated a1=%b\n”,a1,
”unaccelerated b1=%b a2=%b\n\n”,b1,a2);
#25 c1 = 0;

d1[1] = 0;
#5 c2 = 0;

d1[0] = 0;
end

endmodule

procedural assignments
of the same values to the
bits of the right-hand side
of all three continuous
assignments

an accelerated
continuous assignment

unaccelerated
continuous assignments

June 1993 5-33

Assignments
Accelerated Continuous Assignments

The XL algorithm schedules the propagation of all bit changes as they
occur; the non-XL algorithm does not. The difference in simulation
results between the accelerated and unaccelerated continuous
assignments is shown in Example 5-23.

Example 5-23: Different simulation results

In Example 5-23, the XL algorithm assigns values to a1 at simulation
times 35 and 40. The non-XL algorithm waits until simulation time 40
to assign values.

Highest level modules:
dif

At simulation time 0
accelerated a1=xx

unaccelerated b1=xx a2=xx

At simulation time 35
accelerated a1=0x

unaccelerated b1=xx a2=xx

At simulation time 40
accelerated a1=00

unaccelerated b1=00 a2=00

The XL algorithm assigns
values at simulation times
35 and 40.

The non-XL algorithm
assigns values only at
simulation time 40.

June 1993 6-1

Gate and Switch Level Modeling

6
Figure 6-0

Example 6-0
Syntax 6-0
Table 6-0

Gate and Switch
Level Modeling

A logic network can be modeled using continuous assignments or
switches and logic gates. Gates and continuous assignments serve
different modeling purposes and it is important to appreciate the
differences between them in order to achieve the right balance between
accuracy and efficiency in Verilog-XL. Modeling with switches and logic
gates has the following advantages:

• Gates provide a much closer one to one mapping between the
actual circuit and the network model.

• There is no continuous assignment equivalent to the bidirectional
transfer gate.

A limitation of those nets declared with the keyword vectored affects
gates and switches as well as continuous assignments. Individual bits of
vectored nets cannot be driven; thus, gates and switches can only drive
scalar output nets. If you declare a multi-bit net as vectored and you
drive individual bits of it, Verilog-XL will display a compilation error
message. If you do not declare a multi-bit net as vectored, Verilog-XL
handles it as a vector except in the following cases. A multi-bit net is
handled as a scalar if:

• part of the vector is driven by a gate or switch.

• part of the vector is assigned a value with a continuous
assignment.

6-2 June 1993

Gate and Switch Level Modeling
Gate and Switch Declaration Syntax

In Verilog-XL, gate and switch level modeling is superior to continuous
assignment modeling for the following two reasons:

1. Because gates and switches have fixed functions, Verilog-XL can
optimize its data structure so as to reduce the amount of memory
needed to simulate large circuits.

2. For a random network of nets, it is likely that the use of gates and
switches for modeling gives a shorter simulation run time than the
use of continuous assignments.

6.1
Gate and Switch Declaration Syntax

A gate or switch declaration names a gate or switch type and specifies
its output signal strengths and delays. It contains one or more gate
instances. Gate instances include an optional instance name and a
required terminal connection list. The terminal connection list specifies
how the gate or switch connects to other components in the model. All
the instances contained in a gate or switch declaration have the same
output strengths and delays.

June 1993 6-3

Gate and Switch Level Modeling
Gate and Switch Declaration Syntax

Syntax 6-1 presents the gate or switch declaration syntax.

Syntax 6-1: Syntax for gate instantiation

This section describes the following parts of a gate or switch declaration:

• the keyword that names the type of gate or switch primitive

• the drive strength specification

• the delay specification

• the identifier that names each gate or switch instance in gate or
switch declarations

• the terminal connection list in primitive gate or switch instances

<gate_declaration>
::=<GATETYPE><drive_strength>?<delay>?<gate_instance>

<,<gate_instance>>* ;

<GATETYPE> is one of the following keywords:
and nand or nor xor xnor buf bufif0 bufif1 not notif0 notif1
pulldown pullup nmos rnmos pmos rpmos cmos rcmos tran
rtran tranif0 rtranif0 tranif1 rtranif1

<drive_strength>
::= (<STRENGTH0> , <STRENGTH1>)
||= (<STRENGTH1> , <STRENGTH0>)

<delay>
::= # <number>

||= # <identifier>
||= # (<mintypmax_expression> <,<mintypmax_expression>>?

<,<mintypmax_expression>>?)

<gate_instance>
::= <name_of_gate_instance>? (<terminal> <,<terminal>>*)

<name_of_gate_instance>
::= <IDENTIFIER>

<terminal>
::= <IDENTIFIER>
||= <expression>

6-4 June 1993

Gate and Switch Level Modeling
Gate and Switch Declaration Syntax

The gate type specification

A gate declaration begins with the <GATETYPE> keyword. The keyword
specifies the gate or switch primitive that is used by the instances that
follow in the declaration. Table 6-1 lists the keywords that can begin a
gate or switch declaration.

Table 6-1: Keywords for the <GATETYPE> syntax item

Explanations of the keywords in Table 6-1 begin in Section 6.2.

The drive strength specification

The drive strength specifications specify the strengths of the values on
the output terminals of the instances in the gate declaration. It is
possible to specify the strength of the output signals from the gate
primitives in Table 6-2.

Table 6-2: Gate types that accept strength specifications

The drive strength specification in Syntax 6-1 has two parts. A gate
declaration must contain both parts or no parts, with the exception of
pullup and pulldown sources. One of the parts specifies the strength
of signals with a value of 1, and the other specifies the strength of
signals with a value of 0.

and

nand

nor

or

xor

xnor

buf

not

bufif0

bufif1

notif0

notif1

nmos

pmos

cmos

rnmos

rpmos

rcmos

tran

tranif0

tranif1

rtran

rtranif0

rtranif1

pullup

pulldown

Gate Type Keywords

and

nand

nor

or

xor

xnor

buf

not

bufif0

bufif1

notif0

notif1

pullup

pulldown

Gate Types That Support Driving Strength

June 1993 6-5

Gate and Switch Level Modeling
Gate and Switch Declaration Syntax

The STRENGTH1 specification, which specifies the strength of an output
signal with a value of 1, is one of the following keywords:

supply1 strong1 pull1 weak1 highz1

Specifying highz1 causes the gate to output a logic value of Z in place
of a 1.

The STRENGTH0 specification, which specifies the strength of an output
signal with a value of 0, is one of the following:

supply0 strong0 pull0 weak0 highz0

Specifying highz0 causes the gate to output a logic value of Z in place
of a 0.

The strength specifications must follow the gate type keyword and
precede any delay specification. The STRENGTH0 specification can
precede or follow the STRENGTH1 specification. In the absence of a
strength specification, the instances have the default strengths
strong1 and strong0.

The strength specifications, (highz0, highz1) and (highz1,
highz0), are invalid and produce the following compiler error message:

Error! Illegal strength specification

The following example shows a drive strength specification in a
declaration of an open collector nor gate:

nor(highz1,strong0)(out1,in1,in2);

In this example, the nor gate outputs a Z in place of a 1.

Sections 6.10 through 6.15 discuss logic strength modeling in more
detail.

The delay specification
The delay specifies the propagation delay through the gates and switches
in a declaration. Gates and switches in declarations with no delay
specification have no propagation delay. A delay specification can
contain up to three delay values, depending on its gate type. Section 6.2
begins discussions of each type of gate that detail the applicable delays.
Section 6.16 discusses delays in more detail. The pullup and
pulldown source declarations do not include delay specifications.

6-6 June 1993

Gate and Switch Level Modeling
and, nand, nor, or, xor, and xnor Gates

The primitive instance identifier

The <IDENTIFIER> in Syntax 6-1 is an optional name given to a gate or
switch instance. The name is useful in tracing the operation of the
circuit during debugging. Verilog-XL can generate names for unnamed
gate instances in the source description. See Section 12.6 for
information about automatic naming. Compiler directives discussed in
Section 6.17 remove optional gate and net names to reduce virtual
memory requirements at simulation time.

Primitive instance connection list
The <terminal>s at the end of Syntax 6-1 are the terminal list. The
terminal list describes how the gate or switch connects to the rest of the
model. The gate or switch type limits these expressions. The output or
bidirectional terminals always come first in the terminal list, followed by
the input terminals.

6.2
and, nand, nor, or, xor, and xnor Gates

Declarations of these gates begin with one of these keywords:

and nand nor or xor xnor

The delay specification can be zero, one, or two delays. If there is no
delay, there is no delay through the gate. One delay specifies the delays
for all output transitions. If the specification contains two delays, the
first delay determines the rise delay, the second delay determines the fall
delay, and the smaller of the two delays applies to transitions to X.

These six gates have one output and one or more inputs. The first
terminal in the terminal list connects to the gate’s output and all other
terminals connect to its inputs.

June 1993 6-7

Gate and Switch Level Modeling
and, nand, nor, or, xor, and xnor Gates

The truth tables for these gates, showing the result of two input values,
appear in Table 6-3.

Table 6-3: Logic tables for and, nand, or, nor, xor, and xnor gates

Versions of these six gates having more than two inputs behave
identically with cascaded 2-input gates in producing logic results, but
the number of inputs does not alter propagation delays.

The following example declares a two input and gate:

and (out,in1,in2);

The inputs are in1 and in2. The output is out.

and 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

nand 0 1 x z

0 1 1 1 1

1 1 0 x x

x 1 x x x

z 1 x x x

or 0 1 x z

0 0 1 x x

1 1 1 1 1

x x 1 x x

z x 1 x x

nor 0 1 x z

0 1 0 x x

1 0 0 0 0

x x 0 x x

z x 0 x x

xor 0 1 x z

0 0 1 x x

1 1 0 x x

x x x x x

z x x x x

xnor 0 1 x z

0 1 0 x x

1 0 1 x x

x x x x x

z x x x x

6-8 June 1993

Gate and Switch Level Modeling
buf and not Gates

6.3
buf and not Gates

Declarations of these gates begin with one of the following keywords:

buf not

The delay specification can be zero, one, or two delays. If there is no
delay, there is no delay through the gate. One delay specifies the delays
for all output transitions. If the specification contains two delays, the
first delay determines the rise delay, the second delay determines the fall
delay, and the smaller of the two delays applies to transitions to X.

These two gates have one input and one or more outputs. The last
terminal in the terminal list connects to the gate’s input, and the other
terminals connect outputs.

Truth tables for versions of these gates with one input and one output
appear in Table 6-4.

Table 6-4: Logic tables for buf and not gates

The following example declares a two output buf:

buf (out1,out2,in);

The input is in. The outputs are out1 and out2.

inputs outputs

0 0

1 1

x x

z x

inputs outputs

0 1

1 0

x x

z x

buf not

June 1993 6-9

Gate and Switch Level Modeling
bufif1, bufif0, notif1, and notif0 Gates

6.4
bufif1, bufif0, notif1, and notif0 Gates

Declarations of these gates begin with one of the following keywords:

bufif0 bufif1 notif1 notif0

A strength specification follows the keyword and a delay specification
follows the strength specification. The next item is the optional
identifier. A terminal list completes the declaration.

These four gates model three-state drivers. In addition to values of 1 and
0, these gates output Z.

The delay specification can be zero, one, two, or three delays. If there is
no delay, there is no delay through the gate. One delay specifies the
delay of all transitions. If the specification contains two delays, the first
delay determines the rise delay, the second delay determines the fall
delay, and the smaller of the two delays specifies the delay of transitions
to X and Z. If the specification contains three delays, the first delay
determines the rise delay, the second delay determines the fall delay, the
third delay determines the delay of transitions to Z, and the smallest of
the three delays applies to transitions to X.

Some combinations of data input values and control input values cause
these gates to output either of two values, without a preference for either
value. These gates’ logic tables include two symbols representing such
unknown results. The symbol L represents a result which has a value of
0 or Z. The symbol H represents a result which has a value of 1 or Z.
Delays on transitions to H or L are the same as delays on transitions to X.

These four gates have one output, one data input, and one control input.
The first terminal in the terminal list connects to the output, the second
connects to the data input, and the third connects to the control input.

6-10 June 1993

Gate and Switch Level Modeling
MOS Switches

Table 6-5 presents these gates’ logic tables:

Table 6-5: Logic tables for bufif0, bufif1, notif0, and notif1 gates

The following example declares a bufif1:

bufif1 (outw, inw, controlw);

The output is outw, the input is inw, and the control is controlw.

6.5
MOS Switches

Models of MOS networks consist largely of the following four primitive
types:

nmos pmos rnmos rpmos

bufif1 CONTROL
0 1 x z

0 z 0 L L

1 z 1 H H

x z x x x

z z x x x

bufif0 CONTROL
0 1 x z

0 0 z L L

1 1 z H H

x x z x x

z x z x x

D
A
T
A

D
A
T
A

notif1 CONTROL
0 1 x z

0 z 1 H H

1 z 0 L L

x z x x x

z z x x x

D
A
T
A

notif0 CONTROL
0 1 x z

0 1 z H H

1 0 z L L

x x z x x

z x z x x

D
A
T
A

June 1993 6-11

Gate and Switch Level Modeling
MOS Switches

The pmos keyword stands for PMOS transistor and the nmos keyword
stands for NMOS transistor. PMOS and NMOS transistors have relatively
low impedance between their sources and drains when they conduct. The
rpmos keyword stands for resistive PMOS transistor and the rnmos
keyword stands for resistive NMOS transistor. Resistive PMOS and
resistive NMOS transistors have significantly higher impedance between
their sources and drains when they conduct than PMOS and NMOS
transistors have. The load devices in static MOS networks are examples
of rpmos and rnmos gates. These four gate types are unidirectional
channels for data similar to the bufif gates.

Declarations of these gates begin with one of the following keywords:

pmos nmos rpmos rnmos

A delay specification follows the keyword. The next item is the optional
identifier. A terminal list completes the declaration.

The delay specification can be zero, one, two, or three delays. If there is
no delay, there is no delay through the switch. A single delay determines
the delay of all output transitions. If the specification contains two
delays, the first delay determines the rise delay, the second delay
determines the fall delay, and the smaller of the two delays specifies the
delay of transitions to Z and X. If there are three delays, the first delay
specifies the rise delay, the second delay specifies the fall delay, the third
delay determines the delay of transitions to Z, and the smallest of the
three delays applies to transitions to X. Delays on transitions to H and L
are the same as delays on transitions to X.

These four switches have one output, one data input, and one control
input. The first terminal in the terminal list connects to the output, the
second terminal connects to the data input, and the third terminal
connects to the control input.

The nmos and pmos switches pass signals from their inputs and through
their outputs with a change in the signals’ strengths in only one case,
discussed in Section 6.13. The rnmos and rpmos gates reduce the
strength of signals that propagate through them, as discussed in Section
6.14.

Some combinations of data input values and control input values cause
these switches to output either of two values, without a preference for
either value. These switches’ logic tables include two symbols
representing such unknown results. The symbol L represents a result
which has a value of 0 or Z. The symbol H represents a result which has
a value of 1 or Z.

6-12 June 1993

Gate and Switch Level Modeling
Bidirectional Pass Switches

Table 6-6 presents these switches’ logic tables:

Table 6-6: Logic tables for pmos, rpmos, nmos, and rnmos gates

The following example declares a pmos switch:

pmos (out,data,control);

The output is out, the data input is data, and the control input is
control.

6.6
Bidirectional Pass Switches

Declarations of bidirectional switches begin with one of the following
keywords:

tran tranif1 tranif0
rtran rtranif1 rtranif0

A delay specification follows the keywords in declarations of tranif1,
tranif0, rtranif1, and rtranif0; the tran and rtran devices do
not take delays. The next item is the optional identifier. A terminal list
completes the declaration.

The delay specifications for tranif1, tranif0, rtranif1, and
rtranif0 devices can be zero, one, or two delays. If there is no delay,
the device has no turn-on or turn-off delay. If the specification contains
one delay, that delay determines both turn-on and turn-off delays. If
there are two delays, the first delay specifies the turn-on delay, and the
second delay specifies the turn-off delay.

nmos CONTROL
rnmos 0 1 x z

0 z 0 L L

1 z 1 H H

x z x x x

z z z z z

pmos CONTROL
rpmos 0 1 x z

0 0 z L L

1 1 z H H

x x z x x

z z z z z

D
A
T
A

D
A
T
A

June 1993 6-13

Gate and Switch Level Modeling
cmos Gates

These six devices do not delay signals propagating through them. When
these devices are turned off they block signals, and when they are turned
on they pass signals.

The tranif1, tranif0, rtranif1, and rtranif0 devices have
three items in their terminal lists. Two are bidirectional terminals that
conduct signals to and from the devices, and the other terminal connects
to a control input. The terminals connected to inouts precede the
terminal connected to the control input in the terminal list.

The tran and rtran devices have terminal lists containing two
bidirectional terminals.

The bidirectional terminals of all six of these devices connect only to
scalar nets or bit-selects of expanded vector nets.

The tran, tranif0, and tranif1 devices pass signals with an
alteration in their strength in only one case, discussed in Section 6.13.
The rtran, rtranif0, and rtranif1 devices reduce the strength of
signals passing through them according to rules discussed in Section
6.14.

The following example declares a tranif1:

tranif1 (inout1,inout2,control);

The bidirectional terminals are inout1 and inout2. The control input
is control.

6.7
cmos Gates

Declarations of these gates begins with one of these keywords:

cmos rcmos

The delay specification can be zero, one, two, or three delays. If there is
no delay, there is no delay through the gate. A single delay specifies the
delay for all transitions. If the specification contains two delays, the first
delay determines the rise delay, the second delay determines the fall
delay, and the smaller of the two delays is the delay of transitions to Z
and X. If the specification contains three delays, the first delay controls
rise delays, the second delay controls fall delays, the third delay controls
transitions to Z, and the smallest of the three delays applies to
transitions to X. Delays in transitions to H or L are the same as delays
in transitions to X.

6-14 June 1993

Gate and Switch Level Modeling
pullup and pulldown Sources

The cmos and rcmos gates have a data input, a data output, and two
control inputs. In the terminal list, the first terminal connects to the
data output, the second connects to the data input, the third connects
to the n-channel control input, and the last connects to the p-channel
control input.

The cmos gate passes signals with an alteration in their strength in only
one case, discussed in Section 6.13. The rcmos gate reduces the
strength of signals passing through it according to rules that appear in
Section 6.14.

The cmos gate is the combination of a pmos gate and an nmos gate. The
rcmos gate is the combination of an rpmos gate and an rnmos gate. The
combined gates in these configurations share data input and data
output terminals, but they have separate control inputs. These
combined configurations simulate more efficiently than the equivalent
networks of two gates.

The equivalence of the cmos gate to the pairing of an nmos gate and a
pmos gate is detailed in the following explanation:

cmos (w, datain, ncontrol, pcontrol);

is equivalent to:

nmos (w, datain, ncontrol);

pmos (w, datain, pcontrol);

6.8
pullup and pulldown Sources

Declarations of these sources begin with one of the following keywords:

pullup pulldown

A strength specification follows the keyword and an optional identifier
follows the strength specification. A terminal list completes the
declaration.

A pullup source places a logic value of 1 on the nets listed in its
terminal list. A pulldown source places a logic value of 0 on the nets
listed in its terminal list. The signals that these sources place on nets
have pull strength in the absence of a strength specification. There are
no delay specifications for these sources because the signals they place
on nets continue throughout simulation without variation.

June 1993 6-15

Gate and Switch Level Modeling
Implicit Net Declarations

The following example declares two pullup instances:

pullup (strong1, strong0)(neta),(netb);

In this example, one gate instance drives neta, the other drives netb.

6.9
Implicit Net Declarations

Including a previously unused identifier in a terminal list implicitly
declares a new net of the wire type with zero delay.

If the wire type is unsuitable for implicitly declared nets, the compiler
directive ‘default_nettype can change the type acquired by
implicitly declared nets.

The following is the directive’s syntax:

‘default_nettype <type_of_net>

The first character in the directive is an accent grave.

The <type_of_net> can be one of the following net types:

wire tri tri0
wand triand tri1
wor trior trireg

This directive must occur outside of module definitions. All the modules
between any two ‘default_nettypedirectives are affected by the first
‘default_nettypedirective. The effect of the directive crosses source
file boundaries in the order in which they appear on the command line.
The ‘resetall compiler directive ends the effect of a preceding
‘default_nettype directive. A source description can contain any
number of these directives. Implicit nets are of type wire in the absence
of a ‘default_nettype directive.

6-16 June 1993

Gate and Switch Level Modeling
Logic Strength Modeling

Each implicitly declared net must connect to one or more of the
following:

• gate output

• tranif bidirectional terminal

• module output port

If an implicitly declared net does not connect to one of the listed items,
the compiler produces an error message with this form:

”warning! implicit wire (<name>) has no fanin”

If nothing drives a net, Verilog-XL assigns a value of Z to the net.

6.10
Logic Strength Modeling

The Verilog HDL provides for accurate modeling of signal contention,
bidirectional pass gates, resistive MOS devices, dynamic MOS, charge
sharing, and other technology dependent network configurations by
allowing scalar net signal values to have a full range of unknown values
and different levels of strength or combinations of levels of strength. This
multiple level logic strength modeling resolves combinations of signals
into known or unknown values to represent the behavior of hardware
with maximum accuracy.

A strength specification has two components:

1. the strength of the 0 portion of the net value, designated
<STRENGTH0> in Syntax 6-1

2. the strength of the 1 portion of the net value, designated
<STRENGTH1> in Syntax 6-1

Despite this division of the strength specification, it is helpful to
consider strength as a property occupying regions of a continuum in
order to predict the results of combinations of signals.

June 1993 6-17

Gate and Switch Level Modeling
Logic Strength Modeling

Table 6-7 demonstrates the continuum of strengths. The left column
lists the keywords that specify strength levels of trireg or gate output.
The middle column in Table 6-7 shows relative strength levels correlated
with the keywords. The abbreviations Verilog-XL reports are in the right
column in Table 6-7.

Table 6-7: Strength levels for scalar net signal values

In the preceding table, there are four driving strengths:

supply strong pull weak

Signals with driving strengths propagate from gate outputs and
continuous assignment outputs.

strength name strength level abbreviation

supply0 7 Su0

strong0 6 St0

pull0 5 Pu0

large0 4 La0

weak0 3 We0

medium0 2 Me0

small0 1 Sm0

highz0 0 HiZ0

highz1 0 HiZ1

small1 1 Sm1

medium1 2 Me1

weak1 3 We1

large1 4 La1

pull1 5 Pu1

strong1 6 St1

supply1 7 Su1

6-18 June 1993

Gate and Switch Level Modeling
Strengths and Values of Combined Signals

In the preceding table, there are three charge storage strengths:

large medium small

Signals with the charge storage strengths originate in the trireg net
type.

It is possible to think of the strengths of signals in the preceding table
as locations on the scale in Figure 6-1.

Figure 6-1: Scale of strengths

Discussions of signal combinations later in this document will employ
graphics similar to Figure 6-1.

A net signal can have one or more strength levels associated with it. If a
net signal value is known, its strength levels are all in either the 0
strength part of the scale represented by Figure 6-1, or they are all in its
1 strength part. If a net signal value is unknown, it has strength levels
in both the 0 strength and the 1 strength parts. A signal with a value of
Z has a strength level only in the HiZ0 or HiZ1 subdivisions of the scale.

6.11
Strengths and Values of Combined Signals

In addition to a value, a signal has either a single unambiguous strength
level or it has an ambiguous strength, consisting of more than one level.
When signals combine, their strengths and values determine the
strength and value of the resulting signal in accord with the principles
in the four sections that follow.

6.11.1
Combined Signals of Unambiguous Strength

This section deals with combinations of signals in which each signal has
a known value and a single strength level.

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

June 1993 6-19

Gate and Switch Level Modeling
Strengths and Values of Combined Signals

If two signals of unequal strength combine in a wired net configuration,
the stronger signal is the result. This case appears in Figure 6-2.

Figure 6-2: Combining unequal strengths

In Figure 6-2, the numbers in parentheses indicate the relative
strengths of the signals. The combination of a pull 1 and a strong 0
results in a strong 0, which is the stronger of the two signals. The
combination of two signals of like value results in the same value with
the greater of the two strengths.

The combination of signals identical in strength and value results in the
same signal.

The combination of signals with unlike values and the same strength has
three possible results. Two of the results occur in the presence of wired
logic and the third occurs in its absence. Section 6.11.4 discusses wired
logic. The result in the absence of wired logic is the subject of the first
figure in the next section.

Pu1(5)

St0(6)

St0(6)

Su1(7)

La1(4)

Su1(7)

6-20 June 1993

Gate and Switch Level Modeling
Strengths and Values of Combined Signals

6.11.2
Ambiguous Strengths: Sources and Combinations

The classifications of signals possessing ambiguous strengths are the
following:

• signals with known values and multiple strength levels

• signals with a value of X, which have strength levels consisting of
subdivisions of both the strength 1 and the strength 0 parts of the
scale of strengths in Figure 6-1

• signals with a value of L, which have strength levels that consist
of high impedance joined with strength levels in the 0 strength
part of the scale of strengths in Figure 6-1

• signals with a value of H, which have strength levels that consist
of high impedance joined with strength levels in the 1 strength
part of the scale of strengths in Figure 6-1

Many configurations can produce signals of ambiguous strength. When
two signals of equal strength and opposite value combine, the result has
a value of X and the strength levels of both signals and all the smaller
strength levels. Figure 6-3 shows the combination of a weak signal with
a value of 1 and a weak signal with a value of 0 yielding a signal with
weak strength and a value of X.

Figure 6-3: Combination of signals of equal strength and opposite values

This signal is described in Figure 6-4.

Figure 6-4: Weak X signal strength

We1

We0

WeX

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

June 1993 6-21

Gate and Switch Level Modeling
Strengths and Values of Combined Signals

An ambiguous signal strength can be a range of possible values. An
example is the strength of the output from the tristate drivers with
unknown control inputs in Figure 6-5.

Figure 6-5: Bufifs with control inputs of X

The output of the bufif1 in Figure 6-5 is a strong H, composed of the
range of values described in Figure 6-6.

Figure 6-6: Strong H range of values

The output of the bufif0 in Figure 6-5 is a weak L, composed of the
range of values described in Figure 6-7.

X

St1

X

We0

StH

WeL

bufif1

bufif0

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

6-22 June 1993

Gate and Switch Level Modeling
Strengths and Values of Combined Signals

Figure 6-7: Weak L range of values

The combination of two signals of ambiguous strength results in a signal
of ambiguous strength. The resulting signal has a range of strength
levels that includes the strength levels in its component signals. The
combination of outputs from two tristate drivers with unknown control
inputs, shown in Figure 6-8, is an example.

Figure 6-8: Combined signals of ambiguous strength

In Figure 6-8, the combination of signals of ambiguous strengths
produces a range which includes the extremes of the signals and all the
strengths between them, as described in Figure 6-9.

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

X

X

Pu1

We0

PuH

WeL

35X

June 1993 6-23

Gate and Switch Level Modeling
Strengths and Values of Combined Signals

Figure 6-9: An unknown signal’s range of strengths

The result is an X because values of both H and L are being driven onto
the output net with ambiguous strengths. The number 35, which
precedes the X, is a concatenation of two digits. The first is the digit 3,
which corresponds to the highest strength level for the result’s value of
0. The second digit, 5, corresponds to the highest strength level for the
result’s value of 1.

Switch networks can produce a range of strengths of the same value,
such as the signals from the upper and lower configurations in
Figure 6-10.

Figure 6-10: Ambiguous strengths from switch networks

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

reg a

reg b Vcc

reg g

reg d

reg e

651

530

56X

pullup=x

=1

=x

=0

=0

pulldown ground

and
We0 (3)

Pu0 (5)

Pu1

(6)

(5)

6-24 June 1993

Gate and Switch Level Modeling
Strengths and Values of Combined Signals

In Figure 6-10, the upper combination of a register, a gate controlled by
a register of unspecified value, and a pullup produces a signal with a
value of 1 and a range of strengths (651) described in Figure 6-11.

Figure 6-11: Range of two strengths of a defined value

In Figure 6-10 the lower combination of a pulldown, a gate controlled by
a register of unspecified value, and an and gate produces a signal with
a value of 0 and a range of strengths (530) described in Figure 6-12.

Figure 6-12: Range of three strengths of a defined value

When the signals from the upper and lower configurations in Figure 6-10
combine, the result is an unknown with a range (56X) determined by the
extremes of the two signals shown in Figure 6-13.

Figure 6-13: Unknown value with a range of strengths

In Figure 6-10, replacing the pulldown in the lower configuration with
a supply0 would change the range of the result to the range (StX)
described in Figure 6-14.

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

June 1993 6-25

Gate and Switch Level Modeling
Strengths and Values of Combined Signals

Figure 6-14: Strong X range

The range in Figure 6-14 is strong X, because it is unknown and both of
its components’ extremes are strong. The extreme of the output of the
lower configuration is strong because the lower pmos reduces the
strength of the supply0 signal. Section 6.13 discusses this modeling
feature.

Logic gates produce results with ambiguous strengths as well as tristate
drivers. Such a case appears in Figure 6-15.

Figure 6-15: Ambiguous strength from gates

In Figure 6-15, register b has an unspecified value, so its input to the
upper and gate is strong X. The upper and gate has a strength
specification including highz0. The signal from the upper and gate is a
strong H composed of the values described in Figure 6-16.

Figure 6-16: Ambiguous strength signal from a gate

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

StH

36X

We0

a=1

b=X

c=0

d=0

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

6-26 June 1993

Gate and Switch Level Modeling
Strengths and Values of Combined Signals

HiZ0 is part of the result, because the strength specification for the gate
in question specified that strength for an output with a value of 0. A
strength specification other than high impedance for the 0 value output
results in a gate output of X. The output of the lower and gate is a weak
0 described in Figure 6-17.

Figure 6-17: Weak 0

When the signals combine, the result is the range (36X) described in
Figure 6-18.

Figure 6-18: Ambiguous strength in combined gate signals

This figure presents the combination of an ambiguous signal and an
unambiguous signal. Such combinations are the topic of Section 6.11.3.

6.11.3
Ambiguous Strength Signals and Unambiguous Signals

The combination of a signal with unambiguous strength and known
value with another signal of ambiguous strength presents several
possible cases. To understand a set of rules governing this type of
combination, it is necessary to consider the strength levels of the
ambiguous strength signal separately from each other and relative to the
unambiguous strength signal. When a signal of known value and
unambiguous strength combines with a component of a signal of
ambiguous strength, these are the effects:

Rule 1:

The strength levels of the ambiguous strength signal that are
greater than the strength level of the unambiguous signal
remain in the result.

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

June 1993 6-27

Gate and Switch Level Modeling
Strengths and Values of Combined Signals

Rule 2:

The strength levels of the ambiguous strength signal that are
smaller than or equal to the strength level of the unambiguous
signal disappear from the result, subject to Rule 3.

Rule 3:

If the operation of Rule 1 and Rule 2 results in a gap in strength
levels because the signals are of opposite value, the signals in
the gap are part of the result.

The following figures show some applications of the rules.

Figure 6-19: Elimination of strength levels

In Figure 6-19, the strength levels in the ambiguous strength signal that
are smaller than or equal to the strength level of the unambiguous
strength signal disappear from the result, demonstrating Rule 2.

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Combining the two signals above results in the following signal:

6-28 June 1993

Gate and Switch Level Modeling
Strengths and Values of Combined Signals

Figure 6-20: Result demonstrating a range and the elimination
of strength levels of two values

In Figure 6-20, Rule 1, Rule 2, and Rule 3 apply. The strength levels of
the ambiguous strength signal that are of opposite value and lesser
strength than the unambiguous strength signal disappear from the
result. The strength levels in the ambiguous strength signal that are less
than the strength level of the unambiguous strength signal, and of the
same value, disappear from the result. The strength level of the
unambiguous strength signal and the greater extreme of the ambiguous
strength signal define a range in the result.

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Combining the two signals above results in the following signal:

June 1993 6-29

Gate and Switch Level Modeling
Strengths and Values of Combined Signals

Figure 6-21: Result demonstrating a range and the elimination
of strength levels of one value

In Figure 6-21, Rule 1 and Rule 2 apply. The strength levels in the
ambiguous strength signal that are less than the strength level of the
unambiguous strength signal disappear from the result. The strength
level of the unambiguous strength signal and the strength level at the
greater extreme of the ambiguous strength signal define a range in the
result.

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Combining the two signals above results in the following signal:

6-30 June 1993

Gate and Switch Level Modeling
Strengths and Values of Combined Signals

Figure 6-22: A range of both values

In Figure 6-22, Rule 1, Rule 2, and Rule 3 apply. The greater extreme of
the range of strengths for the ambiguous strength signal is larger than
the strength level of the unambiguous strength signal. The result is a
range defined by the greatest strength in the range of the ambiguous
strength signal and by the strength level of the unambiguous strength
signal.

6.11.4
Wired Logic Net Types

The net types triand, wand, trior, and wor resolve conflicts when
multiple drivers are at the same level of strength. These net types resolve
signal values by treating signals as inputs of logic functions.

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

The combination of the two signals above produces the following result:

June 1993 6-31

Gate and Switch Level Modeling
Strengths and Values of Combined Signals

For example, consider the combination of two signals of unambiguous
strength in Figure 6-23.

Figure 6-23: Wired logic with unambiguous strength signals

The combination of the signals in Figure 6-23, using wired AND logic,
produces a result with the same value as the result produced by an AND
gate with the two signals’ values as its inputs. The combination of
signals using wired OR logic produces a result with the same value as
the result produced by an OR gate with the two signals’ values as its
inputs. The strength of the result is the same as the strength of the
combined signals in both cases. If the value of the upper signal changes
so that both signals in Figure 6-23 possess a value of 1, then the results
of both types of logic have a value of 1.

When ambiguous strength signals combine in wired logic, it is necessary
to consider the results of all combinations of each of the strength levels
in the first signal with each of the strength levels in the second signal,
as shown in Figure 6-24.

wired AND logic value result: 0

wired OR logic value result: 1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

6-32 June 1993

Gate and Switch Level Modeling
Strengths and Values of Combined Signals

Figure 6-24: Wired logic and ambiguous strengths

The combinations of strength levels for AND logic appear in the
following chart:

Signal 1

Signal 2

Signal 1 Signal 2 Result
Strength Value Strength Value Strength Value

5 0 5 1 5 0

6 0 5 1 6 0

The result is the following signal:

The combinations of strength levels for OR logic appear in the
following chart:

5 0 5 1 5 1

6 0 5 1 6 0

The result is the following signal:

7 6 5 4 3 2 1 0 76543210
0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210
0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Signal 1 Signal 2 Result

Strength Value Strength Value Strength Value

June 1993 6-33

Gate and Switch Level Modeling
Mnemonic Format

6.12
Mnemonic Format

Trace messages giving signal strength information are compatible with
the %v format option in the $display system task. See Section 21.2 for
more information on this mnemonic strength notation.

6.13
Strength Reduction by Non-Resistive Devices

The nmos, pmos, and cmos gates pass through the strength from the
data input to the output, except that a supply strength is reduced to a
strong strength.

The tran, tranif0, and tranif1 gates do not affect signal strength
across the bidirectional terminals, except that a supply strength is
reduced to a strong strength.

6.14
Strength Reduction by Resistive Devices

The rnmos, rpmos, rcmos, rtran, rtranif1, and rtranif0 devices
reduce the strength of signals that pass through them according to
Table 6-8.

Table 6-8: Strength reduction rules

input strength reduced strength

supply drive pull drive

strong drive pull drive

pull drive weak drive

weak drive medium capacitor

large capacitor medium capacitor

medium capacitor small capacitor

small capacitor small capacitor

high impedance high impedance

6-34 June 1993

Gate and Switch Level Modeling
Strengths of Net Types

6.15
Strengths of Net Types

The tri0, tri1, supply0, and supply1 net types generate signals
with specific strength levels. The trireg declaration can specify either
of two signal strength levels other than a default strength level.

6.15.1
tri0 and tri1 Net Strengths

The tri0 net type models a net connected to a resistive pulldown device.
Its signal has a value of 0 and a pull strength in the absence of an
overriding source. The tri1 net type models a net connected to a
resistive pullup device: its signal has a value of 1 and a pull strength in
the absence of an overriding source.

6.15.2
trireg Strength

The trireg net type models charge storage nodes. The strength of the
drive resulting from a trireg net that is in the charge storage state
(that is, a driver charged the net and then went to high impedance) is
one of these three strengths: large, medium, or small. The specific
strength associated with a particular trireg net is specified by the user
in the net declaration. The default is medium. The syntax of this
specification is described in Section 3.4.1.

6.15.3
supply0 and supply1 Net Strengths

The supply0 net type models ground connections. The supply1 net
type models connections to power supplies. The supply0 and supply1
net types have supply driving strengths.

6.16
Gate and Net Delays

Gate and net delays provide a means of accurately describing delays
through a circuit. The gate delays specify the signal propagation delay
from any gate input to the gate output. Up to three values per output can
be specified. The descriptions in this chapter of each gate type give the
rules for which gates can take how many delays—see Section 6.2
through Section 6.7.

June 1993 6-35

Gate and Switch Level Modeling
Gate and Net Delays

Net delays refer to the time it takes from any driver on the net changing
value to the time when the net value is updated and propagated further.
Up to three delay values per net can be specified.

Please note: Verilog-XL treats two nets connected by a bidirectional
switch as one net and simulates the delays on both nets in parallel.

For both gates and nets, the default delay is zero when no delay
specification is given. When one delay value is given, then this value is
used for all propagation delays associated with the gate or net. The
following is an example of a delay specification with one delay:

and #(10) (out, in1, in2);

The following is an example of a delay specification with two delays:

and #(10, 12) (out, in1, in2);

When two delays are given, the first specifies the rise delay and the
second specifies the fall delay. The delay when the signal changes to high
impedance or to unknown is the lesser of the two delay values.

The following is an example of a delay specification with three delays:

and #(10, 12, 11) (out, in1, in2);

For a three delay specification:

• the first delay refers to the transition to the 1 value (rise delay)

• the second delay refers to the transition to the 0 value (fall delay)

• the third delay refers to the transition to the high impedance value

When a value changes to the unknown (X) value, the delay is the smallest
of the three delays.

6-36 June 1993

Gate and Switch Level Modeling
Gate and Net Delays

Table 6-9 summarizes the from-to propagation delay choice for the two
and three delay specifications.

Table 6-9: Rules for propagation delays

The following example specifies a simple latch module with tri-state
outputs, where individual delays are given to the gates. The propagation
delay from the primary inputs to the outputs of the module will be
cumulative, and depends on the signal path through the network.

delay used if there are:

from value: to value: 2 delays 3 delays

0 1 d1 d1
0 x min(d1, d2) min(d1, d2, d3)
0 z min(d1, d2) d3
1 0 d2 d2
1 x min(d1, d2) min(d1, d2, d3)
1 z min(d1, d2) d3
x 0 d2 d2
x 1 d1 d1
x z min(d1, d2) d3
z 0 d2 d2
z 1 d1 d1
z x min(d1, d2) min(d1, d2, d3)

June 1993 6-37

Gate and Switch Level Modeling
Gate and Net Delays

Example 6-1: Using delay values

6.16.1
min/typ/max Delays

The syntax for delays on gate primitives (including user-defined
primitives), nets, and continuous assignments allows three values each
for the rising, falling, and turn-off delays. The minimum, typical, and
maximum values for each are specified as constant expressions
separated by colons. The following example shows min/typ/max values
for rising, falling, and turn-off delays:

Example 6-2: Syntax example for delay expressions

module tri_latch(qout, nqout, clock, data, enable);
output qout, nqout;
input clock, data, enable;

tri qout, nqout;
not #5

(ndata, data);
nand #(3, 5)

(wa, data, clock),
(wb, ndata, clock);

nand #(12, 15)
(q, nq, wa),
(nq, q, wb);

bufif1 #(3, 7, 13)
q_drive (qout, q, enable),
nq_drive (nqout, nq, enable);

endmodule

module iobuf(io1, io2, dir);

•
•
•

bufif0 #(5:7:9, 8:10:12, 15:18:21) (io1, io2, dir);
bufif1 #(6:8:10, 5:7:9, 13:17:19) (io2, io1, dir);

•
•
•

endmodule

6-38 June 1993

Gate and Switch Level Modeling
Gate and Net Delays

The syntax for delay controls in procedural statements also allows
minimum, typical, and maximum values. These are specified by
expressions separated by colons. Example 6-3 illustrates this concept.

Example 6-3: Delay controls in procedural statements

The delay used during simulation will be one of the three—either
minimum, typical, or maximum. One delay choice is used throughout a
simulation run; it cannot be changed dynamically.

Selection of which delays will be used is done using one of three
command options. The +maxdelays option selects all of the maximum
delays; the +typdelays option selects all of the typical delays; the
+mindelays option selects all of the minimum delays. For example, the
following command line runs Verilog-XL with only the values specified
for the maximum delay:

verilog source1.v +maxdelays

Please note: If only one delay is specified, then Verilog-XL uses
it regardless of whether minimum, typical, or maximum delays
are selected. If more than one delay is desired, then all three
delays must be specified; for example, it is not possible to specify
minimum and maximum without typical.

CAUTION
There is currently no syntax checking on plus command
options. Be very careful in specifying them to avoid
confusing results. If you misspell “maxdelays”,
“mindelays” or “typdelays”, the option will be ignored.

parameter
min_hi = 97, typ_hi = 100, max_hi = 107;

reg clk;

always
begin

#(95:100:105) clk = 1;
#(min_hi:typ_hi:max_hi) clk = 0;

end

June 1993 6-39

Gate and Switch Level Modeling
Gate and Net Delays

6.16.2
trireg Net Charge Decay

Like all nets, a trireg declaration’s delay specification can contain up
to three delays. The first two delays specify the simulation time that
elapses in a transition to the 1 and 0 logic states when the trireg is
driven to these states by a driver. The third delay specifies the charge
decay time instead of the time that elapses in a transition to the z logic
state. The charge decay time specifies the simulation time that elapses
between when a trireg’s drivers turn off and when its stored charge
can no longer be determined.

A trireg needs no turn-off delay specification because a trireg never
makes a transition to the z logic state. When a trireg’s drivers make
transitions from the 1, 0, or x logic states to off, the trireg retains the
previous 1, 0, or x logic state that was on its drivers. The z value does
not propagate from a trireg’s drivers to a trireg. A trireg can only
hold a z logic state when z is the trireg’s initial logic state or when it
is forced to the z state with a force statement.

A delay specification for charge decay models a charge storage node that
is not ideal, a charge storage node whose charge leaks out through its
surrounding devices and connections.

This section describes the charge decay process and the delay
specification for charge decay.

The charge decay process
Charge decay is the cause of transition of a 1 or 0 that is stored in a
trireg to an unknown value (x) after a specified number of time units.
The charge decay time is that specified number of time units.

The charge decay process begins when the trireg’s drivers turn off and
the trireg starts to hold charge. The charge decay process ends under
the following two conditions:

1. The specified number of time units elapse and the trireg makes
a transition from 1 or 0 to x.

2. The trireg’s drivers turn on and propagate a 1, 0 or x into the
trireg.

When charge decay causes a trireg’s value to change to x, Verilog-XL
issues a warning message. This message takes the following form:

You can tell Verilog-XL not to issue this warning with the
$disable_warnings system task.

Warning! Time = simulation_time: Charge on node hierarchical_name_of_trireg has
decayed [Verilog-DECAY]
”source_file_name”, line_number: trireg_identifier

6-40 June 1993

Gate and Switch Level Modeling
Gate and Net Delays

The delay specification for charge decay time

The third delay in a trireg declaration specifies the charge decay time.
A three-valued delay specification in a trireg declaration has the
following form:

#(d1, d2, d3)
// three delays —
// (rising_delay,falling_delay,charge_decay_time)

The specification in a trireg declaration of the charge decay time must
be preceded by a rise and fall delay specification. The following example
shows a specification of the charge decay time in a trireg declaration:

trireg (large) #(0,0,50) cap1;

This example declares a trireg with the identifier cap1. This trireg
stores a large charge. The delay specifications for the rise delay is 0,
the fall delay is 0, and the charge decay time specification is 50 time
units.

Please note: A charge decay time is not a propagation delay like a
rising delay or a falling delay. A charge decay time greater than 0 does
not prevent the acceleration of the trireg.

Example 6-4 presents a source description file that contains a trireg
declaration with a charge decay time specification. Figure 6-25 assists
you in reading the source description file.

Figure 6-25: This figure accompanies the example below

data

gate

nmos1
trireg

June 1993 6-41

Gate and Switch Level Modeling
Gate and Net Delays

Example 6-4: trireg with a charge decay

module capacitor;

reg data,gate;

trireg (large) #(0,0,50) cap1;

nmos nmos1 (cap1,data,gate);

initial

begin

$monitor(”%0d data = %v gate = %v cap1 = %v”,

$time,data,gate,cap1);

data = 1;

gate = 1;

#10 gate = 0;

#30 gate = 1;

#10 gate = 0;

#100 $finish;

end

endmodule

trireg declaration
with a charge decay time

of 50 time units

nmos switch that drives
the trireg

toggles the driver of the
control input to the nmos

switch

6-42 June 1993

Gate and Switch Level Modeling
Gate and Net Delays

Example 6-5 shows the simulation results of the model in Example 6-4.

Example 6-5: Charge decay simulation results

The results show the following sequence of events:

1. At simulation time 0, data drives a strong 1 into trireg cap1.
2. At simulation time 10, gate’s value changes to 0, disconnecting

trireg cap1 from data; trireg cap1 enters the capacitive
state, storing its value of 1 with a large strength. The charge
decay process begins for trireg cap1; its value is scheduled to
change to x at simulation time 60.

3. At simulation time 40, gate’s value changes to 1, connecting
trireg cap1 to data; trireg cap1 enters the driven state, and
data drives a strong 1 into trireg cap1. The charge decay
process stops for trireg cap1 because it is no longer in the
capacitive state.

4. At simulation time 50, reg gate’s value changes to 0,
disconnecting trireg cap1 from reg data again; trireg cap1
enters the capacitive state, storing its value of 1 with a large
strength. The charge decay process begins again for trireg cap1;
its value is scheduled to change to x at simulation time 100.

5. At simulation time 100, the charge decay process changes the
stored value in trireg cap1 from 1 to x.

Please note: Specifying a charge decay time can affect
performance. You may see a performance degradation caused by
specifying trireg charge decay time in a design—such as a
dynamic circuit, whose triregs frequently enter the capacitive
state.

0 data = St1 gate = St1 cap1 = St1

10 data = St1 gate = St0 cap1 = La1

40 data = St1 gate = St1 cap1 = St1

50 data = St1 gate = St0 cap1 = La1

Warning! Time = 100: Charge on node capacitor.cap1 has

decayed [Verilog-DECAY]

”trireg1.v”, 4: cap1

100 data = St1 gate = St0 cap1 = LaX
trireg cap1 changesvalue

to LaX at simulation
time100

June 1993 6-43

Gate and Switch Level Modeling
Gate and Net Name Removal

6.17
Gate and Net Name Removal

Four compiler directives have been provided that control the removal of
gate and/or net names in order to reduce the virtual memory
requirements at the gate and switch level. The names are removed from
the second and all subsequent module instances so that removing gate
and net names saves the most memory in designs containing gate-level
modules that are instantiated many times.

The compiler directives are the following:

‘remove_gatenames
‘noremove_gatenames
‘remove_netnames
‘noremove_netnames

The first two directives control the removal of gate names, and the latter
two control the removal of net names. For both controls, the default is to
NOT remove the names.

These directives can only be specified outside modules. The control
applies to all modules following a directive until the end of the source
description (going across source files if necessary) or until another of
these directives is given or until a ‘resetall directive is given. Any
number of these compiler directives can be given in a source description.

The removal of gate names is more useful than the removal of net names
because gate names at the present are only used for the tracing of value
changes across the gates.

Net names cannot be removed if they have been referenced in a
hierarchical name. An example of a hierarchical referencing would be a
monitoring task, or nets that will need to be referenced interactively.

As shown in the following partial description, all gate names from
modules a and b, and net names from all the instances of module b are
removed.

6-44 June 1993

Gate and Switch Level Modeling
Gate and Net Name Removal

Example 6-6: Gate and net name removal

Note that it is not possible to selectively remove the gate and/or net
names from particular instances of a module.

•
•
•

‘remove_gatenames
module a;

•
•
•

b b1(), b2(), b3();

•
•
•

endmodule

‘remove_netnames
module b;

•
•
•

c c1(), c2();

•
•
•

endmodule

‘noremove_gatenames
‘noremove_netnames
module c;

•
•
•

endmodule

June 1993 7-1

User-Defined Primitives (UDPs)

7
Figure 7-0

Example 7-0
Syntax 7-0
Table 7-0

User-Defined
Primitives (UDPs)

This chapter describes a modeling technique whereby the user can
effectively augment the set of predefined gate primitives by designing
and specifying new primitive elements called user-defined primitives
(UDPs). Instances of these new UDPs can then be used in exactly the
same manner as the gate primitives to represent the circuit being
modeled. This technique can reduce the amount of memory that a
description needs and can improve simulation performance. Evaluation
of these UDPs is accelerated by the Verilog-XL algorithm.

The following two types of behavior can be represented in a user-defined
primitive:

• combinational—modeled by a combinational UDP

• sequential—modeled by a sequential UDP

A sequential UDP uses the value of its inputs and the current value of
its output to determine the next value of its output. Sequential UDPs
provide an easy and efficient way to model sequential circuits such as
flip-flops and latches. A sequential UDP can model both level-sensitive
and edge-sensitive behavior.

The maximum number of inputs to a combinational UDP is ten. The
maximum number of inputs to a sequential UDP is limited to nine
because the internal state counts as an input. Each UDP has exactly one
output, which can be in one of three states: 0, 1, or x. The tri-state value
z is not supported. In sequential UDPs, the output always has the same
value as the internal state.

7-2 June 1993

User-Defined Primitives (UDPs)
Memory Usage and Performance Considerations

7.1
Memory Usage and Performance
Considerations

The user should be aware of the amount of memory required for the
internal tables created for evaluation of these UDPs during simulation.
Although only one such table is required per UDP definition, and not for
each instance, the UDPs with 8, 9, and 10 inputs do consume a large
amount of memory. The trade-off here is one of speed versus memory. If
many instances of a large UDP are needed, then it is easily possible to
gain back the memory used by the definition, because each UDP
instance can take less memory than that required for the group of gates
it replaces.

The memory required for a UDP definition is given below:

Table 7-1: UDP memory requirements

Note that the number of variables is the number of inputs for
combinational UDPs and the number of inputs plus one for sequential
UDPs.

Number of variables Memory required (K bytes)

<1
5
17
56
187
623

1-5
6
7
8
9
10

June 1993 7-3

User-Defined Primitives (UDPs)
Syntax

7.2
Syntax

The formal syntax of the UDP definition is as follows:

Syntax 7-1: Syntax for user-defined primitives

<UDP>
::= primitive <name_of_UDP> (<output_terminal_name>,

<input_terminal_name> <,<input_terminal_name>>*) ;
<UDP_declaration>+
<UDP_initial_statement>?
<table_definition>
endprimitive

<name_of_UDP>
::= <IDENTIFIER>

<UDP_declaration>
::= <UDP_output_declaration>
||= <reg_declaration>
||= <UDP_input_declaration>

<UDP_output_declaration>
::= output <output_terminal _name>;

<reg_declaration>
reg <output_terminal_name> ;

<UDP_input_declaration>
::= input <input_terminal _name>

<,<input_terminal_name>>*) ;
<UDP_initial_statement>

::= initial <output_terminal_name> = <init_val> ;
<init_val>

::= 1’b0
||= 1’b1
||= 1’bx
||= 1
||= 0

<table_definition>
::= table

<table_entries>
endtable

<table_entries>
::= <combinational_entry>+
||= <sequential_entry>+

—continued

7-4 June 1993

User-Defined Primitives (UDPs)
UDP Definition

Syntax 7-1 continued: Syntax for user-defined primitives

7.3
UDP Definition

UDP definitions are independent of modules; they are at the same level
as module definitions in the syntax hierarchy. They can appear
anywhere in the source text, either before or after they are used inside a
module. They may not appear between the keywords module and
endmodule.

A UDP definition begins with the keyword primitive. This is followed
by an identifier, which is the name of the UDP. This in turn is followed
by a comma separated list of terminals enclosed in parentheses, which
is followed by a semicolon.

<combinational_entry>
::= <level_input_list> : <OUTPUT_SYMBOL> ;

<sequential_entry>
::= <input_list> : <state> : <next_state> ;

<input_list>
::= <level_input_list>
||= <edge_input_list>

<level_input_list>
::= <LEVEL_SYMBOL>+

<edge_input_list>
::= <LEVEL_SYMBOL>* <edge> <LEVEL_SYMBOL>*

<edge>
::= (<LEVEL_SYMBOL> <LEVEL_SYMBOL>)
||= <EDGE_SYMBOL>

<state>
::= <LEVEL_SYMBOL>

<next_state>
::= <OUTPUT_SYMBOL>
||= - (This is a literal hyphen—

see Section 7.15 for more details.)
Lexical tokens:

<OUTPUT_SYMBOL> is one of the following:
0 1 x X

<LEVEL_SYMBOL> is one of the following:
0 1 x X ? b B

<EDGE_SYMBOL> is one of the following:
r R f F p P n N *

June 1993 7-5

User-Defined Primitives (UDPs)
UDP Definition

The UDP definition header described previously is followed by terminal
declarations and a state table. The UDP definition is terminated by the
keyword endprimitive.

7.3.1
UDP Terminals

UDPs have multiple input terminals and exactly one output terminal;
they cannot have bidirectional inout terminals.

The output terminal MUST be the first terminal in the terminal list.

All UDP terminals are scalar. No vector terminals are allowed.

The output terminal of a sequential UDP requires an additional
declaration as type reg. It is illegal to declare a reg for the output
terminal of a combinational UDP.

7.3.2
UDP Declarations

UDPs must contain input and output terminal declarations. The output
terminal declaration begins with the keyword output, followed by one
output terminal name. The input terminal declaration begins with the
keyword input, followed by one or more input terminal names.

Sequential UDPs must contain a reg declaration for the output terminal.
Combinational UDPs cannot contain a reg declaration. The initial value
of the output terminal reg can be specified in an initial statement in
a sequential UDP.

7.3.3
Sequential UDP initial Statement

The sequential UDP initial statement specifies the value of the output
terminal when simulation begins. This statement begins with the
keyword initial. The statement that follows must be an assignment
statement that assigns a single bit literal value to the output terminal
reg.

7.3.4
UDP State Table

The state table which defines the behavior of a UDP begins with the
keyword table and is terminated with the keyword endtable.

Each row of the table is created using a variety of characters that
indicate input and output states. Three states—0, 1, and x—are
supported. The z state is explicitly excluded from consideration in

7-6 June 1993

User-Defined Primitives (UDPs)
Combinational UDPs

user-defined primitives. A number of special characters are defined to
represent certain combinations of state possibilities. These are detailed
in this chapter, in Section 7.10, Symbols to Enhance Readability.

The order of the input state fields of each row of the state table is taken
directly from the terminal list in the UDP definition header. It is NOT
related to the order of the input declarations.

Combinational UDPs have one field per input and one field for the
output. The input fields are separated from the output field by a colon.

Sequential UDPs have an additional field inserted between the input
fields and the output field. This additional field represents the current
state of the UDP and is considered equivalent to the current output
value. It is delimited by colons.

Each row defines the output for a particular combination of input states.
If all inputs are specified as x, then the output must be specified as x.
All combinations that are not explicitly specified result in a default
output state of x. Each row of the table is terminated by a semicolon.

Consider the following entry from a UDP state table:

0 1 : ? : 1 ;

In this entry the ? represents a don’t-care condition—it is replaced by
cases of the entry when the ? is replaced by 1, 0, and x. This specifies
that when the inputs are 0 and 1, no matter what the value of the
current state, the output is 1.

It is not necessary to explicitly specify every possible input combination.
All combinations that are not explicitly specified result in a default
output state of x.

It is illegal to have the same combination of inputs, including edges,
specified for different outputs.

7.4
Combinational UDPs

In combinational UDPs, the output state is determined solely as a
function of the current input states. Whenever an input changes state,
the UDP is evaluated and one of the state table rows is matched. The
output state is set to the value indicated by that row.

Consider the following example, which defines a multiplexer with two
data inputs, a control input. Remember, there can only be a single
output.

June 1993 7-7

User-Defined Primitives (UDPs)
Combinational UDPs

Example 7-1: Combinational form of user-defined primitive

The first entry in the table above can be explained as follows: when
control equals 0 and dataA equals 1 and dataB equals 0, then output
mux equals 1.

All combinations of the inputs that are not explicitly specified will drive
the output to the unknown value x. For example, in the table for
multiplexer above (Example 7-1), the input combination
0xx(control=0, dataA=x, dataB=x) is not specified. If this
combination occurs during simulation, the value of output mux will
become x.

To improve the readability, and to ease writing of the table, several
special symbols are provided. A ? represents iteration of the table entry
over the values 0, 1, and x — a ? generates cases of that entry where the
? is replaced by a 0, 1, or x. It represents a don’t-care condition on that
input. Using ?, the description of a multiplexer given in Example 7-1 can
be abbreviated as implemented in Example 7-2.

primitive multiplexer(mux, control, dataA, dataB) ;
output mux ;
input control, dataA, dataB ;

table
// control dataA dataB mux

0 1 0 : 1 ;
0 1 1 : 1 ;
0 1 x : 1 ;
0 0 0 : 0 ;
0 0 1 : 0 ;
0 0 x : 0 ;

1 0 1 : 1 ;
1 1 1 : 1 ;
1 x 1 : 1 ;
1 0 0 : 0 ;
1 1 0 : 0 ;
1 x 0 : 0 ;

x 0 0 : 0 ;
x 1 1 : 1 ;

endtable

endprimitive

7-8 June 1993

User-Defined Primitives (UDPs)
Level-Sensitive Sequential UDPs

Example 7-2: Special symbols in user-defined primitive

7.5
Level-Sensitive Sequential UDPs

Level-sensitive sequential behavior is represented the same way as
combinational behavior, except that the output is declared to be of type
reg, and there is an additional field in each table entry. This new field
represents the current state of the UDP.

The output field in a sequential UDP represents the next state.

Consider the example of a latch in Example 7-3.

Example 7-3: UDP for a latch

primitive multiplexer(mux,control,dataA,dataB) ;
output mux ;
input control, dataA, dataB ;

table

// control dataA dataB mux

0 1 ? : 1 ; // ? = 0,1,x
0 0 ? : 0 ;
1 ? 1 : 1 ;
1 ? 0 : 0 ;

x 0 0 : 0 ;
x 1 1 : 1 ;

endtable

endprimitive

primitive latch(q, clock, data) ;
output q; reg q ;
input clock, data;

table
// clock data q q+

0 1 : ? : 1 ;
0 0 : ? : 0 ;
1 ? : ? : - ; // - = no change

endtable
endprimitive

June 1993 7-9

User-Defined Primitives (UDPs)
Edge-Sensitive UDPs

This description differs from a combinational UDP model in two ways.
First, the output identifier q has an additional reg declaration to
indicate that there is an internal state q. The output value of the UDP is
always the same as the internal state. Second, a field for the current
state, which is separated by colons from the inputs and the output, has
been added.

7.6
Edge-Sensitive UDPs

In level-sensitive behavior, the values of the inputs and the current state
are sufficient to determine the output value. Edge sensitive behavior
differs in that changes in the output are triggered by specific transitions
of the inputs. This makes the state table a transition table as illustrated
in Example 7-4.

Example 7-4: UDP for an edge-sensitive D-type flip-flop

Example 7-4 has terms like (01) in the input fields. These terms
represent transitions of the input values. Specifically, (01) represents a
transition from 0 to 1. The first line in the table of the previous UDP

primitive d_edge_ff(q, clock, data);
output q; reg q;
input clock, data;

table
// obtain output on rising edge of clock
// clock data q q+

(01) 0 : ? : 0 ;
(01) 1 : ? : 1 ;
(0?) 1 : 1 : 1 ;
(0?) 0 : 0 : 0 ;

// ignore negative edge of clock
(?0) ? : ? : - ;

// ignore data changes on steady clock
? (??) : ? : - ;
endtable

endprimitive

7-10 June 1993

User-Defined Primitives (UDPs)
Sequential UDP Initialization

definition (Example 7-4) can be interpreted as follows: when clock
changes value from 0 to 1 and data equals 0, the output goes to 0 no
matter what the current state.

Please note: Each table entry can have a transition specification on,
at most, one input. Entries such as the one shown below are illegal:

(01)(01)0 : 0 : 1

As in the combinational and the level-sensitive entries, a ? implies
iteration of the entry over the values 0, 1, and x. A dash (-) in the output
column indicates no value change.

All unspecified transitions default to the output value x. Thus, in the
previous example, transition of clock from 0 to x with data equal to 0 and
current state equal to 1 will result in the output q going to x.

All transitions that should not affect the output must be explicitly
specified. Otherwise, they will cause the value of the output to change to
x. If the UDP is sensitive to edges of any input, the desired output state
must be specified for all edges of all inputs.

7.7
Sequential UDP Initialization

The value on the output terminal of a sequential UDP can be specified
with an initial statement that contains a procedural assignment
statement. The initial statement is optional.

Like initial statements in modules, the initial statement in UDPs
begin with the keyword initial. The valid contents of initial
statements in UDPs and the valid left and right-hand sides of their
procedural assignment statements differ from initial statements in
modules. The difference between these two types of initial statements
is described in Table 7-2.

June 1993 7-11

User-Defined Primitives (UDPs)
Sequential UDP Initialization

Table 7-2: Initial statements in UDPs and modules

Example 7-5 shows a sequential UDP that contains an initial
statement.

Example 7-5: Sequential UDP initial statement

initial statements in UDPs initial statements in modules

contents limited to one procedural
assignment statement

the procedural assignment statement
must assign a value to a reg whose
identifier matches the identifier of an
output terminal

the procedural assignment statement
must assign one of the following values:

1’b1 1’b0 1’bx 1 0

contents can be one procedural
statement of any type or a block
statement that contains more than one
procedural statement

procedural assignment statements in
initial statements can assign values to a
reg whose identifier does not match the
identifier of an output terminal

procedural assignment statements can
assign values of any size, radix, and
value

primitive srff (q,s,r);

output q;

input s,r;

reg q;

initial q = 1’b1;

table

// s r q q+

1 0 : ? : 1 ;

f 0 : 1 : - ;

0 r : ? : 0 ;

0 f : 0 : - ;

1 1 : ? : 0 ;

endtable

endprimitive

sequential UDP initial statement
specifies that output terminal q has a
value of1 at the start of the simulation

7-12 June 1993

User-Defined Primitives (UDPs)
Sequential UDP Initialization

In Example 7-5, the output q has an initial value of 1 at the start of the
simulation; a delay specification in the UDP instance does not delay the
simulation time of the assignment of this initial value to the output.
When simulation starts, this value is the current state in the state table.

Please note: Verilog-XL does not have an initialization or power-up
phase. The initial value on the output to a sequential UDP does not
propagate to the design output before simulation starts. All nets in the
fanout of the output of a sequential UDP begin with a value of x even
when that output has an initial value of 1 or 0.

The following example and figure show how values are applied in a
module that instantiates a sequential UDP with an initial statement.
Example 7-6 shows the source description for the module and UDP.

Example 7-6: Instance of a sequential UDP with an initial statement

primitive dff1 (q,clk,d);

input clk,d;

output q;

reg q;

initial

q = 1’b1;

table

// clkd q q+

p 0 : ? : 0 ;

p 1 : ? : 1 ;

n ? : ? : - ;

? * : ? : - ;

endtable

endprimitive

module dff (q,qb,clk,d);

input clk,d;

output q,qb;

dff1 g1 (qi,clk,d);

buf #3 g2 (q,qi);

not #5 g3 (qb,qi);

endmodule

UDP instance output is qi

initial statement

q and qb are in the fanout of qi

June 1993 7-13

User-Defined Primitives (UDPs)
Sequential UDP Initialization

In Example 7-6, UDP dff1 contains an initial statement that sets the
initial value of its output to 1. Module dff contains an instance of UDP
dff1. In this instance, the UDP output is qi; the output’s fanout
includes nets q and qb.

Figure 7-1 shows the schematic of the module in Example 7-6 and the
simulation times of the propagation of the initial value of the output of
the UDP.

Figure 7-1: Module schematic and the simulation times of initial value propagation

In Figure 7-1, the fanout from the UDP output qi includes nets q and
qb. At simulation time 0, qi changes value to 1. That initial value of qi
does not propagate to net q until simulation time 3, and does not
propagate to net qb until simulation time 5.

qi
UDP dff1 g1

buf g2

not g3

d

clk

q

qb

module dff

#3

#5

0

1

0

1

0

1

0 3 5

qi

q

qb

simulation time

7-14 June 1993

User-Defined Primitives (UDPs)
UDP Instances

7.8
UDP Instances

Instances of user-defined primitives are specified inside modules in the
same manner as for gates. The instance name is optional, just as for
gates. The terminal order is as specified in the UDP definition. Only two
delays can be specified, because z is not supported for UDPs.

The system can generate names for unnamed instances of UDPs. See
Section 12.6 for more information on automatic naming.

Example 7-7 creates an instance of the D-type flip-flop d_edge_ff
(defined in Example 7-4).

Example 7-7: UPD for a D-type flip-flop

7.9
Compilation

Several checks are applied to user-defined primitive definitions as they
are compiled.

The table entries are checked for consistency. This means that if two
entries specify different outputs for the same combination of inputs,
including edges, an error will result. Special care should be taken when
using the ?, b, *, p, and n symbols which are described in the next
section.

The table entries are checked for redundancy. If two or more table
entries specify the same output for the same combination of inputs,
including edges, a warning will result. The message indicates the entry
that duplicates what is specified in previous lines.

module flip;
reg clock , data ;
parameter p1 = 10 ;
parameter p2 = 33;
d_edge_ff #(5,7) d_inst(q, clock, data);

initial
begin

data = 1;
clock = 1;

end
always #p1 clock = ~clock;
always #p2 data = ~data;
endmodule

June 1993 7-15

User-Defined Primitives (UDPs)
Symbols to Enhance Readability

7.10
Symbols to Enhance Readability

Like ?, there are several symbols that can be used in UDP definitions to
make the description more readable. The symbols described in Table 7-3
are used in Example 7-8.

Table 7-3: Symbols for readability

Symbol Interpretation Explanation

b 0 or 1 like ?, except x is excluded

r (01) rising edge on an input

f (10) falling edge on an input

p (01) or rising edges, including
(0x) or (x1) or unknown

(1z) or (z1)

n (10) or falling edges, including
(1x) or (x0) or unknown

(0z) or (z0)

* (??) all transitions

7-16 June 1993

User-Defined Primitives (UDPs)
Mixing Level-Sensitive and Edge-Sensitive Descriptions

7.11
Mixing Level-Sensitive and Edge-Sensitive
Descriptions

UDP definitions allow a mixing of the level-sensitive and the
edge-sensitive constructs in the same description. An edge-triggered JK
flip-flop with asynchronous preset and clear needs such a mixture.
Example 7-8 illustrates this concept.

Example 7-8: Sequential UDP for level-sensitive and edge-sensitive behavior

In this example, the preset and clear logic is level-sensitive. Whenever
the preset and clear combination is 01, the output has value 1. Similarly,
whenever the preset and clear combination has value 10, the output has
value 0.

The remaining logic is sensitive to edges of the clock. In the normal
clocking cases, the flip-flop is sensitive to the rising clock edge as
indicated by an r in the clock field in those entries. The insensitivity to
the falling edge of clock is indicated by a hyphen (-) in the output field
(see Section 7.15) for the entry with an f as the value of clock. Remember
that the desired output for this input transition must be specified to

primitive jk_edge_ff(q, clock, j, k, preset, clear);
output q; reg q;
input clock, j, k, preset, clear;

table
//clock jk pc state output/next state

? ?? 01 : ? : 1 ; //preset logic
? ?? *1 : 1 : 1 ;
? ?? 10 : ? : 0 ; //clear logic
? ?? 1* : 0 : 0 ;

r 00 00 : 0 : 1 ; //normal clocking cases
r 00 11 : ? : - ;
r 01 11 : ? : 0 ;
r 10 11 : ? : 1 ;
r 11 11 : 0 : 1 ;
r 11 11 : 1 : 0 ;
f ?? ?? : ? : - ;

b *? ?? : ? : - ; //j and k transition cases
b ?* ?? : ? : - ;

endtable

endprimitive

June 1993 7-17

User-Defined Primitives (UDPs)
Reducing Pessimism

avoid unwanted x values at the output. The last two entries show that
the transitions in j and k inputs do not change the output on a steady
low or high clock.

7.12
Reducing Pessimism

Three-valued logic tends to make pessimistic estimates of the output
when one or more inputs are unknown. User-defined primitives can be
used to reduce this pessimism. The following is an extension of the
previous latch example illustrating reduction of pessimism.

Example 7-9: Latch UDP illustrating pessimism

The last two entries specify what happens when the clock input has
value x. If these are omitted, the output will go to x whenever the clock
is x. This is a pessimistic model, as the latch should not change its
output if it is already 0 and the data input is 0. Similar analysis is true
for the situation when the data input is 1 and the current output is 1.

primitive latch(q, clock, data)
output q; reg q ;
input clock, data ;

table

// clock data state output/next state
0 1 : ? : 1 ;
0 0 : ? : 0 ;
1 ? : ? : - ; // - = no change

// ignore x on clock when data equals state
x 0 : 0 : - ;
x 1 : 1 : - ;

endtable

endprimitive

7-18 June 1993

User-Defined Primitives (UDPs)
Reducing Pessimism

Consider the jk flip-flop with preset and clear in Example 7-10.

Example 7-10: UDP for a JK flip-flop with preset and clear

This example has additional entries for the positive clock (p) edges, the
negative clock edges (?0 and 1x), and with the clock value x. In all of
these situations, the output is deduced to remain unchanged rather
than going to x. Thus, this model is less pessimistic than the previous
example.

primitive jk_edge_ff(q, clock, j, k, preset, clear);
output q; reg q;
input clock, j, k, preset, clear;

table
//clock jk pc state output/next state

//preset logic
? ?? 01 : ? : 1 ;
? ?? *1 : 1 : 1 ;

//clear logic
? ?? 10 : ? : 0 ;
? ?? 1* : 0 : 0 ;

//normal clocking cases
r 00 00 : 0 : 1 ;
r 00 11 : ? : - ;
r 01 11 : ? : 0 ;
r 10 11 : ? : 1 ;
r 11 11 : 0 : 1 ;
r 11 11 : 1 : 0 ;
f ?? ?? : ? : - ;

//j and k cases
b *? ?? : ? : - ;
b ?* ?? : ? : - ;

//cases reducing pessimism
p 00 11 : ? : - ;
p 0? 1? : 0 : - ;
p ?0 ?1 : 1 : - ;
(?0)?? ?? : ? : - ;
(1x)00 11 : ? : - ;
(1x)0? 1? : 0 : - ;
(1x)?0 ?1 : 1 : - ;
x *0 ?1 : 1 : - ;
x 0* 1? : 0 : - ;

endtable

endprimitive

June 1993 7-19

User-Defined Primitives (UDPs)
Level-Sensitive Dominance

7.13
Level-Sensitive Dominance

In the Verilog HDL, edge-sensitive cases are processed first, followed by
level-sensitive cases. When level-sensitive and edge-sensitive cases
specify different output values, the result is specified by the
level-sensitive case. The following table shows level-sensitive and
edge-sensitive entries in Example 7-10, their level-sensitive or
edge-sensitve behavior, and a case that each includes.

Table 7-4: The level-sensitive and edge-sensitive entries in Example 7-10

The included cases specify opposite next state values for the same input
and current state combination.

The level-sensitive included case specifies that when the inputs clock,
jk and pc values are 0 00 01, and the current state is 0, the output
changes to 1.

The edge-sensitive included case specifies that when clock falls from 1
to 0, and the other inputs jk and pc are 00 01, and the current state
is 0, the output changes to 0.

When the edge-sensitive case is processed first, followed by the
level-sensitive case, the output changes to 1.

7.14
Processing of Simultaneous Input Changes

When multiple UDP inputs change at the same simulation time the UDP
will be evaluated multiple times, once per input value change. This
situation cannot be detected by any form of table entry. This fact has
important implications for modeling sequential circuits where the order
of input changes and subsequent UDP evaluations can have a profound
effect on the results of the simulation.

? ?? 01: ?: 1;

f 00 01: 0: 0;f ?? ??: ?: -;

0 00 01: 0: 1; level-sensitive

edge-sensitive

entry included case behavior

7-20 June 1993

User-Defined Primitives (UDPs)
Processing of Simultaneous Input Changes

Consider the D-type flip-flop in Example 7-11.

Example 7-11: D-type flip-flop

If the current state of the flip-flop is 0 and the clock and data inputs
make transitions from 0 to 1 at the same simulation time, then the state
of the output at the next simulation time is unpredictable because it
cannot be predicted which of these transitions is processed first.

If the clock input transition is processed first and the data input
transition is processed second, then the next state of the output will be
0. Likewise, if the data input transition is processed first and the clock
transition is processed second, then the next state of the output will be
1.

This fact should be taken into consideration when constructing models.
Keep in mind that gate-level models have the same sort of unpredictable
behavior given particular input transition sequences; event-driven
simulation is subject to idiosyncratic dependence on the order in which
events are processed.

Timing checks can be used to detect simultaneous input transitions,
provide a warning, and affect the simulation results; see Chapter13,
Specify Blocks.

primitive d_edge_ff(q, clock, data);
output q; reg q;
input clock, data;

table
// obtain output on rising edge of clock
// clock data q q+

(01) 0 : ? : 0 ;
(01) 1 : ? : 1 ;
(0?) 1 : 1 : 1 ;
(0?) 0 : 0 : 0 ;

// ignore negative edge of clock
(?0) ? : ? : - ;

// ignore data changes on steady clock
? (??) : ? : - ;
endtable

endprimitive

June 1993 7-21

User-Defined Primitives (UDPs)
Summary of Symbols

7.15
Summary of Symbols

The following table summarizes the meaning of all the value symbols
that are valid in the table part of a UDP definition.

Table 7-5: UDP table symbols

Symbol Interpretation Notes

0 logic 0
1 logic 1
x unknown
? iteration of cannot be given in output field

0, 1, and x
b iteration of cannot be given in output field

0 and 1
- no change can only be given in the output

field of a sequential UDP
(vw) value change v and w can be any one of 0,

from v to w 1, x, ? or b
* same as (??) any value change on input
r same as (01) rising edge on input
f same as (10) falling edge on input
p iteration of potential positive edge on the

(01), (0x), input
and (x1)

n iteration of potential Negative edge on the
(10), (1x), and (x0) input

7-22 June 1993

User-Defined Primitives (UDPs)
Examples

7.16
Examples

The following examples show UDP modeling for an and-or gate, a
majority function for carry, and a 2-channel multiplexor with storage.

Example 7-12: UDP for an and-or gate

// Description of an AND-OR gate.
// out = (a1 & a2 & a3) | (b1 & b2).
primitive and_or(out, a1,a2,a3, b1,b2);

output out;
input a1,a2,a3, b1,b2;
table
// a b : out ;

111 ?? : 1 ;
??? 11 : 1 ;
0?? 0? : 0 ;
0?? ?0 : 0 ;
?0? 0? : 0 ;
?0? ?0 : 0 ;
??0 0? : 0 ;
??0 ?0 : 0 ;

endtable
endprimitive

June 1993 7-23

User-Defined Primitives (UDPs)
Examples

Example 7-13: UDP for a majority function for carry

// Majority function for carry
// carryout = (a & b) | (a & carryin) | (b & carryin)
primitive carry(carryout, carryin, a, b);

output carryout;
input carryin, a, b;
table

0 00 : 0;
0 01 : 0;
0 10 : 0;
0 11 : 1;
1 00 : 0;
1 01 : 1;
1 10 : 1;
1 11 : 1;
// the following cases reduce pessimism
0 0x : 0;
0 x0 : 0;
x 00 : 0;
1 1x : 1;
1 x1 : 1;
x 11 : 1;

endtable
endprimitive

7-24 June 1993

User-Defined Primitives (UDPs)
Examples

Example 7-14: UDP for a 2-channel multiplexor with storage

// Description of a 2-channel multiplexer with storage.
// The storage is level sensitive.

primitive mux_with_storage(out,clk,control,dataA,dataB);
output out;
reg out;
input clk, control, dataA, dataB;

table
//clk control dataA dataB : current-state : next state ;

1 0 1 ? : ? : 1 ;
1 0 0 ? : ? : 0 ;
1 1 ? 1 : ? : 1 ;
1 1 ? 0 : ? : 0 ;
1 x 0 0 : ? : 0 ;
1 x 1 1 : ? : 1 ;
0 ? ? ? : ? : - ;
x 0 1 ? : 1 : - ;
x 0 0 ? : 0 : - ;
x 1 ? 1 : 1 : - ;
x 1 ? 0 : 0 : - ;

endtable

endprimitive

June 1993 8-1

Behavioral Modeling
Behavioral Model Overview

8
Figure 8-0

Example 8-0
Syntax 8-0
Table 8-0

Behavioral
Modeling

The language constructs introduced so far allow hardware to be
described at a relatively detailed level. Modeling a circuit with logic gates
and continuous assignments reflects quite closely the logic structure of
the circuit being modeled; however, these constructs do not provide the
power of abstraction necessary for describing complex high level aspects
of a system. The procedural constructs described in this chapter are well
suited to tackling problems such as describing a microprocessor or
implementing complex timing checks.

The chapter starts with a brief overview of a behavioral model to provide
a context in which the reader can understand the many types of
behavioral statements in Verilog. The behavioral constructs are then
discussed in an order that allows us to introduce them before using them
in examples.

The +speedup command line option can enhance the performance of
behavioral code. See Section 24.4.36 for complete information on the
+speedup command line option.

8.1
Behavioral Model Overview

Verilog behavioral models contain procedural statements that control
the simulation and manipulate variables of the data types previously
described. These statements are contained within procedures. Each
procedure has an activity flow associated with it.

8-2 June 1993

Behavioral Modeling
Behavioral Model Overview

The activity starts at the control constructs initial and always. Each
initial statement and each always statement starts a separate
activity flow. All of the activity flows are concurrent, allowing the user to
model the inherent concurrence of hardware.

Example 8-1 is a complete Verilog behavioral model.

Example 8-1: Simple example of behavioral modeling

During simulation of this model, all of the flows defined by the initial
and always statements start together at simulation time zero. The
initial statements execute once, and the always statements execute
repetitively.

In this model, the register variables a and b initialize to binary 1 and 0
respectively at simulation time zero. The initial statement is then
complete and does not execute again during this simulation run. This
initial statement contains a begin-end block (also called a sequential
block) of statements. In this begin-end block, a is initialized first,
followed by b.

The always statements also start at time zero, but the values of the
variables do not change until the times specified by the delay controls
(introduced by #) have gone by. Thus, register a inverts after 50 time
units, and register b inverts after 100 time units. Since the always
statements repeat, this model produces two square waves. Register a
toggles with a period of 100 time units, and register b toggles with a
period of 200 time units. The two always statements proceed
concurrently throughout the entire simulation run.

module behave;
reg [1:0]a,b;
initial

begin
a = ’b1;
b = ’b0;

end
always

begin
#50 a = ~a;

end
always

begin
#100 b = ~b;

end
endmodule

June 1993 8-3

Behavioral Modeling
Procedural Assignments

8.2
Procedural Assignments

As described in Chapter 5, Assignments, procedural assignments are for
updating reg, integer, time, and memory variables.

There is a significant difference between procedural assignments and
continuous assignments, as described below:

• Continuous assignments drive net variables and are evaluated and
updated whenever an input operand changes value.

• Procedural assignments update the value of register variables
under the control of the procedural flow constructs that surround
them.

The right-hand side of a procedural assignment can be any expression
that evaluates to a value. However, part-selects on the right-hand side
must have constant indices. The left-hand side indicates the variable
that receives the assignment from the right-hand side. The left-hand side
of a procedural assignment can take one of the following forms:

• register, integer, real, or time variable:
An assignment to the name reference of one of these data types.

• bit-select of a register, integer, real, or time variable:
An assignment to a single bit that leaves the other bits untouched.

• part-select of a register, integer, real, or time variable:
A part-select of two or more contiguous bits that leaves the rest of
the bits untouched. For the part-select form, only constant
expressions are legal.

• memory element:
A single word of a memory. Note that bit-selects and part-selects
are illegal on memory element references.

• concatenation of any of the above:
A concatenation of any of the previous four forms can be specified,
which effectively partitions the result of the right-hand side
expression and assigns the partition parts, in order, to the various
parts of the concatenation.

Please note: Assignment to a register differs from assignment to a
real, time, or integer variable when the right-hand side evaluates
to fewer bits than the left-hand side. Assignment to a register does not
sign-extend. Registers are unsigned; if you assign a register to an
integer, real, or time variable, the variable will not sign-extend.

The Verilog HDL contains two types of procedural assignment
statements:

• blocking procedural assignment statements

• non-blocking procedural assignment statements

Blocking and non-blocking procedural assignment statements specify
different procedural flow in sequential blocks.

8-4 June 1993

Behavioral Modeling
Procedural Assignments

8.2.1
Blocking Procedural Assignments

A blocking procedural assignment statement must be executed before
the execution of the statements that follow it in a sequential block
(see Section 8.7.1). A blocking procedural assignment statement does
not prevent the execution of statements that follow it in a parallel block
(see Section 8.7.2).

Syntax:

The syntax for a blocking procedural assignment is as follows:

<lvalue> = <timing_control> <expression>

Where lvalue is a data type that is valid for a procedural assignment
statement, = is the assignment operator, and timing_control is the
optional intra-assignment delay. The timing_control delay can be
either a delay control (for example, #6) or an event control (for example,
@(posedge clk)). The expression is the right-hand side value the
simulator assigns to the left-hand side.

The = assignment operator used by blocking procedural assignments is
also used by procedural continuous assignments and continuous
assignments.

Example 8-2 shows examples of blocking procedural assignments.

Example 8-2: Examples of blocking procedural assignments

8.2.2
The Non-Blocking Procedural Assignment

The non-blocking procedural assignment allows you to schedule
assignments without blocking the procedural flow. You can use the
non-blocking procedural statement whenever you want to make several
register assignments within the same time step without regard to order
or dependance upon each other.

rega = 0;
rega[3] = 1; // a bit-select
rega[3:5] = 7; // a part-select
mema[address] = 8’hff; // assignment to a memory

// element
{carry, acc} = rega + regb; // a concatenation

June 1993 8-5

Behavioral Modeling
Procedural Assignments

Syntax:

The syntax for a non-blocking procedural assignment is as follows:

<lvalue> <= <timing_control> <expression>

Where lvalue is a data type that is valid for a procedural assignment
statement, <= is the non-blocking assignment operator, and
timing_control is the optional intra-assignment timing control. The
timing_control delay can be either a delay control (for example, #6) or
an event control (for example, @(posedge clk)). The expression is the
right-hand side value the simulator assigns to the left-hand side.

The non-blocking assignment operator is the same operator the
simulator uses for the less-than-or-equal relational operator. The
simulator interprets the <= operator to be a relational operator when you
use it in an expression, and interprets the <= operator to be an
assignment operator when you use it in a non-blocking procedural
assignment construct.

How the simulator evaluates non-blocking procedural
assignments
When the simulator encounters a non-blocking procedural assignment,
the simulator evaluates and executes the non-blocking procedural
assignment in two steps as follows:

1. The simulator evaluates the right-hand side and schedules the
assignment of the new value to take place at a time specified by a
procedural timing control.

2. At the end of the time step, in which the given delay has expired or
the appropriate event has taken place, the simulator executes the
assignment by assigning the value to the left-hand side.

8-6 June 1993

Behavioral Modeling
Procedural Assignments

These two steps are shown in Example 8-3.

Example 8-3: How the simulator evaluates non-blocking procedural assignments

At the end of the time step means that the non-blocking assignments are
the last assignments executed in a time step—with one exception.
Non-blocking assignment events can create blocking assignment events.
The simulator processes these blocking assignment events after the
scheduled non-blocking events.

module evaluates2(out);

output out;
reg a, b, c;

initial
begin
a = 0;
b = 1;
c = 0;
end

always c = #5 ~c;

always @(posedge c)
begin
a <= b;
b <= a;
end

endmodule

The simulator
evaluates the
right-hand side of
the non-blocking
assignments and
schedules the
assignments of the
new values at
posedge c.

Step 1:

a = 0

b = 1

Step 2:

At posedge c, the
simulator updates
the left-hand side of
each non-blocking
assignment
statement.

non-blocking
assignment
scheduled
changes at

time 5

a = 1

b = 0

assignment
values are:

evaluates, schedules, and
executes in two steps

June 1993 8-7

Behavioral Modeling
Procedural Assignments

Unlike a regular event or delay control, the non-blocking assignment
does not block the procedural flow. The non-blocking assignment
evaluates and schedules the assignment, but does not block the
execution of subsequent statements in a begin-end block, as shown in
Example 8-4.

Example 8-4: Non-blocking assignments do not block execution of sequential statements

//non_block1.v
module non_block1(out,);
//input
output out;
reg a, b, c, d, e, f;

//blocking assignments
initial begin

a = #10 1;
b = #2 0;
c = #4 1;
end

//non-blocking assignments
initial begin
d <= #10 1;
e <= #2 0;
f <= #4 1;
end

initial begin
$monitor ($time, ,”a = %b b = %b c = %b
d = %b e = %b f = %b”, a,b, c, d,e, f);

#100 $finish;
end

endmodule

The simulator assigns 1 to
register a at simulation time 10,

assigns 0 to register b at
simulation time 12, and assigns

1 to register c at
simulation time 16.

scheduled
changes at

time 2

e = 0

f = 1

d = 1

non-blocking
assignment lists

scheduled
changes at

time 4

scheduled
changes at

time 10

The simulator assigns 1 to register
d at simulation time 10, assigns 0
to register e at simulation time 2,

and assigns 1 to register f at
simulation time 4.

8-8 June 1993

Behavioral Modeling
Procedural Assignments

Please note: As shown in Example 8-5, the simulator evaluates and
schedules assignments for the end of the current time step and can
perform swapping operations with non-blocking procedural
assignments.

Example 8-5: Non-blocking procedural assignments used for swapping operations

//non_block1.v
module non_block1(out,);
//input
output out;
reg a, b;
initial begin

a = 0;
b = 1;
a <= b;
b <= a;

end
initial begin

$monitor ($time, ,”a = %b b = %b”, a,b);
#100 $finish;

end
endmodule

The simulator
evaluates the
right-hand side of
the non-blocking
assignments and
schedules the
assignments for the
end of the current
time step.

Step 1:

Step 2:
At the end of the
current time step,
the simulator
updates the
left-hand side of
each non-blocking
assignment
statement.

a = 1

b = 0

assignment
values are:

evaluates, schedules, and
executes in two steps

June 1993 8-9

Behavioral Modeling
Procedural Assignments

When you schedule multiple non-blocking assignments to occur in the
same register in a particular time slot, the simulator cannot guarantee
the order in which it processes the assignments—the final value of the
register is indeterminate. As shown in Example 8-6, the value of register
a is not known until the end of time step 4.

Example 8-6: Multiple non-blocking assignments made in a single time step

If the simulator executes two procedural blocks concurrently, and these
procedural blocks contain non-blocking assignment operators, the final
value of the register is indeterminate. For example, in Example 8-7 the
value of register a is indeterminate.

Example 8-7: Processing two procedural assignments concurrently

module multiple2(out);
output out;
reg a;

initial
begin

a <= #4 0;
a <= #4 1;

end
endmodule

The register’s assigned value is
indeterminate.

a = 0 a = 1

non-blocking
assignment

current time list

a =???

assigned
value is:

module multiple3(out);
output out;
reg a;

initial a <= #4 0;
initial a <= #4 1;
endmodule

a = 0 a = 1

non-blocking
assignment

current time list

a =???

assigned
value is:

The register’s assigned value is
indeterminate.

8-10 June 1993

Behavioral Modeling
Procedural Assignments

When multiple non-blocking assignments with timing controls are made
to the same register, the assignments can be made without cancelling
previous non-blocking assignments. In Example 8-8, the simulator
evaluates the value of i[0] to r1 and schedules the assignments to
occur after each time delay.

Example 8-8: Multiple non-blocking assignments with timing controls

r1 = 0

r1 = 0

r1 = 1

r1 = 0

r1 = 1

r1 = 1

module multiple;
reg r1;
reg [2:0] i;

initial
begin

// starts at time 0 doesn’t hold the block
for (i = 0; i <= 5; i = i+1)
r1 <= # (i*10) i[0];

end
endmodule

scheduled changes at
time 50

scheduled changes at
time 40

scheduled changes at
time 30

scheduled changes at
time 20

scheduled changes at
time10

scheduled changes at
time0

r1

10 20 30 40 500

Make the assignments to r1 without
cancelling previous non-blocking

assignments.

June 1993 8-11

Behavioral Modeling
Conditional Statement

8.2.3
How the Simulator Processes Blocking and Non-Blocking
Procedural Assignments

For each time slot during simulation, blocking and non-blocking
procedural assignments are processed in the following way:

1. Evaluate the right-hand side of all assignment statements in the
current time slot.

2. Execute all blocking procedural assignments and non-blocking
procedural assignments that have no timing controls. At the same
time, non-blocking procedural assignments with timing controls
are set aside for processing.

3. Check for procedures that have timing controls and execute if
timing control is set for the current time unit.

4. Advance the simulation clock.

8.3
Conditional Statement

The conditional statement (or if-else statement) is used to make a
decision as to whether a statement is executed or not. Formally, the
syntax is as follows:

Syntax 8-1: Syntax of if statement

The <expression> is evaluated; if it is true (that is, has a non-zero known
value), the first statement executes. If it is false (has a zero value or the
value is x or z), the first statement does not execute. If there is an else
statement and <expression> is false, the else statement executes.

<statement>
::= if (<expression>) <statement_or_null>
||= if (<expression>) <statement_or_null>

else <statement_or_null>
<statement_or_null>

::= <statement>
||= ;

8-12 June 1993

Behavioral Modeling
Conditional Statement

Since the numeric value of the if expression is tested for being zero,
certain shortcuts are possible. For example, the following two
statements express the same logic:

if (expression)

if (expression != 0)

Because the else part of an if-else is optional, there can be confusion
when an else is omitted from a nested if sequence. This is resolved by
always associating the else with the closest previous if that lacks an
else. In Example 8-9, the else goes with the inner if, as we have
shown by indentation.

Example 8-9: Association of else in nested if

If that association is not what you want, use a begin-end block statement
to force the proper association, as shown in Example 8-10.

Example 8-10: Forcing correct association of else with if

if (index > 0)
if (rega > regb)

result = rega;
else // else applies to preceding if

result = regb;

if (index > 0)
begin

if (rega > regb)
result = rega;

end
else

result = regb;

June 1993 8-13

Behavioral Modeling
Conditional Statement

Begin-end blocks left out inadvertently can change the logic behavior
being expressed, as shown in Example 8-11.

Example 8-11: Erroneous association of else with if

The indentation in Example 8-11 shows unequivocally what you want,
but the compiler does not get the message and associates the else with
the inner if. This kind of bug can be very hard to find. (One way to find
this kind of bug is to use the $list system task, which indents
according to the logic of the description).

Notice that in Example 8-12, there is a semicolon after result = rega.
This is because a <statement> follows the if, and a semicolon is an
essential part of the syntax of a <statement>.

Example 8-12: Use of semicolon in if statement

if (index > 0)
for (scani = 0; scani < index; scani = scani + 1)

if (memory[scani] > 0)
begin

$display(”...”);
memory[scani] = 0;

end
else /* WRONG */

$display(”error - index is zero”);

if (rega > regb)
result = rega;

else
result = regb;

8-14 June 1993

Behavioral Modeling
Conditional Statement

8.3.1
if-else-if Construct

The following construction occurs so often that it is worth a brief
separate discussion.

Syntax 8-2: Syntax of if-else-if construct

This sequence of if’s (known as an if-else-if construct) is the most
general way of writing a multi-way decision. The expressions are
evaluated in order; if any expression is true, the statement associated
with it is executed, and this terminates the whole chain. Each statement
is either a single statement or a block of statements.

The last else part of the if-else-if construct handles the ‘none of the
above’ or default case where none of the other conditions was satisfied.
Sometimes there is no explicit action for the default; in that case, the
trailing else can be omitted or it can be used for error checking to catch
an impossible condition.

if (<expression>)
<statement>

else if (<expression>)
<statement>

else if (<expression>)
<statement>

else
<statement>

June 1993 8-15

Behavioral Modeling
Conditional Statement

8.3.2
Example

The module fragment of Example 8-13 uses the if-else statement to
test the variable index to decide whether one of three modify_segn
registers must be added to the memory address, and which increment is
to be added to the index register. The first ten lines declare the registers
and parameters.

Example 8-13: Use of if-else-if construct

// Declare registers and parameters
reg [31:0] instruction, segment_area[255:0];
reg [7:0] index;
reg [5:0] modify_seg1,

modify_seg2,
modify_seg3;

parameter
segment1 = 0, inc_seg1 = 1,
segment2 = 20, inc_seg2 = 2,
segment3 = 64, inc_seg3 = 4,
data = 128;

// Test the index variable
if (index < segment2)

begin
instruction = segment_area [index + modify_seg1];
index = index + inc_seg1;

end
else if (index < segment3)

begin
instruction = segment_area [index + modify_seg2];
index = index + inc_seg2;

end
else if (index < data)

begin
instruction = segment_area [index + modify_seg3];
index = index + inc_seg3;

end
else

instruction = segment_area [index];

8-16 June 1993

Behavioral Modeling
Case Statement

8.4
Case Statement

The case statement is a special multi-way decision statement that tests
whether an expression matches one of a number of other expressions,
and branches accordingly. The case statement is useful for describing,
for example, the decoding of a microprocessor instruction. The case
statement has the following syntax:

Syntax 8-3: Syntax for case statement

The default statement is optional. Use of multiple default statements in
one case statement is illegal syntax.

<statement>
::= case (<expression>) <case_item>+ endcase
||= casez (<expression>) <case_item>+ endcase
||= casex (<expression>) <case_item>+ endcase

<case_item>
::= <expression> <,<expression>>* : <statement_or_null>
||= default : <statement_or_null>
||= default <statement_or_null>

June 1993 8-17

Behavioral Modeling
Case Statement

A simple example of the use of the case statement is the decoding of
register rega to produce a value for result, as follows:

Example 8-14: Use of the case statement

The case expressions are evaluated and compared in the exact order in
which they are given. During the linear search, if one of the case item
expressions matches the expression in parentheses, then the statement
associated with that case item is executed. If all comparisons fail, and
the default item is given, then the default item statement is executed. If
the default statement is not given, and all of the comparisons fail, then
none of the case item statements is executed.

Apart from syntax, the case statement differs from the multi-way
if-else-if construct in two important ways:

1. The conditional expressions in the if-else-if construct are more
general than comparing one expression with several others, as in
the case statement.

2. The case statement provides a definitive result when there are x
and z values in an expression.

In a case comparison, the comparison only succeeds when each bit
matches exactly with respect to the values 0, 1, x, and z. As a
consequence, care is needed in specifying the expressions in the case
statement. The bit length of all the expressions must be equal so that
exact bit-wise matching can be performed. The length of all the case item
expressions, as well as the controlling expression in the parentheses,
will be made equal to the length of the longest <case_item> expression.

reg [15:0] rega;
reg [9:0] result;

•
•
•

case (rega)
16’d0: result = 10’b0111111111;
16’d1: result = 10’b1011111111;
16’d2: result = 10’b1101111111;
16’d3: result = 10’b1110111111;
16’d4: result = 10’b1111011111;
16’d5: result = 10’b1111101111;
16’d6: result = 10’b1111110111;
16’d7: result = 10’b1111111011;
16’d8: result = 10’b1111111101;
16’d9: result = 10’b1111111110;
default result = ’bx;

endcase

8-18 June 1993

Behavioral Modeling
Case Statement

The most common mistake made here is to specify ′bx or ′bz instead of
n’bx or n’bz, where n is the bit length of the expression in parentheses.
The default length of x and z is the word size of the host machine,
usually 32 bits.

The reason for providing a case comparison that handles the x and z
values is that it provides a mechanism for detecting such values and
reducing the pessimism that can be generated by their presence.
Example 8-15 illustrates the use of a case statement to properly handle
x and z values.

Example 8-15: Detecting x and z values with the case statement

Example 8-15 contains a robust case statement used to trap x and z
values. Notice that if select[1] is 0 and flaga is 0, then no matter
what the value of select[2] is, the result is set to 0. The first, second,
and third case items cause this assignment.

Example 8-16 shows another way to use a case statement to detect x
and z values.

Example 8-16: Another example of detecting x and z with case

case (select[1:2])
2’b00: result = 0;
2’b01: result = flaga;
2’b0x,
2’b0z: result = flaga ? ’bx : 0;
2’b10: result = flagb;
2’bx0,
2’bz0: result = flagb ? ’bx : 0;
default: result = ’bx;

endcase

case(sig)
1’bz:

$display(”signal is floating”);
1’bx:

$display(”signal is unknown”);
default:

$display(”signal is %b”, sig);
endcase

June 1993 8-19

Behavioral Modeling
Case Statement

8.4.1
Case Statement with Don’t-Cares

Two other types of case statements are provided to allow handling of
don’t-care conditions in the case comparisons. One of these treats
high-impedance values (z) as don’t-cares, and the other treats both
high-impedance and unknown (x) values as don’t-cares.

These case statements are used in the same way as the traditional case
statement, but they begin with new keywords—casez and casex,
respectively.

Don’t-care values (z values for casez, z and x values for casex), in any
bit of either the case expression or the case items, are treated as
don’t-care conditions during the comparison, and that bit position is not
considered.

Note that allowing don’t-cares in the case items means that you can
dynamically control which bits of the case expression are compared
during simulation.

The syntax of literal numbers allows the use of the question mark (?) in
place of z in these case statements. This provides a convenient format
for specification of don’t-care bits in case statements.

Example 8-17 is an example of the casez statement. It demonstrates an
instruction decode, where values of the most significant bits select which
task should be called. If the most significant bit of ir is a 1, then the
task instruction1 is called, regardless of the values of the other bits
of ir.

Example 8-17: Using the casez statement

Example 8-18 is an example of the casex statement. It demonstrates an
extreme case of how don’t-care conditions can be dynamically controlled
during simulation. In this case, if r = 8′b01100110 , then the task
stat2 is called.

reg [7:0] ir;

•
•
•

casez (ir)
8’b1???????: instruction1(ir);
8’b01??????: instruction2(ir);
8’b00010???: instruction3(ir);
8’b000001??: instruction4(ir);

endcase

8-20 June 1993

Behavioral Modeling
Looping Statements

Example 8-18: Using the casex statement

8.5
Looping Statements

There are four types of looping statements. They provide a means of
controlling the execution of a statement zero, one, or more times.

• forever continuously executes a statement.

• repeat executes a statement a fixed number of times.

• while executes a statement until an expression becomes false. If
the expression starts out false, the statement is not executed at
all.

• for controls execution of its associated statement(s) by a
three-step process, as follows:

1. executes an assignment normally used to initialize a
variable that controls the number of loops executed

2. evaluates an expression—if the result is zero, the for
loop exits, and if it is not zero, the for loop executes
its associated statement(s) and then performs step 3

3. executes an assignment normally used to modify the
value of the loop-control variable, then repeats step 2

reg [7:0] r, mask;

•
•
•

mask = 8’bx0x0x0x0;
casex (r ^ mask)

8’b001100xx: stat1;
8’b1100xx00: stat2;
8’b00xx0011: stat3;
8’bxx001100: stat4;

endcase

June 1993 8-21

Behavioral Modeling
Looping Statements

The following are the syntax rules for the looping statements:

Syntax 8-4: Syntax for the looping statements

The rest of this section presents examples for three of the looping
statements.

8.5.1
forever Loop

The forever loop should only be used in conjunction with the timing
controls or the disable statement; therefore, this example is presented in
Section 8.6.3.

<statement>
::= forever <statement>
||=forever

begin
<statement>+

end
<statement>

::= repeat (<expression>) <statement>
||=repeat (<expression>)

begin
<statement>+

end
<statement>

::= while (<expression>) <statement>
||=while (<expression>)

begin
<statement>+

end
<statement>

::= for (<assignment> ; <expression> ; <assignment>)
<statement>

||=for (<assignment> ; <expression> ; <assignment>)
begin

<statement>+
end

8-22 June 1993

Behavioral Modeling
Looping Statements

8.5.2
repeat Loop Example

In the following example of a repeat loop, add and shift operators
implement a multiplier.

Example 8-19: Use of the repeat loop to implement a multiplier

parameter size = 8, longsize = 16;
reg [size:1] opa, opb;
reg [longsize:1] result;
begin :mult

reg [longsize:1] shift_opa, shift_opb;

shift_opa = opa;
shift_opb = opb;
result = 0;

repeat (size)
begin

if (shift_opb[1])
result = result + shift_opa;

shift_opa = shift_opa << 1;
shift_opb = shift_opb >> 1;

end
end

June 1993 8-23

Behavioral Modeling
Looping Statements

8.5.3
while Loop Example

An example of the while loop follows. It counts up the number of logic
1 values in rega.

Example 8-20: Use of the while loop to count logic values

8.5.4
for Loop Examples

The for loop construct accomplishes the same results as the following
pseudocode that is based on the while loop:

Example 8-21: Pseudocode equivalent of a for loop

The for loop implements the logic in the preceding 8 lines while using
only two lines, as shown in the pseudocode in Example 8-22.

begin :count1s
reg [7:0] tempreg;
count = 0;
tempreg = rega;
while(tempreg)

begin
if (tempreg[0]) count = count + 1;
tempreg = tempreg >> 1;

end
end

begin
initial_assignment;
while (condition)
begin

statement
step_assignment;

end
end

8-24 June 1993

Behavioral Modeling
Looping Statements

Example 8-22: Pseudocode for a for loop

Example 8-23 uses a for loop to initialize a memory.

Example 8-23: Use of the for loop to initialize a memory

Here is another example of a for loop statement. It is the same
multiplier that was described in Example 8-19 using the repeat loop.

Example 8-24: Use of the for loop to implement a multiplier

Note that the for loop statement can be more general than the normal
arithmetic progression of an index variable, as in Example 8-25. This is
another way of counting the number of logic 1 values in rega (see
Example 8-20).

for (initial_assignment; condition; step_assignment)
statement

begin :init_mem
reg [7:0] tempi;
for (tempi = 0; tempi < memsize; tempi = tempi + 1)

memory[tempi] = 0;
end

parameter size = 8, longsize = 16;
reg [size:1] opa, opb;
reg [longsize:1] result;

begin :mult
integer bindex;
result = 0;
for (bindex = 1; bindex <= size; bindex = bindex + 1)

if (opb[bindex])
result = result + (opa << (bindex - 1));

end

June 1993 8-25

Behavioral Modeling
Procedural Timing Controls

Example 8-25: Use of the for loop to count logic values

8.6
Procedural Timing Controls

The Verilog language provides two types of explicit timing control over
when in simulation time procedural statements are to occur. The first
type is a delay control in which an expression specifies the time duration
between initially encountering the statement and when the statement
actually executes. The delay expression can be a dynamic function of the
state of the circuit, but is usually a simple number that separates
statement executions in time. The delay control is an important feature
when specifying stimulus waveform descriptions. It is described in
Sections 8.6.1, 8.6.2, and 8.6.7.

The second type of timing control is the event expression, which allows
statement execution to wait for the occurrence of some simulation event
occurring in a procedure executing concurrently with this procedure. A
simulation event can be a change of value on a net or register (an implicit
event), or the occurrence of an explicitly named event that is triggered
from other procedures (an explicit event). Most often, an event control is
a positive or negative edge on a clock signal. Sections 8.6.3 through
8.6.7 discuss event control.

In Verilog, actions are scheduled in the future through the use of delay
controls. A general principle of the Verilog language is that “where you
do not see a timing control, simulation time does not advance”—if you
specify no timing delays, the simulation completes at time zero. To
schedule activity for the future, use one of the following methods of
timing control:

• a delay control, which is introduced by the number symbol (#)

• an event control, which is introduced by the at symbol (@)

• the wait statement, which operates like a combination of the
event control and the while loop

The next sections discuss these three methods.

begin :count1s
reg [7:0] tempreg;
count = 0;
for (tempreg = rega; tempreg; tempreg = tempreg >

> 1)
if (tempreg[0]) count = count + 1;

end

8-26 June 1993

Behavioral Modeling
Procedural Timing Controls

8.6.1
Delay Control

The execution of a procedural statement can be delay-controlled by
using the following syntax:

Syntax 8-5: Syntax for delay_control

The following example delays the execution of the assignment by 10 time
units:

#10 rega = regb;

The next three examples provide an expression following the number
sign (#). Execution of the assignment delays by the amount of simulation
time specified by the value of the expression.

#d rega = regb; // d is defined as a parameter

#((d+e)/2) rega = regb;// delay is the average of d and e

#regr regr = regr + 1; // delay is the value in regr

8.6.2
Zero-Delay control

A special case of the delay control is the zero-delay control, as in the
following example:

forever
#0 a = ~a;

<statement>
::= <delay_control> <statement_or_null>

<delay_control>
::= # <NUMBER>
||= # <identifier>
||= # (<mintypmax_expression>)

June 1993 8-27

Behavioral Modeling
Procedural Timing Controls

This type of delay control has the effect of moving the assignment
statement to the end of the list of statements to be evaluated at the
current simulation time unit. Note that if there are several such delay
controls encountered at the same simulation time, the order of
evaluation of the statements which they control cannot be predicted.

8.6.3
Event Control

The execution of a procedural statement can be synchronized with a
value change on a net or register, or the occurrence of a declared event,
by using the following event control syntax:

Syntax 8-6: Syntax for event_control

Value changes on nets and registers can be used as events to trigger the
execution of a statement. This is known as detecting an implicit event.
See item 1 in Example 8-26 for a syntax example of a wait for an implicit
event. Verilog syntax also allows you to detect change based on the
direction of the change—that is, toward the value 1 (posedge) or toward
the value 0 (negedge). The behavior of posedge and negedge for
unknown expression values is as follows:

• a negedge is detected on the transition from 1 to unknown and
from unknown to 0

• a posedge is detected on the transition from 0 to unknown and
from unknown to 1

<statement>
::= <event_control> <statement_or_null>

<event_control>
::= @ <identifier>
||= @ (<event_expression>)

<event_expression>
::= <expression>
||= posedge <SCALAR_EVENT_EXPRESSION>
||= negedge <SCALAR_EVENT_EXPRESSION>
||= <event_expression> <or <event_expression>>*

<SCALAR_EVENT_EXPRESSION> is an expression that resolves
to a one bit value.

8-28 June 1993

Behavioral Modeling
Procedural Timing Controls

Items 2 and 3 in Example 8-26 show illustrations of edge-controlled
statements.

Example 8-26: Event controlled statements

8.6.4
Named Events

Verilog also provides syntax to name an event and then to trigger the
occurrence of that event. A model can then use an event expression to
wait for the triggering of this explicit event. Named events can be made
to occur from a procedure. This allows control over the enabling of
multiple actions in other procedures. Named events and event control
give a powerful and efficient means of describing the communication
between, and synchronization of, two or more concurrently active
processes. A basic example of this is a small waveform clock generator
that synchronizes control of a synchronous circuit by signalling the
occurrence of an explicit event periodically while the circuit waits for the
event to occur.

An event name must be declared explicitly before it is used. The following
is the syntax for declaring events.

Syntax 8-7: Syntax for event_declaration

@r rega = regb; // controlled by any value changes
// in the register r

@(posedge clock) rega = regb; // controlled by positive
// edge on clock

forever @(negedge clock) rega = regb; // controlled by
// negative edge

 ➊

➋

➌

<event_declaration>
::= event <name_of_event> <,<name_of_event>>* ;

<name_of_event>
::= <IDENTIFIER> - the name of an explicit event

June 1993 8-29

Behavioral Modeling
Procedural Timing Controls

Note that an event does not hold any data. The following are the
characteristics of a Verilog event:

• it can be made to occur at any particular time

• it has no time duration

• its occurrence can be recognized by using the <event_control>
syntax described in Section 8.6.3

The power of the explicit event is that it can represent any general
happening. For example, it can represent a positive edge of a clock
signal, or it can represent a microprocessor transferring data down a
serial communications channel. A declared event is made to occur by the
activation of an event-triggering statement of the following syntax:

-> <name_of_event> ;

An event-controlled statement (for example, @trig rega = regb;)
causes simulation of its containing procedure to wait until some other
procedure executes the appropriate event-triggering statement (for
example, ->trig;).

8.6.5
Event OR Construct

The ORing of any number of events can be expressed such that the
occurrence of any one will trigger the execution of the statement. The
next two examples show the ORing of two and three events respectively.

@(trig or enable) rega = regb;// controlled by trig or enable

@(posedge clock_a or posedge clock_b or trig) rega = regb;

8.6.6
Level-Sensitive Event Control

The execution of a statement can also be delayed until a condition
becomes true. This is accomplished using the wait statement, which is
a special form of event control. The nature of the wait statement is
level-sensitive, as opposed to basic event control (specified by the @
character), which is edge-sensitive. The wait statement checks a

8-30 June 1993

Behavioral Modeling
Procedural Timing Controls

condition, and, if it is false, causes the procedure to pause until that
condition becomes true before continuing. The wait statement has the
following form:

wait(condition_expression) statement

Example 8-27 shows the use of the wait statement to accomplish
level-sensitive event control.

Example 8-27: Use of wait statement

If the value of enable is one when the block is entered, the wait
statement delays the evaluation of the next statement (#10 a = b;) until
the value of enable changes to zero. If enable is already zero when the
begin-end block is entered, then the next statement is evaluated
immediately and no delay occurs.

8.6.7
Intra-Assignment Timing Controls

The delay and event control constructs previously described precede a
statement and delay its execution. The intra-assignment delay and event
controls are contained within an assignment statement and modify the
flow of activity in a slightly different way.

Encountering an intra-assignment delay or event control delays the
assignment just as a regular delay or event control does, but the
right-hand side expression is evaluated before the delay, instead of after
the delay. This allows data swap and data shift operations to be
described without the need for temporary variables. This section
describes the purpose of intra-assignment timing controls and the
repeat timing control that can be used in intra-assignment delays.

begin
wait(!enable) #10 a = b;
#10 c = d;

end

June 1993 8-31

Behavioral Modeling
Procedural Timing Controls

Figure 8-1 illustrates the philosophy of intra-assignment timing controls
by showing the code that could accomplish the same timing effect
without using intra-assignment.

Figure 8-1: Equivalents to intra-assignment timing controls

The next three examples use the fork-join behavioral construct. All
statements between the keywords fork and join execute concurrently.
Section 8.7.2 describes this construct in more detail.

The following example shows a race condition that could be prevented by
using intra-assignment timing control:

fork
#5 a = b;
#5 b = a;

join

Intra-assignment timing control

a = #5 b;
begin

temp = b;
#5 a = temp;

end

a = @(posedge clk) b;
begin

temp = b;
@(posedge clk) a = temp;

end

a = repeat(3)@(posedge clk) b;

begin
temp = b;
@(posedge clk;
@(posedge clk;
@(posedge clk) a = temp;

end

with intra-assignment construct without intra-assignment construct

8-32 June 1993

Behavioral Modeling
Procedural Timing Controls

The code in the previous example samples the values of both a and b at
the same simulation time, thereby creating a race condition. The
intra-assignment form of timing control used in the following example
prevents this race condition:

fork // data swap
a = #5 b;
b = #5 a;

join

Intra-assignment timing control works because the intra-assignment
delay causes the values of a and b to be evaluated before the delay, and
the assignments to be made after the delay. Verilog-XL and other tools
that implement intra-assignment timing control use temporary storage
in evaluating each expression on the right-hand side.

Intra-assignment waiting for events is also effective. In the example
below, the right-hand-side expressions are evaluated when the
assignment statements are encountered, but the assignments are
delayed until the rising edge of the clock signal.

fork // data shift
a = @(posedge clk) b;
b = @(posedge clk) c;

join

The repeat event control
The repeat event control specifies an intra-assignment delay of a
specified number of occurrences of an event. This construct is
convenient when events must be synchronized with counts of clock
signals.

June 1993 8-33

Behavioral Modeling
Procedural Timing Controls

Syntax 8-8 presents the repeat event control syntax:

Syntax 8-8: Syntax of the repeat event control

The event expression must resolve to a one bit value. A scalar event
expression is an expression which resolves to a one bit value.

The following is an example of a repeat event control as the
intra-assignment delay of a non-blocking assignment:

a<=repeat(5)@(posedge clk)data;

<repeat_event _controlled_assignment>
::=<lvalue> = <repeat_event_control><expression>;
||=<lvalue> <= <repeat_event_control><expression>;

<repeat_event_control>
::=repeat(<expression>)@(<identifier>)
||=repeat(<expression>)@(<event_expression>)

<event_expression>
::=<expression>
||=posedge<SCALAR_EVENT_EXPRESSION>
||=negedge<SCALAR_EVENT_EXPRESSION>
||=<event_expression>or<event_expression>

8-34 June 1993

Behavioral Modeling
Procedural Timing Controls

Figure 8-2 illustrates the activities that result from this repeat event
control:

Figure 8-2: Repeat event control utilizing a clock edge

In this example, the value of data is evaluated when the assignment is
encountered. After five occurrences of posedge clk, a is assigned the
previously evaluated value of data.

The following is an example of a repeat event control as the
intra-assignment delay of a procedural assignment:

a = repeat(num)@(clk)data;

In this example, the value of data is evaluated when the assignment is
encountered. After the number of transitions of clk equals the value of
num, a is assigned the previously evaluated value of data.

The following is an example of a repeat event control with expressions
containing operations to specify both the number of event occurrences
and the event that is counted:

a <= repeat(a+b)@(posedge phi1 or negedge phi2)data;

In the example above, the value of data is evaluated when the
assignment is encountered. After the positive edges of phi1, the negative
edges of phi2, or the combination of these two events occurs a total of
(a+b) times, a is assigned the previously evaluated value of data.

clk

data

a

data is evaluated

June 1993 8-35

Behavioral Modeling
Block Statements

8.7
Block Statements

The block statements are a means of grouping two or more statements
together so that they act syntactically like a single statement. We have
already introduced and used the sequential block statement which is
delimited by the keywords begin and end. Section 8.7.1 discusses
sequential blocks in more detail.

A second type of block, delimited by the keywords fork and join, is
used for executing statements in parallel. A fork-join block is known
as a parallel block, and enables procedures to execute concurrently
through time. Section 8.7.2 discusses parallel blocks.

8.7.1
Sequential Blocks

A sequential block has the following characteristics:

• statements execute in sequence, one after another

• delay values for each statement are relative to the simulation time
of the execution of the previous statement

• control passes out of the block after the last statement executes

The following is the formal syntax for a sequential block:

Syntax 8-9: Syntax for the sequential block

<seq_block>
::= begin <statement>* end
||= begin : <name_of_block>

<block_declaration>*
<statement>*

end
<name_of_block>

::= <IDENTIFIER>
<block_declaration>

::= <parameter_declaration>
||= <reg_declaration>
||= <integer_declaration>
||= <real_declaration>
||= <time_declaration>
||= <event_declaration>

8-36 June 1993

Behavioral Modeling
Block Statements

A sequential block enables the following two assignments to have a
deterministic result:

begin
areg = breg;
creg = areg; // creg becomes the value of breg

end

Here the first assignment is performed and areg is updated before
control passes to the second assignment.

Delay control can be used in a sequential block to separate the two
assignments in time.

begin
areg = breg;
#10 creg = areg; // this gives a delay of 10 time

end // units between assignments

Example 8-28 shows how the combination of the sequential block and
delay control can be used to specify a time-sequenced waveform.

Example 8-28: A waveform controlled by sequential delay

parameter d = 50; // d declared as a parameter
reg [7:0] r; // and r declared as an 8-bit register

begin // a waveform controlled by sequential
// delay

#d r = ’h35;
#d r = ’hE2;
#d r = ’h00;
#d r = ’hF7;
#d -> end_wave;// trigger the event called end_wave

end

June 1993 8-37

Behavioral Modeling
Block Statements

Example 8-29 shows three examples of sequential blocks.

Example 8-29: Three examples of sequential blocks

8.7.2
Parallel Blocks

A parallel block has the following characteristics:

• statements execute concurrently

• delay values for each statement are relative to the simulation time
when control enters the block

• delay control is used to provide time-ordering for assignments

• control passes out of the block when the last time-ordered
statement executes or a disable statement executes

begin
@trig r = 1;
#250 r = 0; // a 250 delay monostable

end

begin
@(posedge clock) q = 0;
@(posedge clock) q = 1;

end

begin // a waveform synchronized by the event c
@c r = ’h35;
@c r = ’hE2;
@c r = ’h00;
@c r = ’hF7;
@c -> end_wave;

end

➊

➋

➌

8-38 June 1993

Behavioral Modeling
Block Statements

Syntax 8-10 gives the formal syntax for a parallel block.

Syntax 8-10: Syntax for the parallel block

Example 8-30 codes the waveform description shown in Example 8-28
by using a parallel block instead of a sequential block. The waveform
produced on the register is exactly the same for both implementations.

Example 8-30: Use of the fork-join construct

<par_block>
::= fork <statement>* join
||= fork : <name_of_block>

<block_declaration>*
<statement>*

join

<name_of_block>
::= <IDENTIFIER>

<block_declaration>
::= <parameter_declaration>
||= <reg_declaration>
||= <integer_declaration>
||= <real_declaration>
||= <time_declaration>
||= <event_declaration>

fork

#50 r = ’h35;
#100 r = ’hE2;
#150 r = ’h00;
#200 r = ’hF7;
#250 -> end_wave;

join

June 1993 8-39

Behavioral Modeling
Block Statements

8.7.3
Block Names

Note that blocks can be named by adding: name_of_block after the
keywords begin or fork. The naming of blocks serves several purposes:

• It allows local variables to be declared for the block.

• It allows the block to be referenced in statements like the disable
statement (as discussed in Chapter 10,Disabling of Named Blocks
and Tasks).

• In the Verilog language, all variables are static—that is, a unique
location exists for all variables and leaving or entering blocks does
not affect the values stored in them.

Thus, block names give a means of uniquely identifying all variables at
any simulation time. This is very important for debugging purposes,
where it is necessary to be able to reference a local variable inside a
block from outside the body of the block.

8.7.4
Start and Finish Times

Both forms of blocks have the notion of a start and finish time. For
sequential blocks, the start time is when the first statement is executed,
and the finish time is when the last statement has finished. For parallel
blocks, the start time is the same for all the statements, and the finish
time is when the last time-ordered statement has finished executing.
When blocks are embedded within each other, the timing of when a block
starts and finishes is important. Execution does not continue to the
statement following a block until the block’s finish time has been
reached—that is, until the block has completely finished executing.

Moreover, the timing controls in a fork-join block do not have to be
given sequentially in time. Example 8-31 shows the statements from
Example 8-30 written in the reverse order and still producing the same
waveform.

Example 8-31: Timing controls in a parallel block

fork
#250 -> end_wave;
#200 r = ’hF7;
#150 r = ’h00;
#100 r = ’hE2;
#50 r = ’h35;

join

8-40 June 1993

Behavioral Modeling
Block Statements

Sequential and parallel blocks can be embedded within each other
allowing complex control structures to be expressed easily and with a
high degree of structure.

One simple example of this is when an assignment is to be made after
two separate events have occurred. This is known as the ‘joining’ of
events.

Example 8-32: The joining of events

Note that the two events can occur in any order (or even at the same
time), the fork-join block will complete, and the assignment will be
made. In contrast to this, if the fork-join block was a begin-end block
and the Bevent occurred before the Aevent, then the block would be
deadlocked waiting for the Bevent.

Example 8-33 shows two sequential blocks, each of which will execute
when its controlling event occurs. Because the wait statements are
within a fork-join block, they execute in parallel and the sequential
blocks can therefore also execute in parallel.

begin
fork

@Aevent;
@Bevent;

join
areg = breg;

end

June 1993 8-41

Behavioral Modeling
Structured Procedures

Example 8-33: Enabling sequential blocks to execute in parallel

8.8
Structured Procedures

All procedures in Verilog are specified within one of the following four
statements:

• initial statement

• always statement

• task

• function

The initial and always statements are enabled at the beginning of
simulation. The initial statement executes only once and its activity
dies when the statement has finished. In contrast, the always statement
executes repeatedly. Its activity dies only when the simulation is
terminated. There is no limit to the number of initial and always
blocks that can be defined in a module.

Tasks and functions are procedures that are enabled from one or more
places in other procedures. Tasks and functions are covered in detail in
Chapter 9, Tasks and Functions.

fork
@enable_a

begin
#ta wa = 0;
#ta wa = 1;
#ta wa = 0;

end
@enable_b

begin
#tb wb = 1;
#tb wb = 0;
#tb wb = 1;

end
join

8-42 June 1993

Behavioral Modeling
Structured Procedures

8.8.1
initial Statement

The syntax for the initial statement is as follows:

Syntax 8-11: Syntax for <initial_statement>

Example 8-34 illustrates use of the initial statement for initialization
of variables at the start of simulation.

Example 8-34: Use of initial statement

Another typical usage of the initial statement is specification of
waveform descriptions that execute once to provide stimulus to the main
part of the circuit being simulated. Example 8-35 illustrates this usage.

Example 8-35: Another use for initial statement

<initial_statement>
::= initial <statement>

initial
begin

areg = 0; // initialize a register
for (index = 0; index < size; index = index + 1)

memory[index] = 0; //initialize a memory
word

end

initial
begin

inputs = ’b000000;
// initialize at time zero

#10 inputs = ’b011001; // first pattern
#10 inputs = ’b011011; // second pattern
#10 inputs = ’b011000; // third pattern
#10 inputs = ’b001000; // last pattern

end

June 1993 8-43

Behavioral Modeling
Structured Procedures

8.8.2
always Statement

The always statement repeats continuously throughout the whole
simulation run. Syntax 8-12 gives the syntax for the always statement.

Syntax 8-12: Syntax for always_statement

The always statement, because of its looping nature, is only useful when
used in conjunction with some form of timing control. If an always
statement provides no means for time to advance, the always statement
creates a simulation deadlock condition. The following code, for
example, creates an infinite zero-delay loop:

always areg = ~areg;

Providing a timing control to the above code creates a potentially useful
description—as in the following example:

always #half_period areg = ~areg;

8.8.3
Examples

We have now introduced enough statement types for some complete and
more practical examples to be given. These examples are given as
complete descriptions enclosed in modules—such that they can be put
directly through the Verilog-XL compiler, simulated and the results
observed.

Example 8-36 is a simple traffic light sequencer described with its own
clock generator.

<always_statement>
::= always <statement>

8-44 June 1993

Behavioral Modeling
Structured Procedures

Example 8-36: Behavioral model of traffic light sequencer

module traffic_lights;
reg

clock,
red,
amber,
green;

parameter
on = 1,
off = 0,
red_tics = 350,
amber_tics = 30,
green_tics = 200;

// the sequence to control the lights
always

begin
red = on;
amber = off;
green = off;
repeat (red_tics) @(posedge clock);
red = off;
green = on;
repeat (green_tics) @(posedge clock);
green = off;
amber = on;
repeat (amber_tics) @(posedge clock);

end
// waveform for the clock
always

begin
#100 clock = 0;
#100 clock = 1;

end
// simulate for 10 changes on the red light
initial

begin
repeat (10) @red;
$finish;

end
// display the time and changes made to the lights
always

@(red or amber or green)
$display(”%d red=%b amber=%b green=%b”,

$time, red, amber, green);
endmodule

June 1993 8-45

Behavioral Modeling
Structured Procedures

Example 8-37 shows a use of variable delays. The module has a clock
input and produces two synchronized clock outputs. Each output clock
has equal mark and space times, is out of phase from the other by 45
degrees, and has a period half that of the input clock. Note that the clock
generation is independent of the simulation time unit, except as it affects
the accuracy of the divide operation on the input clock period.

Example 8-37: Behavioral model with variable delays

module synch_clocks;
reg

clock,
phase1,
phase2;

time clock_time;
initial clock_time = 0;
always @(posedge clock)

begin :phase_gen
time d; // a local declaration is possible

// because the block is named
d = ($time - clock_time) / 8;
clock_time = $time;
phase1 = 0;
#d phase2 = 1;
#d phase1 = 1;
#d phase2 = 0;
#d phase1 = 0;
#d phase2 = 1;
#d phase1 = 1;
#d phase2 = 0;

end
// set up a clock waveform, finish time,
// and display
always

begin
#100 clock = 0;
#100 clock = 1;

end
initial #1000 $finish; //end simulation at time 1000
always

@(phase1 or phase2)
$display($time,,

”clock=%b phase1=%b phase2=%b”,
clock, phase1, phase2);

endmodule

June 1993 9-1

Tasks and Functions
Distinctions Between Tasks and Functions

9
Figure 9-0

Example 9-0
Syntax 9-0
Table 9-0

Tasks and
Functions

Tasks and functions provide the ability to execute common procedures
from several different places in a description. They also provide a means
of breaking up large procedures into smaller ones to make it easier to
read and debug the source descriptions. Input, output, and inout
argument values can be passed into and out of both tasks and functions.
The next section discusses the differences between tasks and functions.
Subsequent sections describe how to define and invoke tasks and
functions and present examples of each.

9.1
Distinctions Between Tasks and Functions

The following rules distinguish tasks from functions:

• A function must execute in one simulation time unit; a task can
contain time-controlling statements.

• A function cannot enable a task; a task can enable other tasks and
functions.

• A function must have at least one input argument; a task can have
zero or more arguments of any type.

• A function returns a single value; a task does not return a value.

The purpose of a function is to respond to an input value by returning a
single value. A task can support multiple goals and can calculate
multiple result values. However, only the output or inout arguments

9-2 June 1993

Tasks and Functions
Tasks and Task Enabling

pass result values back from the invocation of a task. A Verilog model
uses a function as an operand in an expression; the value of that
operand is the value returned by the function.

For example, you could define either a task or a function to switch bytes
in a 16-bit word. The task would return the switched word in an output
argument, so the source code to enable a task called switch_bytes
could look like the following example:

switch_bytes (old_word, new_word);

The task switch_bytes would take the bytes in old_word, reverse their
order, and place the reversed bytes in new_word. A word-switching
function would return the switched word directly. Thus, the function call
for the function switch_bytes might look like the following example:

new_word = switch_bytes (old_word);

9.2
Tasks and Task Enabling

A task is enabled from a statement that defines the argument values to
be passed to the task and the variables that will receive the results.
Control is passed back to the enabling process after the task has
completed. Thus, if a task has timing controls inside it, then the time of
enabling can be different from the time at which control is returned. A
task can enable other tasks, which in turn can enable still other
tasks—with no limit on the number of tasks enabled. Regardless of how
many tasks have been enabled, control does not return until all enabled
tasks have completed.

June 1993 9-3

Tasks and Functions
Tasks and Task Enabling

9.2.1
Defining a T ask

The following is the syntax for defining tasks:

Syntax 9-1: Syntax for <task>

Task and function declarations specify the following:

local variables
I/O ports
registers
times
integers
real
events

These declarations all have the same syntax as for the corresponding
declarations in a module definition.

If there is more than one output, input, and inout port declared in a task
these must be enclosed within a block.

<task>
::= task <name_of_task> ;

<tf_declaration>*
<statement_or_null>
endtask

<name_of_task>
::= <IDENTIFIER>

<tf_declaration>
::= <parameter_declaration>
||= <input_declaration>
||= <output_declaration>
||= <inout_declaration>
||= <reg_declaration>
||= <time_declaration>
||= <integer_declaration>
||= <real_declaration>
||= <event_declaration>

9-4 June 1993

Tasks and Functions
Tasks and Task Enabling

9.2.2
Task Enabling and Argument Passing

The statement that enables a task passes the I/O arguments as a
comma-separated list of expressions enclosed in parentheses. The
following is the formal syntax of the task enabling statement:

Syntax 9-2: Syntax of the task enabling statement

The first form of a task enabling statement applies when there are no I/O
arguments declared in the task body. In the second form, the list of
<expression> items is an ordered list that must match the order of the
list of I/O arguments in the task definition.

If an I/O argument is an input, then the corresponding <expression> can
be any expression. If the I/O argument is an output or an inout, then
Verilog restricts it to an expression that is valid on the left-hand side of
a procedural assignment. The following items satisfy this requirement:

• reg, integer, real, and time variables

• memory references

• concatenations of reg, integer, real, and time variables

• concatenations of memory references

• bit-selects and part-selects of reg, integer, real, and time
variables

The execution of the task enabling statement passes input values from
the variables listed in the enabling statement to the variables specified
within the task. Execution of the return from the task passes values from
the task output and inout variables to the corresponding variables in
the task enabling statement. Verilog passes all arguments by value (that
is, Verilog passes the value rather than a pointer to the value).

<task_enable>
::= <name_of_task> ;
||= <name_of_task> (<expression> <,<expression>>*) ;

June 1993 9-5

Tasks and Functions
Tasks and Task Enabling

Example 9-1 illustrates the basic structure of a task definition with five
arguments.

Example 9-1: Task definition with arguments

The following statement enables the task in Example 9-1:

my_task (v, w, x, y, z);

The calling arguments (v, w, x, y, z) correspond to the I/O arguments
(a, b, c, d, e) defined by the task. At task enabling time, the input and
inout arguments (a, b, and c) receive the values passed in v, w, and x.
Thus, execution of the task enabling call effectively causes the following
assignments:

a = v; b = w; c = x;

As part of the processing of the task, the task definition for my_task
must place the computed results values into c, d, and e. When the task
completes, the processing software performs the following assignments
to return the computed values to the calling process:

x = c; y = d; z = e;

module this_task;
task my_task;

input a, b;
inout c;
output d, e;
reg foo1, foo2, foo3;
begin

<statements> // the set of statements that
// performs the work of the task

c = foo1; // the assignments that initialize
d = foo2; // the results variables
e = foo3;

end
endtask

endmodule

9-6 June 1993

Tasks and Functions
Tasks and Task Enabling

9.2.3
Task Example

Example 9-2 illustrates the use of tasks by redescribing the traffic light
sequencer that was introduced in Chapter 8, Behavioral Modeling.

Example 9-2: Using tasks

module traffic_lights;
reg clock, red, amber, green;
parameter on = 1, off = 0, red_tics = 350,

amber_tics = 30, green_tics = 200;

// initialize colors
initial

red = off;
initial

amber = off;
initial

green = off;

// sequence to control the lights
always begin

red = on; // turn red light on
light(red, red_tics); // and wait.
green = on; // turn green light on
light(green, green_tics); // and wait.
amber = on; // turn amber light on
light(amber, amber_tics); // and wait.

end

// task to wait for ’tics’ positive edge clocks
// before turning ’color’ light off
task light;

output color;
input [31:0] tics;
begin

repeat (tics)
@(posedge clock);

color = off; // turn light off
end

endtask

// waveform for the clock
always begin

#100 clock = 0;
#100 clock = 1;

end
endmodule // traffic_lights

June 1993 9-7

Tasks and Functions
Tasks and Task Enabling

9.2.4
Effect of Enabling an Already Active Task

Because Verilog supports concurrent procedures, and tasks can have
non-zero time duration, you can write a model that invokes a task when
that task is already executing (a special case of invoking a task that is
already active is where a task recursively calls itself). Verilog-XL allows
multiple copies of a task to execute concurrently, but it does not copy or
otherwise preserve the task arguments or local variables. Verilog-XL
uses the same storage for each invocation of the task. This means that
when the simulator interrupts a task to process another instance of the
same task, it overwrites the argument values from the first call with the
values from the second call. The user must manage what happens to the
variables of a task that is invoked while it is already active.

9-8 June 1993

Tasks and Functions
Functions and Function Calling

9.3
Functions and Function Calling

The purpose of a function is to return a value that is to be used in an
expression. The rest of this chapter explains how to define and use
functions.

9.3.1
Defining a Function

To define functions, use the following syntax:

Syntax 9-3: Syntax for function

A function returns a value by assigning the value to the function’s name.
The <range_or_type> item which specifies the data type of the function’s
return is optional.

<function>
::= function <range_or_type>? <name_of_function> ;

<tf_declaration>+
<statement_or_null>
endfunction

<range_or_type>
::= <range>
||= integer
||= real

<name_of_function>
::= <IDENTIFIER>

<tf_declaration>
::= <parameter_declaration>
||= <input_declaration>
||= <reg_declaration>
||= <time_declaration>
||= <integer_declaration>
||= <real_declaration>
||= <event_declaration>

June 1993 9-9

Tasks and Functions
Functions and Function Calling

Example 9-3 defines a function called getbyte, using a <range>
specification.

Example 9-3: A function definition using range

9.3.2
Returning a Value from a Function

The function definition implicitly declares a register, internal to the
function, with the same name as the function. This register either
defaults to one bit or is the type that <range_or_type> specifies. The
<range_or_type> can specify that the function’s return value is a real,
an integer, or a value with a range of [n:m] bits. The function assigns
its return value to the internal variable bearing the function’s name. The
following line from Example 9-3 illustrates this concept:

getbyte = result_expression;

9.3.3
Calling a Function

A function call is an operand within an expression. The operand has the
following syntax:

Syntax 9-4: Syntax for function_call

module fact;
function [7:0] getbyte;

input [15:0] address;
reg [3:0] result_expression;

begin
//<statements> code to extract low-order
// byte from addressed word
getbyte = result_expression;

end
endfunction

endmodule

<function_call>
::= <name_of_function> (<expression> <,<expression>>*)

<name_of_function>
::= <identifier>

9-10 June 1993

Tasks and Functions
Functions and Function Calling

The following example creates a word by concatenating the results of two
calls to the function getbyte (defined in Example 9-3).

word = control ? {getbyte(msbyte), getbyte(lsbyte)} : 0;

9.3.4
Function Rules

Functions are more limited than tasks. The following five rules govern
their usage:

• A function definition cannot contain any time controlled
statements—that is, any statements introduced with #, @, or
wait.

• Functions cannot enable tasks.

• A function definition must contain at least one input argument.

• A function definition must include an assignment of the function
result value to the internal variable that has the same name as the
function.

• A function definition can not contain an inout declaration or an
output declaration.

June 1993 9-11

Tasks and Functions
Functions and Function Calling

9.3.5
Function Example

Example 9-4 defines a function called factorial that returns a 32-bit
register. The factorial function then calls itself recursively and prints
some results.

Example 9-4: Defining and calling a function

module tryfact;
// define function
function [31:0] factorial;

input [3:0] operand;
reg [3:0] index;

begin
factorial = operand ? 1 : 0;

for(index = 2; index <= operand; index = index + 1)
factorial = index * factorial;

end
endfunction

// Test the function
reg [31:0] result;
reg [3:0] n;

initial
begin

result = 1;

for(n = 2; n <= 9; n = n+1)
begin

$display(”Partial result n=%d result=%d”,
n, result);

result = n * factorial(n) / ((n * 2) + 1);
end

$display(”Final result=%d”, result);
end

endmodule // tryfact

June 1993 Index-1

Index

System Tasks, System
Functions, and Timing Checks
$ 19-15

$async$and$array 22-2

$async$and$plane 22-2

$async$nand$array 22-2

$async$nand$plane 22-2

$async$nor$array 22-2

$async$nor$plane 22-2

$async$or$array 22-2

$async$or$plane 22-2

$bitstoreal 12-18, 21-55

$cleartrace 21-20

$compare 21-49
syntax 21-49

$countdrivers 21-30 to 21-31
syntax 21-30

$db_breakaftertime 26-22
syntax 26-22

$db_breakatline 26-21
syntax 26-21

$db_breakbeforetime 26-22
syntax 26-22

$db_breakonceatline
syntax 26-21

$db_breakonceonnegedge
syntax 26-25

$db_breakonceonposedge 26-24

$db_breakoncewhen
syntax 26-23

$db_breakonnegedge 26-25
syntax 26-25

$db_breakonposedge 26-24
syntax 26-24

$db_breakwhen 26-23
syntax 26-23

$db_cleartrace 26-17
syntax 26-17

$db_deletebreak 26-26
syntax 26-26

$db_deletefocus 26-9
syntax 26-9

$db_disablebreak 26-27
syntax 26-27

$db_disablefocus 26-11
syntax 26-11

$db_enablebreak 26-26
syntax 26-26

$db_enablefocus 26-10
syntax 26-10

$db_help 26-6
syntax 26-6

$db_setfocus 26-9
syntax 26-9

$db_settrace 26-16
syntax 26-16

$db_showbreak 26-28
syntax 26-28

$db_showfocus 26-12
syntax 26-12

$db_step 26-14
syntax 26-14

$db_steptime 26-15
syntax 26-15

$disable_warnings 21-38
syntax 21-38

$display 20-9, 21-1 to 21-11
and mnemonic strength format 6-33
and simulation time 21-18
compared to $monitor 21-12
compared to $write 21-2
escape sequences 21-3
format specifications 21-4 to 21-5
size of displayed data 21-6 to 21-7
syntax 21-1

Index-2 June 1993

System Tasks, System
Functions, and Timing Checks
(continued)

$dist_chi_square
syntax 23-5

$dist_erlang
syntax 23-5

$dist_exponential
syntax 23-5

$dist_normal
syntax 23-5

$dist_poisson
syntax 23-5

$dist_t
syntax 23-5

$dist_uniform
syntax 23-5

$dumpall 19-5, 19-14, 21-58

$dumpfile 19-3, 21-58

$dumpflush 19-6, 21-58

$dumplimit 19-5, 21-58

$dumpoff 19-4 to 19-5, 19-15, 21-58

$dumpon 19-4 to 19-5, 19-15, 21-58

$dumpvars 19-3 to 19-4, 19-14, 20-9, 21-58

$enable_warnings 21-40
syntax 21-40

$fclose 21-14 to 21-17
syntax 21-14

$fdisplay 21-14 to 21-17
syntax 21-14

$finish 21-18 to 21-19
syntax 21-18

$fmonitor 21-14 to 21-17
syntax 21-14

$fopen 21-14 to 21-17
syntax 21-14

$fstrobe 21-14 to 21-17
syntax 21-14

$fwrite 21-14 to 21-17
syntax 21-14

$getpattern 21-43

$gr_regs 20-9

$gr_waves 20-9, 27-25

$history 21-23 to 21-24
syntax 21-23

$hold 13-41

$incpattern_read 21-47
syntax 21-47

$incpattern_write 21-45
syntax 21-45

$incsave 21-21 to 21-23, 27-25
syntax 21-21

$input 21-25
and asynchronous interrupts 21-25
and reading key files 21-25
and reading previous command file

21-25
syntax 21-25

$itor 21-55

$keepcommands 21-34

$key 21-26 to 21-27
syntax 21-26

$list 20-8, 21-35
and decompiling macro modules 12-12
for debugging 8-13
library definition renaming 25-27
syntax 21-35

$listcounts 18-11, 21-35
use with +speedup 24-12

$list_forces 21-36

$log
syntax 21-25

$monitor 20-9, 21-12 to 21-13
and fixed width format 21-8
and simulation time 21-18
compared to $display 21-12
syntax 21-12
turn off 21-13

$monitoroff 21-12 to 21-13
syntax 21-12

$monitoron 21-12 to 21-13
syntax 21-12

June 1993 Index-3

System Tasks, System
Functions, and Timing Checks
(continued)

$nochange 13-51 to 13-52

$nokeepcommands 21-34

$nokey 21-26 to 21-27
syntax 21-26

$nolog
syntax 21-25

$options 28-83

$period 13-44

$printtimescale 16-10 to 16-11, 21-56

$q_add 23-2
syntax 23-1

$q_exam 23-3
syntax 23-1

$q_full 23-2
syntax 23-1

$q_initialize 23-2

$q_remove 23-2
syntax 23-1

$readmemb 21-41 to 21-43, 21-56
and $getpattern 21-43
and loading logic array personality

22-4
syntax 21-41

$readmemh 21-41 to 21-43, 21-56
and $getpattern 21-43
and loading logic array personality

22-4
syntax 21-41

$realtime 16-7, 21-17, 21-56

$realtobits 12-18, 21-55

$recovery 13-47

$reportfile 27-15

$reportprofile 18-9, 21-59

$reset 21-60 to 21-65, 27-27

$reset_count 21-65 to 21-66

$reset_value 21-67 to 21-69

$restart 21-21 to 21-23, 27-27
and queueing tasks 23-4
syntax 21-21

$rs_get_net 28-97

$rs_showpaths 28-95

$rs_trace_net 28-85

$rs_untrace_net 28-85

$rtoi 21-55

$save 21-21 to 21-23, 27-27
and interactive recovery 26-5
and queueing tasks 23-4
and restarting simulator 24-8
syntax 21-21

$scale 16-8 to 16-9, 21-56

$scope 20-9
syntax 21-27

$settrace 20-8, 27-12
and acceleration 27-7
and tracing statements inside macro

modules 12-12
syntax 21-20
to trace from start of simulation 24-8

$setup 13-40

$setuphold 13-48

$showallinstances 27-15
and reporting resolution paths 25-26
and resolving modules 25-15
library definition renaming 25-27
syntax 21-27

$showexpandednets 20-8
syntax 21-29

$showmodes 17-11, 21-34

$shownonxl 27-5
syntax 27-6

$showportsnotcollapsed 20-8
syntax 21-29

$showscopes
syntax 21-27

$showvariables
syntax 21-28

Index-4 June 1993

System Tasks, System
Functions, and Timing Checks
(continued)

$showvars 20-8
syntax 21-28

$skew 13-45

$sreadmemb 20-17 to 20-19, 21-56

$sreadmemh 20-17 to 20-19, 21-56

$startprofile 18-2, 18-8, 21-58, 27-15

$stime 21-17 to 21-18
as parameters to $display and

$monitor 21-18
syntax 21-17

$stop 21-18 to 21-19, 26-2
syntax 21-18

$stopprofile 18-10, 21-59

$strobe 20-9, 21-12
syntax 21-12

$strobe_compare 21-51
syntax 21-51

$sync$and$array 22-2

$sync$and$plane 22-2

$sync$nand$array 22-2

$sync$nand$plane 22-2

$sync$nor$array 22-2

$sync$nor$plane 22-2

$sync$or$array 22-2

$sync$or$plane 22-2

$stopprofile 21-59

$test$plusargs 24-25 to 24-26
syntax 24-25

$time 3-16, 16-6 to 16-7, 21-17 to 21-18,
21-56

and triggering event controls 21-18
as parameters to $display and

$monitor 21-18
syntax 21-17

$timeformat 16-11 to 16-14, 21-56

$width 13-42
use of threshold argument 13-43

$write 20-9, 21-1 to 21-11
compared to $display 21-2
escape sequences 21-3
format specifications 21-4 to 21-5
size of displayed data 21-6 to 21-7
syntax 21-1

Compiler Directives
‘

in compiler directives 24-26

‘accelerate 24-27, 27-2 to 27-3

‘autoexpand_vectornets 24-27

‘celldefine 24-27

‘default_decay_time 24-28

‘default_nettype 24-29
syntax 6-15

‘default_rswitch_strength 24-29, 28-29

‘default_switch_strength 24-30, 28-29

‘default_trireg_strength 24-30, 28-29

‘define 24-30
and library search paths 25-3

‘delay_mode_distributed 17-4, 24-30

‘delay_mode_path 17-4, 24-30

‘delay_mode_unit 17-4, 24-31

‘delay_mode_zero 17-4, 24-31

‘else 24-31, 24-45 to 24-54

‘endcelldefine 24-27

‘endif 24-31, 24-45 to 24-54

‘endprotect 20-2 to 20-3, 20-7, 20-9, 24-32

‘endprotected 20-3, 20-5 to 20-7, 20-11

‘end_pre_16a_paths 14-16, 24-32

‘expand_vectornets 24-31

‘ifdef 24-31, 24-45 to 24-54

‘include 24-54 to 24-59

‘noaccelerate 24-27, 27-2 to 27-3

June 1993 Index-5

Compiler Directives, (continued)

‘noexpand_vectornets 24-32

‘noremove_gatenames 6-43, 24-33

‘noremove_netnames 6-43, 24-33

‘nounconnected_drive 24-35

‘pre_16a_paths 14-15, 24-32

‘protect 20-2 to 20-3, 20-7, 20-9, 24-32

‘protected 20-3, 20-5 to 20-7, 20-11, 24-33,
25-25

‘remove_gatenames 6-43, 24-33

‘remove_netnames 6-43, 24-33

‘resetall 24-33
and library files 25-25

‘rs_technology 24-34

‘switch 28-8

‘switch default 24-34

‘switch resistive 24-34

‘switch XL 24-34

‘timescale 16-2 to 16-5, 24-34
effect on performance 16-5
usage rules 16-5

‘unconnected_drive 24-35

‘undef 24-35

‘unprotected 24-33, 25-25

‘uselib 24-37, 25-3 to 25-8

Command Line Options
-a 24-4

compared to ‘accelerate 27-2
for accelerating entire source

description 27-2

+autonaming 12-29, 24-11

+autoprotect 20-5 to 20-7, 20-12, 24-11

+bpi_listcounts 18-8

+bpi_profile 18-8, 24-12

-c 24-4
and library files 25-26
use with +protect or +autoprotect

20-16
use with -r 24-4

+caxl 24-12

-d 12-12, 24-4
and source protection 20-8

+define+
and ‘define 24-13, 24-50
and empty macros 24-49
and library search paths 25-3
and macro strings 24-12

+delay_mode_distributed 17-5, 24-14

+delay_mode_path 17-5, 24-14

+delay_mode_unit 17-5, 24-14

+delay_mode_zero 17-5, 24-14

+err_line_length+ 24-15

-f 24-2, 24-4

-i 24-6
and interactive recovery 26-5
and reading key files 21-25
for simulation recovery 21-26
to read command input file 21-25

+incdir+ 24-15

-k 24-7
for changing key file name 21-26

-l 24-7
to change log file name 21-26

+libext 25-9 to 25-11

+libext+ 24-15
syntax 24-15

+libnonamehide 25-22 to 25-23

+liborder 24-16, 25-13 to 25-15

+librescan 24-16, 25-15 to 25-16

+libverbose 24-16
and reporting resolution paths 25-26
and resolving modules 25-15

+maxdelays 4-23, 6-38, 13-20, 24-17

+max_error_count 24-17

Index-6 June 1993

Command Line Options, (continued)

+mindelays 4-23, 6-38, 24-17

+noaccerr 24-18

+nolibcell 24-18

+notimingchecks 13-52

+no_charge_decay 24-18

+no_cond_event_error 24-18

+no_notifier 24-19

+no_pulse_msg 13-34, 24-19

+pathpulse 24-20

+pre_16a_paths 14-15, 24-20

+protect 20-3 to 20-5, 20-12, 20-17 to
20-19, 24-20

+pulse_e/n 13-33 to 13-35, 24-21

+pulse_r/m 13-33 to 13-35, 24-21

-q 24-7

-r 24-8, 26-5
for command-line restart 21-23
use with -c 24-4

+rswrctostr or +rsw_rc_to_str 24-21

+rsw_opt_stack 24-21

-s 24-8

+speedup 18-8, 24-21
use with $listcounts 24-12

+switchres 28-7

+switchres or +switch_res 24-23

+switchxl 24-23, 28-7

+switch_res 28-7

+sxl_keep_all 24-23

+sxl_keep_declared 24-24

+sxl_keep_minimum 24-24

+sxl_unidirect 24-23, 28-19

-t 24-8

+typdelays 4-23, 6-38, 13-20, 24-24

-u 24-8

-v 24-9, 25-9

-w 12-32, 24-9

-x 24-9

-y 24-10, 25-9
syntax 24-10

Symbols
!

compared to ‘==0’ 4-9
logical negation operator 4-2, 4-9

!=
logical inequality operator 4-2, 4-4, 4-8

!==
case inequality operator 4-2, 4-4, 4-8

%
in format specifications 21-2, 21-6
modulus operator 4-2, 4-4

&
bit-wise AND operator 4-2, 4-4, 4-11
reduction AND operator 4-2, 4-12

&&
logical AND operator 4-2, 4-4, 4-9

*
arithmetic multiplication operator 4-2
bit-wise negation operator 4-4
for flagging active commands 21-23
in state table 7-15, 7-21
logical negation operator 4-4

,
trace-step command 26-3

-
in state table 7-10

.
continue command 26-3

/
arithmetic division operator 4-2, 4-4
arithmetic multiplication operator 4-4

:
interactive command 26-3

;
step command 26-3

June 1993 Index-7

Symbols, (continued)

<
relational less-than operator 4-2, 4-4,

4-7

<<
left shift operator 4-2, 4-4, 4-15

<-
and compiler error messages 24-40

<=
relational less-than-or-equal operator

4-2, 4-4, 4-7

=
in assignment statement 5-1

==
logical equality operator 4-2, 4-4

===
case equality operator 4-2, 4-4

>
relational greater-than operator 4-2,

4-4, 4-7

>>
right shift operator 4-2, 4-4, 4-15

>=
relational greater-than-or-equal

operator 4-2, 4-4, 4-7

?
equivalent to z in literal number

values 2-4, 8-19
in state table 7-7, 7-10, 7-21

@
for addressing memory 21-41

\
backslash character 2-7
for escape sequences in strings 21-2

^
bit-wise exclusive OR operator 4-2,

4-4, 4-11
for hierarchical names in macro

module instances 12-27
reduction XOR operator 4-2, 4-12

^~
bit-wise equivalence operator 4-2, 4-4
bit-wise exclusive NOR operator 4-11
reduction XNOR operator 4-2

|
bit-wise inclusive OR operator 4-2, 4-4,

4-11
reduction OR operator 4-2, 4-12

||
logical OR operator 4-2, 4-4, 4-9

~
bit-wise negation operator 4-2, 4-11

~&
reduction NAND operator 4-2

~^
bit-wise equivalence operator 4-2
reduction XNOR operator 4-2

~|
reduction NOR operator 4-2

””
null string 4-22

,,
commas in null expressions 21-2

\”
as ” character 2-7

(??)
in state table 7-21

(01)
in state table 7-21

(0x)
in state table 7-21

(10)
in state table 7-21

(1x)
in state table 7-21

\ddd
specify character as octal digits 2-7

\n
new line character 2-7

\t
tab character 2-7

Index-8 June 1993

Symbols, (continued)

(vw)
in state table 7-21

(x1)
in state table 7-21

?:
conditional operator 4-2, 4-4

{}
concatenation operator 4-2, 4-16

Numbers
0

for minimizing bit lengths of
expressions 21-6

in state table 7-21
logic 0 21-9
logic zero 3-1

01 transition 7-9

1
in state table 7-21
logic 1 21-9
logic one 3-1

A
accelerate option 24-4

compared to ‘accelerate 27-2
for accelerating entire source

description 27-2

accelerated continuous assignments
5-10 to 5-33

compilation speed 5-31
controlling 5-22
different results 5-31 to 5-33
effects 5-24 to 5-33
memory usage 5-31
restrictions 5-10 to 5-21

delay expressions 5-19
left-hand side 5-11 to 5-13
right-hand side 5-13 to 5-19

simulation speed 5-24 to 5-30

acceleration 27-1 to 27-27
and key files containing asynchronous

interrupts 27-8
and module path destinations 13-9,

13-61
and specify path declarations 13-3
and tracing 27-8
list of items that cannot be

accelerated 27-4 to 27-5
of events 27-8
of primitives for performance 27-12
potential problems 27-8 to 27-9
primitives and scalar nets that can be

accelerated 27-3 to 27-4
processing simultaneous events

27-7 to 27-8
running XL 27-2 to 27-3
when pulse width equals gate delay

27-8
XL option compared to normal

simulation 27-7 to 27-8

addressing memory 21-41 to 21-43

alias
performance 27-20

always
and activity flow 8-2
as structured procedure 8-41
syntax 8-43

ambiguous strength 6-20 to 6-32

and gate 6-6 to 6-7

arguments
for system timing checks 13-39
optional 13-38

arithmetic operators 4-2, 4-5 to 4-6
- 4-5
+ 4-5
% 4-5
* 4-5
/ 4-5
and unknown logic values 4-6

June 1993 Index-9

A, (continued)

arrays
element 3-14
format 22-4
index 3-14
no multiple dimension 3-14
of integers 3-16
of time variables 3-16
word 3-14

assign keyword 11-2 to 11-3

assignment 5-1 to 5-33
continuous 5-2 to 5-9, 8-3
left hand side 5-1
of delays to module paths

13-15 to 13-21
procedural 8-3 to 8-4
procedural versus continuous 8-3
right hand side 5-1

asynchronous arrays 22-3

automatic naming 12-29 to 12-30
+autonaming option 12-29
for gates 6-6
for user-defined primitives 7-14

B
b

binary number format 2-2
in state table 7-15, 7-21

backslash character 2-7

base format
binary 2-2
decimal 2-2
hexadecimal 2-2
octal 2-2

begin-end block statement 8-12, 8-35

Behavior Profiler 18-1 to 18-26
data table 18-4 to 18-7

by module instance 18-7
by statement 18-4 to 18-6

example 18-17 to 18-26
finding performance problems 27-15
system tasks 18-8 to 18-14

$listcounts 18-11
$reportprofile 18-9
$startprofile 18-8

$stopprofile 18-10
use with +speedup 24-12

behavioral modeling 8-1 to 8-45
+speedup 24-21

bidirectional pass gate 6-12

binary display format 2-2
and high impedance state 21-8
and unknown logic value 21-8

binary operators 4-4
- 4-4
+ 4-4
% 4-4
& 4-4, 4-11
* 4-4
< 4-4
> 4-4
^ 4-4, 4-11
| 4-4, 4-11
!= 4-4
&& 4-4, 4-9
<< 4-4
<= 4-4
== 4-4
>= 4-4
>> 4-4
^~ 4-4, 4-11
|| 4-4, 4-9
!== 4-4
=== 4-4
{} 4-16
/ 4-4
precedence 4-4

bit-select
and vector ports 12-14
of vector net or register 4-17
out of bounds 4-17, 4-19
performance 27-16
references of real numbers 3-18

Index-10 June 1993

B, (continued)

bit-wise operators 4-11 to 4-12
& 4-11
^ 4-11
| 4-11
~ 4-11
^~ 4-11
AND 4-2, 4-11
compared to logical operators 4-12
equivalence 4-2
exclusive OR 4-2, 4-11
exclusive NOR 4-11
inclusive OR 4-2, 4-11
negation 4-2
unarynegation 4-11

blank module terminal 12-5

block statement 8-35 to 8-41
definition 8-35
fork-join 8-35
naming of 8-39
parallel 8-35
sequential 8-35 to 8-37
start and finish times 8-39 to 8-41
timing for embedded blocks 8-39

blocking procedural assignment 8-4
processing assignments 8-11
syntax 8-4

breakpoints 26-17 to 26-28
continuous versus non-continuous

26-21
source line-based 26-18
time-based 26-18
transition-based 26-18
value-based 26-18

buf gate 6-8

bufif gate 6-9 to 6-10

C
cache thrashing and performance 27-24

capacitance for switches 28-52

capacitive networks 3-10 to 3-13

capturing simulation data 27-26

case equality operator 4-2

case inequality operator 4-2

case statement 8-16 to 8-20
compared to if-else-if statement 8-17
syntax 8-16
with don’t-care 8-19 to 8-20

casex 8-19

casez 8-19

cdiff statement 28-54

cells 12-1

cgo statement 28-53

changing default base in formatted output
system tasks 21-17

channel delay timing model 28-16

characters
specified as octal digits 2-7

charge decay 6-39 to 6-42, 24-18, 24-28
Switch-RC modes 28-72

charge storage
strength 3-6 to 3-7, 6-18

charging_strength parameter 28-50

checkpoints 21-21

circular library scan order 24-16, 25-13

clearing
trace 26-17

clock generators and performance 27-14

cmos 6-13

cmos gate 6-13 to 6-14

code
measuring 27-9
optimizing 27-9
optimizing for +speedup 24-21
reducing executed code 27-24

collapsing ports 12-18 to 12-21
chart of resulting net types 12-20
rules 12-19 to 12-20
that connect nets of different types

12-20

June 1993 Index-11

C, (continued)

combinational UDPs 7-1, 7-6 to 7-8
compared to level-sensitive sequential

7-9
input and output fields in state table

7-6

combined signal strengths 6-18 to 6-32

combined signal values 6-18 to 6-32

command
file option 24-4
history 21-23 to 21-24
input files 21-25

command line options
+librescan 25-15 to 25-16

command-line restart 21-23

comments 2-2

compare
string operation 4-20

compilation 24-1 to 24-59
command line 24-1
compile only option 24-4, 25-26
compiling source files 24-3
directives 24-26 to 24-35
error messages 24-40 to 24-44
performance 27-27
user-defined primitives 7-14

concatenation
and macro module instances 12-11
and repetition multiplier 4-16
and unsized numbers 4-16
of library extensions to module and

UDP names 25-10
of names 12-22
of operands 4-17
of terms in synchronous and

asynchronous system calls 22-3
operator 4-2, 4-16
performance 27-16
string operation 4-20

concurrency
of activity flow 8-2
of procedures 9-7

condition
deterministic 13-61
non-deterministic 13-61

conditional compilation 24-45 to 24-54

conditional operator 4-2, 4-15 to 4-16
and ambiguous results 4-15
modeling tri-state output busses 4-16
syntax 4-15

conditional statement 8-11 to 8-15
syntax 8-11

conditioned event 13-60 to 13-61
constraints 13-61
versus unconditioned event 13-60

conflicts 3-8

connecting ports
between modules 12-19
by name 12-16 to 12-17
by position with ordered list 12-15
in macro modules 12-21
rules 12-19 to 12-20

connection
difference between full and parallel

13-11 to 13-14
full 13-11 to 13-14
parallel 13-11 to 13-14

consistency
in user-defined primitive state tables

7-14

constant expression 4-1

continue 26-3

continuous assignment 5-2 to 5-9
and $getpattern 21-43
and connecting ports 12-19
and driving strength 6-17, 21-10
and net variables 8-3
and supply nets 3-13
and wire nets 3-8
driving strength of 5-9
examples 5-3 to 5-4
explicit declaration 5-3
implicit declaration 5-3
syntax 5-2
versus procedural assignment 5-9

continuous assignments
accelerated 5-10 to 5-33

continuous monitoring 21-12 to 21-13

control-C 26-2

Index-12 June 1993

C, (continued)

copy
string operation 4-20

counting number of drivers 21-30 to 21-31

cox statement 28-52

cWaves 26-1, 26-29

D
d

decimal number format 2-2

data structures 12-25

data types 3-1 to 3-19

data_event 13-39

deassign keyword 11-2 to 11-3

debug system tasks 26-6 to 26-28
$db_breakaftertime 26-22
$db_breakatline 26-21
$db_breakbeforetime 26-22
$db_breakonceonposedge 26-24
$db_breakonnegedge 26-25
$db_breakonposedge 26-24
$db_breakwhen 26-23
$db_cleartrace 26-17
$db_deletebreak 26-26
$db_deletefocus 26-9
$db_disablebreak 26-27
$db_disablefocus 26-11
$db_enablebreak 26-26
$db_enablefocus 26-10
$db_help 26-6
$db_setfocus 26-9
$db_settrace 26-16
$db_showbreak 26-28
$db_showfocus 26-12
$db_step 26-14
$db_steptime 26-15

debugging 26-1 to 26-5
style and performance 27-25

decimal display format 2-2
and high impedance state 21-8
and unknown logic value 21-8
compatibility with $monitor 21-8

decimal notation 3-17

declaration 13-30

declaring
events 8-28
multiple module paths in a single

statement 13-14 to 13-15
parameters in specify blocks

13-3 to 13-4

decompilation 21-34 to 21-38

decompile option 24-4

default
base in formatted output 21-17
in case statement 8-16
in if-else-if statements 8-14
module path pulse control 13-34
word size 2-3

default delay mode 17-3

default library scan precedence
25-11 to 25-13

defparam 3-19, 12-7 to 12-8
and specify parameters 13-4
compared to module instance

parameter value assignment
12-9

delay
calculating for high impedance (z)

transitions 6-35
calculating for unknown logic value (x)

transitions 6-35
control 8-25, 8-26, 21-18
distributed 13-5 to 13-7
fall 6-35
falling 6-37
for continuous assignment 5-5 to 5-8
gate 6-34 to 6-38
inertial 5-8
minimum:typical:maximum values

6-37 to 6-38
mixing distributed and module path

13-6

June 1993 Index-13

D
delay (continued)

module path 13-5 to 13-33
net 6-34 to 6-37
propagation 6-5, 6-35
rise 6-35, 6-37
specify one value 6-35
specify three values 6-35
specify two values 6-35
syntax for delay control 8-26
trireg charge decay 6-40 to 6-42, 24-18,

24-28
turn-off 6-37

delay mode selection 17-1 to 17-12
and macro module expansion 17-12
and timescales 17-5, 17-6 to 17-7
command line plus options 17-5
compiler directives 17-4
decompiling with delay modes 17-11
default delay mode 17-3
distributed delay mode 17-2
overriding delay values 17-8
path delay mode 17-3
precedence 17-5
reasons to select a delay mode 17-3
the $showmodes system task 17-11
the acc_fetch_delay_mode access

routine 17-11
the parameter attribute mechanism

17-8 to 17-9
unit delay mode 17-2
zero delay mode 17-2

delay specification 6-5

deleting
breakpoint 26-26
foci 26-9

deltal statement 28-53

deltaw statement 28-53

describing module paths 13-9 to 13-14

diagnostic messages
from $stop and $finish 21-19

directory
library 25-1 to 25-2

disable 26-3, 26-4
and turning off monitoring tasks 21-13
named blocks 10-1 to 10-5
syntax 10-1
tasks 10-1 to 10-5
timing checks 13-52
use of 10-1

disabling
breakpoints 26-27
foci 26-11

disabling warnings 21-38 to 21-40

displaying information 21-1 to 21-11

distributed delay mode 17-2

distributed delays and SDPDs 14-15

dominating net 12-20

don’t-care bits
in case statements 8-19

don’t-care condition
in state table 7-7

double quote character 2-7

drive strength specification 6-4

driving strength 6-17
compared to charge storage strength

21-10
keywords 5-9

driving_strength parameter 28-48

dynamic file selection 21-1

E
edge control specifiers 13-53 to 13-55

edge descriptors 3-18

edge transitions 13-53

edge-sensitive paths 13-30 to 13-33
syntax 13-30

edge-sensitive UDPs 7-9 to 7-10
compared to level-sensitive UDPs 7-9

element
of array 3-14

embedding modules 12-1, 12-3

enable 8-30

Index-14 June 1993

E, (continued)

enabling
breakpoints 26-26
foci 26-10

enabling tasks 9-2 to 9-4, 9-7

enabling warnings 21-40

endmodule keyword 12-1

endprimitive keyword 7-5

endtable keyword 7-5

end_edge_offset 13-39

equality operators 4-8 to 4-9
!= 4-8
== 4-8
!== 4-8
=== 4-8
and ambiguous results 4-9
and operands of different sizes 4-8
precedence 4-8

error messages 24-39
compiler 24-40 to 24-44
effect of source protection 20-16
syntax 24-41

escape sequences 21-2, 21-3

escaped identifiers 2-8

espresso format 22-5

establishing a metric 27-10

estimating model speed 27-9

event
accelerated 27-8
control 8-25, 8-27
declaration syntax 8-28
explicit 8-25
expression 8-25
implicit 8-25
in timing checks 13-39
level sensitive control 8-29
named 8-28 to 8-29
OR construct 8-29
syntax for event control 8-27
syntax of triggering statement 8-29

event control
performance 27-19
repeat 8-32 to 8-34

event-driven simulation 7-20

examples
$hold timing check 13-42
$monitor 21-10
$nochange timing check 13-51
$period timing check 13-45
$printtimescale system task 16-11
$realtime system function 16-7
$recovery timing check 13-48
$scale system function 16-9
$setup timing check 13-40
$setuphold 13-50
$skew timing check 13-46
$sreadmemb to protect data it loads

into memory 20-18
$strobe 21-12
$time system function 16-6
$timeformat system task 16-13
$width calls, legal and illegal 13-44
$width timing check 13-43
‘timescale compiler directive 16-4
”joining” events8-40
%t format specification 16-13
accelerating specific modules 27-3
accessing information in a protected

region 20-10
adder

using zero-delay buf gates 13-63
AND-OR gate as user-defined primitive

7-22
AND-OR PLA 22-9 to 22-10
array with logic equations 22-4
asynchronous system call 22-3
begin-end block 8-36, 8-37
Behavior Profiler 18-17 to 18-26
behavioral description of D flip-flop

11-2
behavioral model 8-2
bit-select 4-17
bus select 5-4
calculating delays for unknown logic

value transitions 13-21
case statement 8-18
casex 8-19
casez in instruction decoder 8-19

June 1993 Index-15

E,
examples, (continued)

changing default base in formatted
output 21-17

combinational primitive 7-7
combinational UDP 7-8
command argument file 24-5
command history 21-24
command line 24-1
command line restart 21-23
command line using +liborder 25-13
command line using +librescan 25-16
command line with library directory

option 25-9
command line with library file option

25-9
command line with library options

25-10, 25-14, 25-16
command line with multiple library

directory file extensions 25-10
command line with null library file

extensions 25-10
command line with options 24-2
compilation with +protect 20-11
conditioned events 13-60
connecting ports by name 12-17
declaring memory and registers in one

statement 3-15
decompiling a macro module with $list

12-12 to 12-13
defparam 12-7
delay control 8-26
delay mode selection 17-10 to 17-11
disable statement 10-2 to 10-5
disabling all timing checks 13-52
disabling the $incpattern_write task

21-46
displaying unknown logic value in

different radix formats 21-8
edge control specifiers 13-54
edge-sensitive paths 13-31
edge-sensitive UDP 7-9
escaped identifiers 2-8, 2-10
of establishing simulation time with

display output 21-18
event OR construct 8-29
factorial function 9-11
for loop 8-23
for loop in multiplier 8-24

examples, (continued)
force and release used for debugging

11-4
fork-join block 8-38
function definition 9-9
global module path pulse control

13-34, 13-35
hierarchical name

in macro module instance 12-27
in module instance 12-27
referencing 12-25

hierarchical path names 12-23 to 12-24
identifiers 2-8
if-else statement 8-15
incremental save and restart 21-22
infinite zero-delay loop 8-43
interactive command prompt 26-2
intra-assignment timing controls 8-32
invoking $compare 21-50
invoking $strobe_compare 21-52
J-K flip-flop 7-16
latch 7-8
latch module with tri-state outputs

6-36 to 6-37
level-sensitive latch 27-7
level-sensitive paths 13-29
level-sensitive sequential primitive

7-8
loading memories from text files 21-42
logic array personality declaration

22-4
macro module specification 12-11
manipulating strings 2-6
memory addressing 4-18
memory declaration 3-14
minimum:typical:maximum values

4-23, 6-37, 6-38
mixing level- and edge-sensitive

user-defined primitives 7-16
module instance 12-4, 12-5
module instance parameter value

assignment 12-8
module parameter declaration 3-19
module path declarations with polarity

13-27
multiplexer 7-7, 7-8
NAND plane system 22-3
NOR plane system 22-3
notifiers 13-56 to 13-59

Index-16 June 1993

E,
examples, (continued)

notifiers in edge sensitive UDP 13-57 to
13-59

numbers containing ‘underlines’ 2-4
overriding module parameter values

12-7
PAL16R4 22-18 to 22-24
PAL16R8 22-11 to 22-17
part-select 4-18
passing module parameters to tasks

9-5
PATHPULSES$ 13-36
PLA module 22-5
PLA system tasks 22-6 to 22-7
port declarations 12-16
predefined standard options

24-10 to 24-11
problem in string value padding 4-21
processing stimulus patterns with

$getpattern 21-44
protected region in a module 20-2
protected source description output

20-12
race condition 8-31
real numbers 3-18
real numbers in port connections

12-18
reducing pessimism in a user-defined

J-K flip-flop primitive 7-18
reducing pessimism in a user-defined

latch UDP 7-17
register and net declarations 3-4, 3-6
repeat loop in multiplier 8-22
response checking 21-53 to 21-54
SDPDs 14-5 to 14-6
sized constant numbers 2-4
source description containing VCD

tasks 19-6
specify block 13-2
specify parameters 13-3
specifying a cell 24-28
specparams 13-3
strength outputs 21-10
string manipulations 4-20
string variable declaration 2-5
strings 2-5
synchronous PLA 22-8
synchronous system call 22-3

syntax error message 24-41
template of a data structure 12-26
testing plus options 24-25
text macro substitutions 2-10
timescales 16-14 to 16-18
time-sequenced waveform8-36 to 8-37,

8-38
timing violation message 13-52
traffic light sequencer 8-43 to 8-44
traffic light sequencer using tasks 9-6
tri-state output bus 4-16
turn off monitoring 21-13
two sequential events working in

parallel 8-40
two-channel multiplexer as

user-defined primitive 7-24
unsized constant numbers 2-3
use of multi-channel descriptors 21-16
user-defined primitive instance 7-14
using $realtobits and $bitstoreal in

port connections 21-55
value change dump file format 19-17
variable delays for synchronizing

clock 8-45
vector XOR 5-9
waveform 8-42
while loop in counter 8-23
writing formatted output to files 21-16
zero-delay control 8-26
zero-delay oscillation 27-7

execution 24-1 to 24-37

exit simulator 21-19

expansion
of macro modules 12-10, 12-21
of vector nets 3-5, 12-14

explicit event 8-25

expressions 4-1 to 4-26
bit lengths 4-23 to 4-26
constant 4-1
self-determined 4-25

extensions
for files in library directories

25-9 to 25-11

June 1993 Index-17

F
f

in state table 7-15, 7-21

fall delay 6-35, 6-37

file inclusion 24-54 to 24-59

files
extensions in library directories

25-9 to 25-11
extensions of protected source files

20-4
library 25-1 to 25-2
output to 21-14 to 21-17

finish time
in parallel block statements 8-39
in sequential block statements 8-39

floating license 24-1

foci 26-8 to 26-12

for loop
syntax 8-21

force keyword 11-3 to 11-4
precedence over assign 11-3

forever loop
syntax 8-21

fork-join block statement 8-35

format specifications 21-4 to 21-5
ASCII character 21-4
b or B 21-4
binary 21-4
c or C 21-4
d or D 21-4
decimal 21-4
h or H 21-4
hexadecimal 21-4
hierarchical name 21-4
m or M 21-4
net normalized voltage 21-4
net signal strength 21-4, 21-9 to 21-11
o or O 21-4
octal 21-4
s or S 21-4
string 21-4, 21-11
t or T 21-4, 21-6
time format 21-4
timescales 21-6
v or V 21-4

formats
array 22-4
of logic array personality 22-4 to 22-7
plane 22-5

formatted output system tasks 21-17

full connection 13-11 to 13-14

function
syntax 9-8

functions 9-8 to 9-11
and scope 12-31
as structured procedures 8-41
definition 8-41
purpose 9-1
returning a value 9-9
rules 9-10
syntax 9-3
syntax for function call 9-9

G
gate level modeling 6-1 to 6-44

logic gate syntax 6-3 to 6-6

gate type specification 6-4

gates
and 6-6 to 6-7
bidirectional pass 6-12
buf 6-8
bufif 6-9 to 6-10
cmos 6-13 to 6-14
compared to continuous assignments

6-1
connection list 6-6
delay 6-34 to 6-38
keywords for types 6-4
MOS 6-10 to 6-12
nand 6-6 to 6-7
nor 6-6 to 6-7
not 6-8
notif 6-9 to 6-10
notif0 6-9 to 6-10
notif1 6-9 to 6-10
or 6-6 to 6-7
pulldown 6-14
pullup 6-14
removal of names 6-43 to 6-44
syntax 6-3 to 6-6
terminal list 6-6

Index-18 June 1993

G
gates, (continued)

xnor 6-6 to 6-7
xor 6-6 to 6-7

ground 3-13

guidelines
for connection operators 13-13

H
H

logic 1 or high impedance state in
strength format 21-9

h
hexadecimal number format 2-2

hardware
performance optimization 27-22

help
debugging 26-6

hexadecimal display format 2-2
and high impedance state 21-8
and unknown logic value 21-8

Hi
high impedance in strength format

21-9

hierarchy
and source protection 20-13 to 20-16
display of 21-27
effect of macro modules on path

names 12-26
in libraries 25-9
level 12-22
name referencing 12-22 to 12-33, 21-4
of modules 12-1, 21-27
path names for defining abstract data

structures 12-25
scope 12-22
scope rules for naming 12-31 to 12-33
structures 12-1 to 12-33
top level names 12-22
traversal of 21-27

high impedance state 6-16
and numbers 2-4
and trireg nets 3-9
and user-defined primitives 7-14
display formats 21-8
effect in different bases 2-4
strength display format 21-9
symbolic representation 3-1

highz0 6-5

highz1 6-5

history of commands 21-23 to 21-24

hold_limit 13-39

I
identifiers 2-7 to 2-8

definition 2-7
escaped 2-8
keywords 2-9

if-else statement
omitting else from nested if 8-12
purpose 8-11

if-else-if statement
compared to case statement 8-17
syntax 8-14

implicit
declarations 3-7, 6-15, 24-29
event 8-25

incremental pattern files 21-44 to 21-55

incremental restart 21-22

incremental save 21-21, 21-22

index
of array 3-14
of memory 3-16

inertial delay 5-8

initial 8-42
and activity flow 8-2
for specifying waveforms 8-42
syntax 8-42

initial statements
in UDPs 7-10 to 7-13

inout
port declaration 12-15

June 1993 Index-19

I, (continued)

input
port declaration 12-15

input file option 21-25, 21-26, 24-6
and interactive recovery 26-5
syntax 24-6

instantiation
macro module 12-11
of modules 12-1, 12-3 to 12-5

integers 3-16 to 3-17
division 4-6

interactive
control and debugging 26-1 to 26-5
mode 20-8, 21-19
prompt 26-2
recovery 26-5
source listing 21-34 to 21-38

interactive commands
continue 26-3
disable 26-3, 26-4
list of 26-3
re-execute 26-3, 26-4
step 26-3
syntax 26-3
trace-step 20-8, 26-3
where 26-3
: 26-3

interactive debugging environment
26-6 to 26-28

intermediary files 24-2

inter-module port connection 12-19

interrupt
accelerated simulation 27-8
with $stop 26-2
with control-C 26-2

intra-assignment timing controls
8-30 to 8-34

invoking Verilog 24-1 to 24-2

K
key file 21-26 to 21-27, 27-8

and interactive recovery 26-5
-k option 21-26

key file option 24-7
-k 24-7

keywords 2-9
gatetype list 6-4
rs_debug settings 28-84

L
L

logic 0 or high impedance state in
strength format 21-9

La
large capacitor in strength format 21-9

ldiff statement 28-53

left shift operator 4-2, 4-15

legal module paths
one output driver 13-25
multiple output drivers outside the

module 13-25

length parameter 28-45

level-sensitive
event control 8-29
paths 13-28 to 13-30
performance optimization of models

27-21
sequential UDPs 7-8 to 7-9
versus combinational UDP 7-9

level-sensitive UDPs
compared to edge-sensitive UDPs 7-9

lexical conventions 2-1 to 2-10

lexical token
comment 2-2
definition of 2-1
number 2-2
operator 2-1 to 2-2
types 2-1
white space 2-2

libraries 25-1 to 25-27
and ‘resetall 24-33
circular scan order 25-13
controlling scan precedence 25-11
creating unique identifiers for

multiple modules and UDPs
with the same name 25-15

Index-20 June 1993

L
libraries, (continued)

definition renaming 25-27
directories 25-9 to 25-11
directory file extensions 25-9 to 25-11
effect of source protection 20-12
files 25-1 to 25-2
forced scan precedence 25-13 to 25-16
how extensions interact with scan

order 25-12 to 25-14
new scheme 25-2 to 25-8

‘uselib definition of search paths
25-3

search order with ‘uselib paths
25-7

unresolvable instantiations 25-8
null extensions 25-10
renaming definitions 25-27
reporting resolution paths 25-26
syntax checking in files 25-26
use of compiler directives with 25-25

library directory option 24-10, 25-9
syntax 24-10

library file option 24-9, 25-9
syntax 24-9

license 1-4, 24-1
Switch-RC 28-1

limit 13-39

limitations
saving simulation data 21-23

list of formatted output system tasks
21-17

loading memories from text files 21-41 to
21-43

log file 21-25
option 21-26, 24-7

log file option
syntax 24-7

logic array personality 22-4 to 22-7
declaration 22-4
formats 22-4 to 22-7
loading 22-4

logic gates
and 6-6 to 6-7
bidirectional pass 6-12
buf 6-8
bufif 6-9 to 6-10
cmos 6-13 to 6-14
compared to continuous assignments

6-1
delay 6-34 to 6-38
MOS 6-10 to 6-12
nand 6-6 to 6-7
nor 6-6 to 6-7
not 6-8
notif 6-9 to 6-10
or 6-6 to 6-7
pulldown 6-14
pullup 6-14
syntax 6-3 to 6-6
xnor 6-6 to 6-7
xor 6-6 to 6-7

logic one 3-1

logic planes 22-3

logic strength modeling 6-16 to 6-34

logic zero 3-1

logical operators 4-9
! 4-9
&& 4-9
|| 4-9
AND 4-2
and ambiguous results 4-9
and unknown logic value 4-9
compared to bit-wise operators 4-12
equality 4-2
inequality 4-2
negation 4-2
OR 4-2
precedence 4-9

looping statement 8-20 to 8-25
for loop 8-20
forever loop 8-20
repeat loop 8-20
while loop 8-20

lsb (least significant bit) 3-5

June 1993 Index-21

M
macro module 12-9 to 12-11

and hierarchical names 12-26
and module parameters 12-11
and specify blocks 13-3
expansion 12-10, 12-21

and delay modes 17-12
instances containing part-selects or

concatenations 12-11
instantiation 12-11
macromodule keyword 12-11
port connections in 12-21
syntax 12-11

macros
and ‘define 24-30
and +define+ 24-12
defining for ‘uselib 25-3

map_capacitance parameter 28-50

map_resistance parameter 28-48

mc_scan_plusargs 24-25 to 24-26
syntax 24-25

Me
medium capacitor in strength format

21-9

measuring code 27-9

memory 3-14 to 3-16
addressing 4-18
assigning values to 3-15
declaration syntax 3-14
index 3-16
limitations and performance 27-22
real number memories 3-18
reducing virtual storage requirements

6-43
using temporary registers for bit- and

part-selects 4-19

messages 24-37 to 24-44
error 24-39
informational 24-39
levels 24-38 to 24-40
syntax 24-37 to 24-38
warning 24-39

minimum:typical:maximum values
delay 6-37 to 6-38
for module path delays 13-17, 13-19 to

13-20
format 4-22 to 4-23

minus sign(-)
arithmetic subtraction operator 4-2,

4-4
in state table 7-21

MIPDs 15-1 to 15-13
application 15-3, 29-3
definition 15-2, 29-3
hierarchical effects 15-6
how they work 15-5
on inputs and outputs only 15-5
specifying with PLI 15-10
unidirectionality 15-7

mnemonic strength notation 6-33

modeling
asynchronous clear/preset on an

edge-triggered D flip-flop 11-2
behavioral 8-1 to 8-45
logic strength 6-16 to 6-34
sequential circuits with simultaneous

input changes 7-19
simplification for performance 27-24

modeling level and performance 27-10

module 12-1 to 12-5
and user-defined primitives 7-4
definition 12-1 to 12-2
hierarchy 12-1
instance parameter value assignment

12-8 to 12-9
instantiation 12-3 to 12-5
keyword 12-1
library definition renaming 25-27
macro 12-9 to 12-11
overriding parameter values

12-6 to 12-9
parameter dependencies 12-9
port 12-5
syntax 12-2

for specifying instantiations 12-3
terminal 12-5
top-level 12-3, 25-1

module input port delays, see MIPDs
15-1 to 15-13

Index-22 June 1993

M, (continued)

module parameter
as delay 3-19
as width of variables 3-19
compared to specify parameter 13-3,

13-4
dependencies 12-9
overriding values 12-6 to 12-9
passing to tasks 9-4 to 9-5
syntax 3-19
use with macro modules 12-11

module path
definition 13-9
delay 13-5 to 13-33
delay assignment 13-16
description syntax 13-10
destination 13-9, 13-15, 13-36
in behavioral descriptions

13-61 to 13-63
polarity 13-26 to 13-27
source 13-5, 13-9, 13-15, 13-36

module path pulse control
for specific modules and paths

13-35 to 13-36
global 13-33 to 13-35

modulus operator 4-2
definition 4-6

monitor flag 21-13

monitoring
continuous 21-12 to 21-13
strobed 21-12

MOS gate 6-10 to 6-12
nmos 6-12
rnmos 6-12

MOS strength handling 6-33

msb (most significant bit) 3-5

multi-channel descriptor 21-14

multiple drivers
at same strength level 6-30
driving the same net 3-8
inside a module 13-14, 13-24 to 13-25
outside a module 13-25

multiple library directory file extensions
25-10

multiple module path delays
assigning in one statement

13-14 to 13-15

multi-way decisions
case statement 8-16
if-else-if statement 8-14

N
n

in state table 7-15, 7-21

named blocks
and hierarchical names 12-22
and scope 12-31
purpose 8-39

named events 8-28 to 8-29
used with event expressions 8-28

names
making multiple definitions of

like-named modules and UDPs
unique 25-15

of hierarchical paths 12-22 to 12-33

nand gate 6-6 to 6-7

negedge 13-55

net and register bit addressing 4-17 to 4-18

nets 3-2 to 3-13
delay 6-34 to 6-38, 28-78
implicit declaration 6-15
initialization 3-7
names referenced in a hierarchical

name 6-43
not driven by a source 6-16
removal of names 6-43 to 6-44
scalar 12-19
Switch-RC net behavior 28-65
syntax 3-3 to 3-4
trireg strength 6-18
types of 3-8 to 3-13
wired logic 6-30

new line character 2-7, 21-3

nmos 6-10 to 6-12

node
in hierarchical name tree 12-22

non-blocking procedural assignment
8-4 to 8-11

June 1993 Index-23

N, (continued)
evaluating assignments 8-5
multiple assignments 8-9
processing assignments 8-11
syntax 8-5

nor gate 6-6 to 6-7

not gate 6-8

notif gate 6-9 to 6-10
notif1 6-10

notifier 13-39, 13-55 to 13-59
argument in timing checks 13-38
in edge sensitive UDP 13-56 to 13-59
toggle values 13-56

null
expression 21-2
extensions 25-10
string 4-22

numbers 2-2
base format 2-2
size specification 2-2
unsized 2-3

O
o

octal number format 2-2

octal display format 2-2

on/off control
of monitoring tasks 21-13

operands 4-17 to 4-22
bit-select 4-17
concatenation 4-17
definition 4-1
function call 4-17
part-select 4-17
strings 4-19 to 4-22

operators 4-2 to 4-17
- 4-2, 4-4
+ 4-2, 4-4
! 4-2, 4-9
% 4-2, 4-3, 4-4
& 4-2, 4-3, 4-4, 4-11, 4-12
* 4-2, 4-4
< 4-2, 4-4, 4-7
= 5-1
> 4-2, 4-4, 4-7
^ 4-2, 4-3, 4-4, 4-11, 4-12
| 4-2, 4-3, 4-4, 4-11, 4-12
~ 4-2, 4-3
!= 4-2, 4-4, 4-8
&& 4-2, 4-4, 4-9
*> 13-11 to 13-15
<< 4-2, 4-3, 4-4, 4-15
<= 4-2, 4-4, 4-7, 8-5
== 4-2, 4-4, 4-8
=> 13-11 to 13-15
>= 4-2, 4-4, 4-7
>> 4-2, 4-3, 4-4, 4-15
^~ 4-2, 4-3, 4-4, 4-11
|| 4-2, 4-4, 4-9
~& 4-2, 4-3
~^ 4-2, 4-3
~| 4-2, 4-3
!== 4-2, 4-3, 4-4, 4-8
=== 4-2, 4-3, 4-4, 4-8
?: 4-2, 4-4
{} 4-2, 4-3, 4-16
and real numbers 3-18
arithmetic 4-2, 4-5 to 4-6
binary 2-2, 4-4
bit-wise 4-3, 4-11 to 4-12
bit-wise AND 4-2
bit-wise equivalence 4-2
bit-wise exclusive OR 4-2
bit-wise inclusive OR 4-2
bit-wise negation 4-2
case equality 4-2, 4-3
case inequality 4-2
concatenate 4-3
concatenation 4-2, 4-16
conditional 4-2, 4-15 to 4-16
definition 2-1
equality 4-8 to 4-9
left shift 4-2
left shift operator 4-15
logical 4-9
logical AND 4-2

Index-24 June 1993

operators, (continued)
logical equality 4-2
logical inequality 4-2
logical negation 4-2
logical OR 4-2
modulus 4-2
reduction 4-3, 4-12 to 4-14
reduction AND 4-2
reduction NAND 4-2
reduction NOR 4-2
reduction OR 4-2
reduction XNOR 4-2
reduction XOR 4-2
relational 4-2, 4-7
right shift 4-2
right shift operator 4-15
shift 4-3, 4-15
ternary 2-2
unary 2-2
/ 4-2, 4-4

optimization
of processing stimulus patterns 21-43

optimizing code 27-9
+speedup 24-21

optional arguments of system tasks 13-38

options
invoking on command line 24-2
predefined standard 24-4 to 24-11
specifying on command line 24-2

or gate 6-6 to 6-7

order of library scan 24-16

output
port declaration 12-15
to files 21-14 to 21-17

overhead 27-11
in simulation 27-2

overriding global module path pulse
control 13-35 to 13-36

overriding module parameter values
12-6 to 12-9

assigning values in-line within module
instances 12-8 to 12-9

defparam 12-7 to 12-9

P
p

in state table 7-15, 7-21

parallel block statement
finish time 8-39
fork-join 8-35
start time 8-39
syntax 8-38

parallel connection 13-11 to 13-14

parameter
keyword for module parameters 13-3
module type 3-19
syntax 3-19

parentheses
and changing operator precedence 4-5

part-select
and macro module instances 12-11
and vector ports 12-14
of vector net or register 4-18
references of real numbers 3-18
syntax 4-18

path delay mode 17-3

path delays
combining types 14-10
multiple 14-9 to 14-14
scheduling 14-16

PATHPULSE$ 13-35 to 13-36

performance 27-1 to 27-2, 27-9 to 27-27
accelerated primitives 27-12
accelerating behavioral code 24-21
aliases 27-20
Behavior Profiler to find problems

27-15
cache thrashing 27-24
capturing simulation data 27-26
clock generators 27-14
coding tricks 27-16
compilation 27-27
debugging style 27-25
establishing a metric 27-10
estimating model speed 27-9
event controls 27-19
hardware 27-22
keeping primitives accelerated 27-12

June 1993 Index-25

P
performance, (continued)

level-sensitive behavior
modeling27-21

measuring code 27-9
memory limitations 27-22
model simplification 27-24
modeling level 27-10
optimizing code 27-9
overhead due to switching algorithms

27-11
reducing executed code 27-24
UDPs 27-19

personality
memory 22-3
of logic array 22-4 to 22-7

PLA devices 22-1 to 22-24
array logic types 22-3
array types 22-3
list of system tasks 22-2
logic array personality declaration

22-4
logic array personality formats

22-4 to 22-7
logic array personality loading 22-4
syntax of system tasks 22-2

plane
format 22-5
in programmable logic arrays 22-3

PLI interface routines
mc_scan_plusargs 24-25 to 24-26

plus options 24-11 to 24-24
+autonaming 12-29, 24-11
+autoprotect 20-5 to 20-7, 20-12, 24-11
+bpi_profile 24-12
+caxl 24-12
+define+

and ‘define 24-13, 24-50
and empty macros 24-49
and library search paths 25-3
and macro strings 24-12

+delay_mode_distributed 24-14
+delay_mode_path 24-14
+delay_mode_unit 24-14

+delay_mode_zero 24-14
+err_line_length+ 24-15
+incdir+ 24-15
+libext 25-9 to 25-11
+libext+ 24-15
+libnonamehide 25-22 to 25-23
+liborder 24-16, 25-13 to 25-15
+librescan 24-16, 25-15 to 25-16
+libverbose 24-16, 25-15, 25-26
+maxdelays 4-23, 6-38, 13-20, 24-17
+max_error_count 24-17
+mindelays 4-23, 6-38, 13-20, 24-17
+noaccerr 24-18
+nolibcell 24-18
+notimingchecks 13-52
+no_charge_decay 24-18
+no_cond_event_error 24-18
+no_notifier 24-19
+no_pulse_msg 13-34, 24-19
+pre_16a_paths 14-15, 24-20
+protect 20-3 to 20-5, 20-12,

20-18 to 20-19, 24-20
+pulse_e/n 13-33, 24-21
+pulse_r/m 13-33 to 13-35, 24-21
+rswrctostr or +rsw_rc_to_str 24-21
+rsw_opt_stack 24-21
+speedup 24-21, 27-24
+switchres or +switch_res 24-23, 28-27
+switchxl 24-23, 28-7
+sxl_keep_all 24-23
+sxl_keep_declared 24-24
+sxl_keep_minimum 24-24
+sxl_unidirect 24-23, 28-19
+typdelays 4-23, 6-38, 13-20, 24-24
no error checking 24-26
predefined 24-11 to 24-24
specifying on command line 24-2
testing 24-25 to 24-26
user-defined 24-2, 24-24 to 24-26

plus plus sign(++)
to specify null extensions 25-10

plus sign(+)
arithmetic addition operator 4-2, 4-4
separator for +libext arguments 25-9

pmos 6-10 to 6-12

polarity 13-26 to 13-27
negative 13-26
positive 13-26 to 13-27
unknown 13-26

Index-26 June 1993

P, (continued)

port 12-14 to 12-22
collapsing 12-18
connecting

by name 12-16 to 12-17
by position with ordered list 12-15
in macro modules 12-21
rules for 12-19 to 12-20

declaration 12-15
definition 12-14
inter-module connections 12-19
module 12-5
of user-defined primitives 7-5
rules for collapsing 12-19 to 12-20

posedge 13-55

power supplies
modeled by supply nets 3-13

precedence
binary operators 4-4
equality operators 4-8
logical operators 4-9
relational operators 4-8

predefined plus options 24-11 to 24-24
+autoprotect 24-11
+bpi_profile 24-12
+caxl 24-12
+define+

and ‘define 24-13, 24-50
and empty macros 24-49
and library search paths 25-3
and macro strings 24-12

+delay_mode_distributed 24-14
+delay_mode_path 24-14
+delay_mode_unit 24-14
+delay_mode_zero 24-14
+err_line_length+ 24-15
+incdir 24-56
+incdir+ 24-15
+libext 25-9 to 25-11
+libext+ 24-15
+libnonamehide 24-16, 25-22 to 25-23
+liborder 24-16, 25-13 to 25-15
+librescan 24-16, 25-15 to 25-16
+libverbose 24-16, 25-26
+maxdelays 4-23, 6-38, 24-17
+max_error_count 24-17
+mindelays 4-23, 6-38, 24-17
+nolibcell 24-18

predefined plus options, (continued)
+no_charge_decay 24-18
+no_cond_event_error 24-18
+no_notifier 24-19
+no_pulse_msg 13-34, 24-19
+pre_16a_paths 14-15, 24-20
+protect 24-20
+pulse_e/n 24-21
+pulse_r/m 24-21
+rswrctostr or +rsw_rc_to_str 24-21
+rsw_opt_stack 24-21
+speedup 24-21, 27-24
+switchres or +switch_res 24-23, 28-27
+switchxl 24-23, 28-7
+sxl_keep_all 24-23
+sxl_keep_declared 24-24
+sxl_keep_minimum 24-24
+sxl_unidirect 24-23, 28-19
+typdelays 4-23, 6-38, 24-24

predefined standard options 24-4 to 24-11
-a 24-4
-d 24-4
-f 24-4
-i 24-6
-k 24-7
-l 24-7
-q 24-7
-r 24-8
-s 24-8
specifying on command line 24-2
-t 24-8
-u 24-8
-v 24-9
-w 24-9
-x 24-9
-y 24-10

primitive instance identifier 6-6

primitive keyword 7-4

printing command history 21-23 to 21-24

probabilistic distribution functions
23-5 to 23-6

$dist_chi_square 23-5
$dist_erlang 23-5
$dist_exponential 23-5
$dist_normal 23-5
$dist_poisson 23-5
$dist_t 23-5
$dist_uniform 23-5

June 1993 Index-27

P, (continued)

procedural assignment 8-3 to 8-4
and integers 3-16
and time variables 3-16
blocking 8-4
non-blocking 8-4 to 8-11
versus continuous assignment 5-9

procedural continuous assignments
11-1 to 11-4

assign 11-2 to 11-3
deassign 11-2 to 11-3
definition 11-1
force 11-3 to 11-4
precedence 11-3
release 11-3 to 11-4
syntax 11-1

procedural statements
in behavioral models 8-1

procedural timing controls 8-25 to 8-34
delay control 8-26 to 8-27
event control 8-25
fork-join block 8-39
intra-assignment timing controls

8-30 to 8-34
zero-delay control 8-26

procedure
always statement 8-41
function 8-41
initial statement 8-41
task 8-41

programmable logic arrays 22-1 to 22-24
list of system tasks 22-2
logic types 22-3
personality

declaration 22-4
formats 22-4 to 22-7
loading 22-4

syntax of system tasks 22-2
types 22-3

propagation delay
for gates and nets 6-35
in logic gate syntax 6-5

protection
of data in memory 21-56

Pu
pull drive in strength format 21-9

pull0 6-5

pull1 6-5

pulldown source 6-14

pullup source 6-14

Q
qualified paths 13-28 to 13-33

edge-sensitive 13-30 to 13-33
level-sensitive 13-28 to 13-30

queue management 23-1 to 23-4
$q_add 23-1, 23-2
$q_exam 23-1, 23-3
$q_full 23-1, 23-2
$q_initialize 23-1
$q_remove 23-1, 23-2
queueing tasks and $restart 23-4
queueing tasks and $save 23-4
status codes 23-3
status parameters 23-4

queueing models 23-1

quiet option 24-7

R
r

in state table 7-15, 7-21

race condition 8-31, 27-8

random access memory(RAM)
modeled by register arrays 3-14

random number generator 21-19, 23-5

range
syntax 3-5

rcmos 6-13

reading input commands from a file 21-25

read-only memory(ROM)
modeled by register arrays 3-14

real numbers 3-17 to 3-18, 21-55
and operators 3-18
conversion to integers 3-18
format specifications used with 21-5
in port connections 12-18

Index-28 June 1993

R
operators with real number operands 4-3

specifying 3-17
syntax 3-17

recursive -f options 24-4

recursive task calls 9-7

reducing pessimism 7-17 to 7-18, 8-18

reduction operators 4-12 to 4-14
& 4-2, 4-12
^ 4-12
| 4-12
~& 4-2
exclusive OR 4-12
inclusive OR 4-2, 4-12
syntax restrictions 4-14
unary AND 4-2, 4-12
unary NAND 4-2, 4-13
unary NOR 4-2, 4-13
XNOR 4-2
XOR 4-2

redundancy
in user-defined primitive state tables

7-14

re-execute 26-3, 26-4

reference_event 13-39

registers 3-2 to 3-5
and level-sensitive sequential UDPs

7-8
declaration syntax 3-14
for modeling memories 3-14
notifier 13-55
syntax 3-3 to 3-4
used in procedural assignments 5-10

relational operators 4-2, 4-7
< 4-7
> 4-7
<= 4-7
>= 4-7
and unknown bit values 4-8
precedence 4-8

release keyword 11-3 to 11-4

repeat event control 8-32 to 8-34

repeat loop
syntax 8-21

repetition multiplier 4-16

replaying a simulation run 26-5

reporting
non-xl structures 27-5 to 27-6

resistive devices
modeled with tri0 and tri1 nets 3-13

resolving modules and UDPs 25-9, 25-10,
25-11 to 25-16, 25-26

restart file option 21-23
and -c 24-4
and compile only option 24-4
and interactive recovery 26-5
syntax 24-8

restarting
from command line 21-23
from full save 21-21
from incremental save 21-22
the simulator 21-21 to 21-23

restrictions on data types
in continuous assignments 5-1, 5-10,

12-19
in port collapsing 12-18 to 12-19
in procedural assignments 5-1, 5-10,

8-3
when connecting ports 12-19

restrictions on interactive commands
26-2

right shift operator 4-2, 4-15

rise delay 6-35, 6-37

rnmos 6-10 to 6-12

rpmos 6-10 to 6-12

rs_debug keyword 28-84

rtran 6-12

rtranif0 6-12

rtranif1 6-12

rules
for describing module paths 13-14

running XL 27-2 to 27-3

June 1993 Index-29

S
s

in string display format 21-11

saving simulation data 21-21 to 21-23
limitations 21-23

scalared keyword 3-5

scalars
compared to vectors 3-5
scalar nets and driving strength of

continuous assignment 5-9

scanning libraries 24-16

scheduling path delays 14-16

scientific notation 3-17

scope
and hierarchical names 12-22
rules 12-31 to 12-33

SDPDs 14-1 to 14-18
and multiple path delays 14-9
as unconditional delays 14-15
combined with other delays 14-10
effects of unknowns 14-11
internal logic effects 14-13
PLI back annotation 14-18
scheduling 14-16
simulating as unconditional paths

24-32
Veritime considerations 14-17

SDPDs and distributed delays 14-15

seed 23-5

self-determined expression 4-25

sequential block statement 8-35 to 8-37
finish time 8-39
start time 8-39
syntax 8-35

sequential UDP initialization 7-10 to 7-13

sequential UDPs
input and output fields in state table

7-6

set of values (0, 1, x, z) 3-1

setting
foci 26-8 to 26-12
trace 26-16

setup_limit 13-39

shift operators 4-15
<< 4-15
>> 4-15

showing
breakpoints 26-28
foci 26-12

simulating module path delays
one path output driving another

13-22 to 13-23
propagating strength changeson paths

13-23
when driving wired logic 13-24 to 13-25

simulation
capturing data 27-26
command line 24-1
event-driven 7-20
going back with incremental restart

21-22
list of activities 27-1
overhead 27-2
response 27-1
simulation time and timing controls

8-25
stimulus 27-1
time 21-17 to 21-18

size of displayed data 21-6 to 21-7

sized numbers 2-2

Sm
small capacitor in strength format

21-9

source
pulldown 6-14
pullup 6-14

source description file 24-1

source protection 19-7, 20-1 to 20-19
accessing protected information

20-8 to 20-12
affect on libraries 20-12
affect on simulation 20-8 to 20-12
displaying hierarchical path names

20-13 to 20-16
effect of timing checks 20-16
error messages 20-16
file extensions 20-4

Index-30 June 1993

S
source protection, (continued)

protecting all modules and UDPs in a
source description 20-5 to 20-7

protecting data in memory 20-17
protecting selected regions

20-1 to 20-5

specify block 13-1 to 13-63

specify block system tasks
$hold 13-41
$nochange 13-51 to 13-52
$period 13-44
$recovery 13-47
$setup 13-40
$setuphold 13-48
$skew 13-45
$width 13-42

specify parameter 13-3 to 13-4

specify parameters
as run time constant in specify block

13-2

specifying transition delays on module
paths 13-17 to 13-21

assigning one value 13-17
assigning six values 13-19
assigning three values 13-18
assigning two values 13-18
x transitions 13-20 to 13-21

specparam 13-3 to 13-4
syntax 13-3
versus module parameter 13-4

St
strong drive in strength format 21-9

stack optimization 28-79

standard output 21-14

start time
in parallel block statements 8-39
in sequential block statements 8-39

start_edge_offset 13-39

state dependent path delays 14-1 to 14-18

state dependent path delays and
distributed delays 14-15

status
of expanded nets 21-29
of module ports 21-29
of variables 21-28 to 21-29

step 26-3

stepping 26-12 to 26-17
in time 26-14, 26-15

stochastic analysis 23-1 to 23-6
probabilistic distribution functions

23-5 to 23-6
queue management 23-1 to 23-4

stop option 24-8

strength 6-4 to 6-5
ambiguous 6-20 to 6-32
and logic conflicts 3-8
and MOS gates 6-33
and scalar net variables 3-1
charge storage 6-18
driving 6-17
gates that accept specifications 6-4
of combined signals 6-18 to 6-32
on trireg nets 3-9
range of possible values 6-21
reduction by non-resistive devices

6-33
reduction by resistive devices 6-33
reduction table 6-33
scale of strengths 6-18
supply net 6-34
trace messages 6-33
tri0 6-34
tri1 6-34
trireg 6-34

strength display format 21-9 to 21-11
high impedance 21-9
large capacitor 21-9
logic value 0,1,H,L,X,Z 21-9
medium capacitor 21-9
pull drive 21-9
small capacitor 21-9
strong drive 21-9
supply drive 21-9
weak drive 21-9

June 1993 Index-31

S, (continued)

strings 2-5 to 2-7, 4-19 to 4-22
and specifying file name arguments

21-1
definition 2-5
display format 21-4, 21-11
in vector variables 4-20
manipulation 2-6
operations 4-20
padding 2-6
special characters 2-7
value padding 4-20 to 4-21
variable declaration 2-5

strobed monitoring 21-12

strong0 6-5

strong1 6-5

structured procedure 8-41 to 8-45
always statement 8-41
function 8-41
initial statement 8-41
task 8-41

Su
supply drive in strength format 21-9

supply net strength 6-34

supply nets 3-13

supply0 6-5

supply1 6-5

Switch XL
conversion of channel delay to turn

on/turn off delay 28-16

switches
MOS 6-10 to 6-12

switch-level simulation 28-1 to 28-98
algorithms 28-1 to 28-98
algorithms’ major features 28-4
networks 28-2

Switch-RC 28-35 to 28-98
algorithm 28-35, B-1 to B-23
boundaries 28-73 to 28-77

continuous assignments 28-75
fanins 28-73
fanouts 28-77
logic gates 28-73
signal transition slopes 28-98

switches 28-76
cdiff statement 28-54
cgo statement 28-53
charge decay, default 28-72
charge decay, DRM 28-72
controllable behavior 28-71
cox statement 28-52
debugging 28-81 to 28-97

dc setting for $rs_trace_net task
28-89

escape sequences %n and %v 28-81
event setting for $rs_trace_net

task 28-88
spike setting for $rs_trace_net task

28-93
tau setting for $rs_trace_net task

28-91
tau2 setting for $rs_trace_net task

28-93
the $options task 28-83
the $rs_get_net task 28-97
the $rs_showpaths task 28-95
the $rs_trace_net task 28-85
the $rs_untrace_net task 28-85

default statement 28-43
defining technologies 28-42 to 28-59

example 28-58
deltal statement 28-53
deltaw statement 28-53
design description 28-41
differences from Verilog-XL 28-98
example netlists 28-67
force statement 28-98
highthresh statement 28-44
how the algorithm works

28-35 to 28-40
invoking globally 28-7
ldiff statement 28-53
licensed separately 28-1
limitations 28-40
lowthresh statement 28-43
mapcap statement 28-49

charging_strength 28-50
default 28-51
examples 28-51
map_capacitance 28-50
methodology 28-51

mapres statement 28-47
default 28-49
driving_strength 28-48
examples 28-49

Index-32 June 1993

S

Switch-RC, (continued)
map_resistance 28-48
methodology 28-48

modes 28-71
and charge decay 28-72

name statement 28-43
net behavior 28-65
net instantiation 28-64

examples 28-66
net model 28-37
network model 28-40
overriding delays 28-78

with net delays 28-78
with unit delays 28-79
with zero delays 28-79

PLI 28-98
release statement 28-98
resistance statement 28-44

context 28-45
defaults 28-47
examples 28-46
length 28-45
switch_resistance 28-46
type 28-44
width 28-45

stack optimization 28-79
switch capacitance

and logic gates 28-57
calculations 28-55
parameters 28-52

switch instantiation 28-59
examples 28-63
types 28-62

switch model 28-35
technologies 28-42 to 28-59
technology characterization

C-1 to C-48
VCL 28-98
wired logic 28-98
xa statement 28-54

Switch-XL 28-16 to 28-33
default charge and drive strength

28-29
enabling 28-7
net removal 28-20
optimization 28-20 to 28-26
purpose 28-5
strength mapping 28-31
strength reduction 28-30

Switch-XL algorithm 28-16 to 28-33

Switch-XL strength model 28-26 to 28-33

switch_resistance parameter 28-46

symbolic debugging 26-1 to 26-5
and hierarchical name referencing

12-25

synchronous arrays 22-3

syntax
$compare 21-49
$countdrivers 21-30
$db_breakaftertime 26-22
$db_breakatline 26-21
$db_breakbeforetime 26-22
$db_breakonceatline 26-21
$db_breakonceonnegedge 26-25
$db_breakoncewhen 26-23
$db_breakonnegedge 26-25
$db_breakonposedge 26-24
$db_breakwhen 26-23
$db_cleartrace 26-17
$db_deletebreak 26-26
$db_deletefocus 26-9
$db_disablebreak 26-27
$db_disablefocus 26-11
$db_enablebreak 26-26
$db_enablefocus 26-10
$db_help 26-6
$db_setfocus 26-9
$db_settrace 26-16
$db_showbreak 26-28
$db_showfocus 26-12
$db_step 26-14
$db_steptime 26-15
$disable_warnings 21-38
$display 21-1
$dist_chi_square 23-5
$dist_erlang 23-5
$dist_exponential 23-5
$dist_normal 23-5
$dist_poisson 23-5
$dist_t 23-5

June 1993 Index-33

S
syntax, (continued)

$dist_uniform 23-5
$enable_warnings 21-40
$fclose 21-14
$fdisplay 21-14
$finish 21-18
$fmonitor 21-14
$fopen 21-14
$fstrobe 21-14
$fwrite 21-14
$getpattern 21-43
$history 21-23
$incpattern_read 21-47
$incpattern_write 21-45
$incsave 21-21
$keepcommands 21-34
$key 21-26
$list 21-34, 21-35
$listcounts 21-35
$list_forces 21-36
$log 21-25
$monitor 21-12
$monitoroff 21-12
$monitoron 21-12
$nochange 13-51
$nokey 21-26
$nolog 21-25
$options 28-83
$q_add 23-1
$q_exam 23-1
$q_full 23-1
$q_initialize 23-1
$q_remove 23-1
$random 21-19
$readmemb 21-41
$readmemh 21-41
$recovery 13-47
$reportprofile 21-59
$reset 21-61
$restart 21-21
$save 21-21
$scope 21-27
$setup 13-40
$setuphold 13-49
$showallinstances 21-27
$showexpandednets 21-29
$showmodes 21-34
$shownonxl 27-6
$showportsnotcollapsed 21-29

$showscopes 21-27
$showvariables 21-28
$showvars 21-28
$startprofile 21-58
$stime 21-17
$stop 21-18
$stopprofile 21-59
$strobe 21-12
$strobe_compare 21-51
$test$plusargs 24-25
$time 21-17
$width 13-42
$write 21-1
‘default_nettype 6-15
+define+ 24-12
+libext+ 24-15
always 8-43
assign 11-1
behavioral statements A-8 to A-9
case statement 8-16
conditional operator 4-15
conditional statement 8-11
conditioned event 13-60
continuous assignment 5-2
deassign 11-1
declarations A-5 to A-6
declaring events 8-28
delay control 8-26
disable statement 10-1
edge control specifiers 13-54
edge-sensitive paths 13-30
errors and <- 24-40
event control 8-27
event triggering statement 8-29
expressions A-13 to A-15
for addressing memory 4-18
for enabling tasks 9-4
for loop 8-21
force 11-1
forever loop 8-21
formal definition A-1 to A-17
function 9-3, 9-8
function call 9-9
general A-15
hold 13-41
-i option 24-6
if-else-if statement 8-14
initial statement 8-42
integer declaration 3-16
interactive commands 26-3
-k option 24-7

Index-34 June 1993

S
syntax, (continued)

-l option 24-7
level-sensitive paths 13-28
logic gates 6-3 to 6-6
macro module 12-11
mc_scan_plusargs 24-25
memory declaration 3-14
module 12-2
module instantiation 12-3, A-7
module parameter 3-19
module path delay assignment 13-16
module path description 13-10
net declaration 3-3 to 3-4
parallel block statement 8-38
part-select 4-18
PATHPULSES$ 13-35
period 13-44
port

declaration 12-15
definition 12-14

primitive instances A-6
procedural continuous assignments

11-1
-r option 24-8
range 3-5
real numbers 3-17
register declaration 3-3 to 3-4, 3-14
release 11-1
repeat loop 8-21
SDPD 14-2
sequential block statement 8-35
skew 13-46
source text A-2 to A-4
specify block 13-2
specify parameter 13-3
specify section A-10 to A-12
specparam 13-3
state dependent path delays 14-2
switch-level modeling A-16
Switch-RC net instantiation 28-64
Switch-RC switch instantiation 28-59
Switch-XL strength model

28-27 to 28-28
task 9-3
text macro

definitions 2-9
usage 2-9

time variable declaration 3-16
UDPs 7-3 to 7-4

user-defined primitives 7-3 to 7-4
-v option 24-9
wait statement 8-29
while loop 8-21
-y option 24-10

system tasks 21-1 to 21-69
effect of source protection

20-8 to 20-12
file name arguments 21-1
for changing base in formatted output

21-17
for continuous monitoring 21-12 to

21-13
for displaying information 21-1 to

21-11
for displaying the delay mode 21-34
for fetching simulation time

21-17 to 21-18
for generating key files 21-26 to 21-27
for generating random numbers 21-19
for interrupting the simulator

21-18 to 21-19
for loading memories from text files

21-41 to 21-43
for printing command history

21-23 to 21-24
for processing stimulus patterns faster

21-43
for producing an interactive source

listing 21-34 to 21-38
for reading input commands from a file

21-25
for resetting Verilog-XL 21-59 to 21-69
for restarting the simulator

21-21 to 21-23
for running the behavior profiler

21-58 to 21-59
for saving simulation data

21-21 to 21-23
for showing hierarchy 21-27
for showing module port status 21-29
for showing number of drivers

21-30 to 21-31
for showing status of expanded nets

21-29
for showing variable status

21-28 to 21-29
for storing interactive commands

21-34

June 1993 Index-35

S
syntax, (continued)

for writing formatted output to files
21-14 to 21-17

generating a checkpoint in the value
change dump file 19-5

limiting the size of the value change
dump file 19-5

list of formatted output system tasks
21-17

reading the value change dump file
during a simulation 19-6

resuming the dump into the value
change dump file 19-4 to 19-5

showing the timescale of a module
16-10 to 16-11

specifying how %t reports time
information 16-11 to 16-14

specifying the name of the value
change dump file 19-3

specifying the time unit of delays
entered interactively
16-11 to 16-14

specifying the variables to be dumped
in the value change dump file
19-3 to 19-4

stopping the dump into the value
change dump file 19-4 to 19-5

system tasks’ optional arguments 13-38

T
t

timescale format 16-10, 21-6, 21-56

tab character 2-7

table keyword 7-5

tasks 9-1 to 9-11
and hierarchical names 12-22
and scope 12-31
as structured procedures 8-41
definition 8-41
disabling within a nested chain 10-1
enabling 9-2 to 9-4, 9-7
passing parameters 9-4 to 9-5
purpose 9-2
syntax 9-3

for enabling 9-4

technology characterization for
Switch-RC C-1 to C-48

terminal
in logic gate syntax 6-6
module 12-5

ternary operators
?: 4-4

text macro substitutions 2-9 to 2-10
and ‘define 24-30
and ‘undef 24-35
and +define+ 24-12
definition syntax 2-9
in interactive mode 2-9
redefinition 2-10
usage syntax 2-9

threshold 13-39

time 21-17 to 21-18
and incremental restart 21-22
arithmetic operations performed on

time variables 3-17
simulation 8-25
variables 3-16

time precision 16-2

time unit 16-2

timescales 16-1 to 16-18, 21-55

timing checks 13-37 to 13-61
$hold 13-41
$nochange 13-51 to 13-52
$period 13-44
$recovery 13-47
$setup 13-40
$setuphold 13-48
$skew 13-45
$width 13-42
and detecting simultaneous input

transitions 7-20
arguments 13-39
data_event 13-38, 13-39
disabling 13-52
end_edge_offset 13-38, 13-39
hold_limit 13-38, 13-39

Index-36 June 1993

T
timing checks, (continued)

in behavioral descriptions 13-61 to
13-63

limit 13-38, 13-39
list of system tasks 13-38
notifier 13-38, 13-39
reference_event 13-38, 13-39
setup_limit 13-38, 13-39
start_edge_offset 13-38, 13-39
threshold 13-38, 13-39

timing violation messages 13-52

top-level module 12-3, 25-1

trace
$cleartrace 21-20
$settrace 12-12, 21-20
and acceleration 27-8
option 24-8
single step 12-12

trace-step 26-3

tracing 26-14

tran 6-12

tranif0 6-12

tranif1 6-12

transistors 6-12

transitions
01 7-9
order for module path delay

assignment 13-19
unspecified 7-10

tree structure
of hierarchical names 12-22

tri nets 3-8 to 3-13

trireg
and charge storage strength 6-18
vectored keyword inapplicable 3-6, 3-9

turn on/turn off delay timing model 28-16

turn-off delay 6-37

types of nets
supply nets 3-13
tri nets 3-8, 6-34
tri0 3-13, 6-34
tri1 3-13, 6-34
triand 3-8
trior 3-8
trireg 3-9, 6-34, 21-10
wire 3-8
wired AND 3-8
wired logic 6-30
wired OR 3-8

U
UDPs 7-1 to 7-24

- in state table 7-21
* in state table 7-21
? in state table 7-21
* symbol 7-15
(??) in state table 7-21
(01) in state table 7-21
(0x) in state table 7-21
(10) in state table 7-21
(1x) in state table 7-21
(vw) in state table 7-21
(x1) in state table 7-21
0 in state table 7-21
1 in state table 7-21
and memory considerations 7-2
and performance 7-1
b in state table 7-21
b symbol 7-15
combinational UDPs 7-6 to 7-8
compilation 7-14
definition 7-4 to 7-6
edge-sensitive UDPs 7-9 to 7-10
f in state table 7-21
f symbol 7-15
instances 7-14
level-sensitive dominance 7-19, 7-19
level-sensitive sequential UDPs

7-8 to 7-9
mixing level- and edge-sensitive

descriptions 7-16 to 7-17
n in state table 7-21
n symbol 7-15
p in state table 7-21
p symbol 7-15
performance 27-19
ports 7-5

June 1993 Index-37

U
UDPs, (continued)

processing simultaneous input
changes 7-19

r in state table 7-21
r symbol 7-15
reducing pessimism 7-17 to 7-18
state table 7-5 to 7-6
summary of symbols in state table

7-21
syntax 7-3 to 7-4
table of memory requirements 7-2
x in state table 7-21

ULM 24-1

unary operators
! 4-9
& 4-12
^ 4-12
| 4-12
~ 4-11
<< 4-15
>> 4-15

unconnected port 12-5

underline character 2-4

unit delay mode 17-2, 28-79

unknown logic value
and numbers 2-4
display formats 21-8
effect in different bases 2-4
in state table 7-6, 7-10, 7-21
symbolic representation 3-1

unsized numbers 2-3

unspecified transitions 7-10

upper case option 24-8

upwards name referencing 12-27 to 12-33

user-defined options 24-24 to 24-26
no error checking 24-26
specifying on command line 24-2
testing 24-25 to 24-26

user-defined primitives 7-1 to 7-24
- in state table 7-21
* in state table 7-21
? in state table 7-21
* symbol 7-15
(??) in state table 7-21
(01) in state table 7-21
(0x) in state table 7-21
(10) in state table 7-21
(1x) in state table 7-21
(vw) in state table 7-21
(x1) in state table 7-21
0 in state table 7-21
1 in state table 7-21
and memory considerations 7-2
and performance 7-1
b in state table 7-21
b symbol 7-15
combinational 7-6 to 7-8
compilation 7-14
definition 7-4 to 7-6
edge-sensitive 7-9 to 7-10
f in state table 7-21
f symbol 7-15
instances 7-14
level-sensitive dominance 7-19
level-sensitive sequential 7-8 to 7-9
mixing level- and edge-sensitive

descriptions 7-16 to 7-17
n in state table 7-21
n symbol 7-15
p in state table 7-21
p symbol 7-15
ports 7-5
processing simultaneous input

changes 7-19
r in state table 7-21
r symbol 7-15
reducing pessimism 7-17 to 7-18
state table 7-5 to 7-6
summary of symbols in state table

7-21
syntax 7-3 to 7-4
table of memory requirements 7-2
x in state table 7-21

Index-38 June 1993

V
-v

syntax 24-9

value change dump file 19-1 to 19-20
contents 19-8
creating 19-2 to 19-7
effect of source protection 19-7
format 19-8 to 19-20

example 19-17 to 19-18
formats of variable values 19-9 to 19-10
generating a checkpoint 19-5
keyword commands 19-10 to 19-15

$comment 19-11
$date 19-11
$dumpall 19-14
$dumpoff 19-15
$dumpon 19-15
$dumpvars 19-14
$enddefinitions 19-14
$scope 19-13
$timescale 19-15
$upscope 19-14
$var 19-12
$version 19-12

limiting the size 19-5
reading the value change dump file

during a simulation 19-6
resuming the dump 19-4 to 19-5
specifying the name 19-3
specifying the variables to be dumped

19-3 to 19-4
stopping the dump 19-4 to 19-5
structure 19-8
syntax of VCD file 19-16

value set (0, 1, x, z) 3-1

values
of combined signals 6-18 to 6-32

Vcc 3-13

VCD file
syntax 19-16

Vdd 3-13

vectored keyword 3-5

vectors 3-5
and timing violations 13-53
and vector net expansion 3-5, 24-9

Vss 3-13

W
wait statement

as level-sensitive event control 8-29
syntax 8-29
to advance simulation time 8-25

warning messages 24-39
and -w 24-9
enabling and disabling 21-38 to 21-40

warning suppression option 12-32, 24-9

warnings
disabling 21-38 to 21-40
enabling 21-40

We
weak drive in strength format 21-9

weak0 6-5

weak1 6-5

where 26-3

while loop
syntax 8-21

white space 2-2

width parameter 28-45

wired logic nets
wand 6-30
wired-AND configurations 3-8
wired-OR configurations 3-8
wor 6-30

wires 3-8

word
of array 3-14

writing formatted output to files
21-14 to 21-17

June 1993 Index-39

X
X

as display format for unknown logic
value 21-8

unknown logic value in strength
format 21-9

x
as display format for unknown logic

value 21-8
in state table 7-6, 7-21
unknown logic value 3-1

xa statement 28-54

XL option 27-1 to 27-27
and ‘accelerate 24-27
and key files containing asynchronous

interrupts 27-8
and specify blocks 13-3
and tracing 27-8
compared to normal simulation

27-7 to 27-8
list of items that cannot be

accelerated 27-4 to 27-5
potential problems 27-8 to 27-9
primitives and scalar nets that can be

accelerated 27-3 to 27-4
processing simultaneous events

27-7 to 27-8
running XL 27-2 to 27-3
when pulse width equals gate delay

27-8

xnor gate 6-6 to 6-7

xor gate 6-6 to 6-7

Z
Z

as display format for high impedance
state 21-8

high impedance state in strength
format 21-9

z
as display format for high impedance

state 21-8
high impedance state 3-1

zero delay mode 17-2, 28-79

zero-delay
control 8-26
oscillation 27-7 to 27-8

