Verilog Hardware Description Language, An Introductory Course

http://www.vol.webnexus.com/VOL/main.htm

Chapter 1: Introduction, Hierarchy, and Modelling Structures
1
Chapter 2: Syntax, Lexical Conventions, Data Types, and Memories
25
Chapter 3: Memories, Expressions, and Simulation Mechanics
39
Chapter 4: Gate Level Modelling
60
Chapter 5: Behavioral and Register Transfer Level Modelling
87
Chapter 6: Advanced Features
115
Chapter 7: Coding Style
161
Chapter 8: DebuggingVerilog Models
203
Chapter 9: The Programming Language Interface (PLI)
216
GLOSSARY
247

Chapter 1: Introduction, Hierarchy, and Modelling Structures

· Objectives

· Introduction

· Hardware Description Languages

· Verilog History

· Hierarchy

· Modules

· Modules

· Definition

· Instances

· Top Level

· Ports

· Port List

· Assignment

· Positional

· Named

· Errors

· Positional vs. Named

· Modeling Structures

· Parameters

· Definition

· Use

· Redefinition

· Nets

· Declaration Components

· Drivers and Data Values

· Registers

· Types and Data Values

· Primitives

· Switches

· Instantiation

· Built-in

· Continuous Assignments

· Net on Left

· Ports

· Propagation

· Procedural Blocks

· Initial

· Always

· Asynchronicity

· Tasks and Functions

· Exercises

OBJECTIVES

On completion of this chapter you will be able to:

· identify the components of Verilog models, including modules, instances, and ports

· correct the syntax for each of the components of Verilog models

· state the relationships among the different components of Verilog models

· identify and correct the syntax for the modeling structures that are components of Verilog modules

Hardware Description Languages, or HDLs, are languages used to design hardware with. As the name implies, an HDL can also be used to describe the functionality of hardware as well as its implementation.

The first HDL was ISP, invented by C. Gordon Bell and Alan Newell at Carnegie Mellon University and described in their book Computer Structures in 1972. This language was also the first to use the term register transfer level. This came from the use of ISP in describing the behavior of the PDP-8 computer as a set of registers and logical functions describing the transfer of data from source register to destination register.

Subsequent HDLs included Vhsic HDL (VHDL) which was begun in 1979, UDLI which was developed by NTT, HiLo, which was the predecessor to Verilog, and ISP', which was a successor to ISP (implemented by the N-dot simulator).

The principal feature of a hardware description language is that it contains the capability to describe the function of a piece of hardware independently of the implementation. The great advance with modern HDLs was the recognition that a single language could be used to describe the function of the design and also to describe the implementation. This allows the entire design process to take place in a single language, and thus a single representation of the design

The Verilog Hardware Description Language, usually just called Verilog, was designed and first implemented by Phil Moorby at Gateway Design Automation in 1984 and 1985. It was first used beginning in 1985 and was extended substantially through 1987. The implementation was the Verilog-XL simulator sold by Gateway.

[image: image1.png]
Verilog allows you to represent the hierarchy of a design. The Verilog structures which build the hierarchy are:

· modules

· ports

A Verilog model is composed of modules. A module is the basic unit of the model, and it may be composed of instances of other modules. A module which is composed of other module instances is called a parent module, and the instances are called child modules.

[image: image2.png]
In this example, there are four modules: system, comp_1, comp_2, and sub_3. System is the parent of comp_1 and comp_2, and comp_2 is the parent of sub_3. comp_1 and comp_2 are the children of system, and sub_3 is the child of comp_2.

A more common way of depicting hierarchical relationships is:

[image: image3.png]
We say that a parent instantiates a child module. That is, it creates an instance of it to be a submodel of the parent. In this example,

system instantiates comp_1, comp_2

comp_2 instantiates sub_3

Modules in a hierarchy have both a type and a name. Module types are defined in Verilog. There can be many module instances of the same type of module in a single hierarchy. To be unique, each different instance at the same level must have a unique name.

[image: image4.png]
In the example above, there are:

· there is 1 top module named top (both module type and module name are the same)

· there are 2 type1 modules named childA and node1

· there is 1 type2 module named childB

· there are 5 type3 modules named leaf1, leaf2, leaf3, leaf1, and leaf2

The full hierarchical path name of each module specifies its location in the hierarchy. For example, the name of the module at the lower right corner of the diagram is top.childB.node1.leaf2.

[image: image5.png]
Yes and no. The local instance name of the two type3 modules which are children of type1 modules are indeed leaf1, but the full hierarchical names of the modules are top.childA.leaf1 and top.childB.node1.leaf1.

A module is defined like this:

 module <module_name> (<portlist>);

 .

 . // module components

 .

 endmodule

The <module_name> is the type of this module. The <portlist> is the list of connections, or ports, which allows data to flow into and out of modules of this type.

the Verilog model for the diagram shown:
module top;

 type1 childA(ports...); // "ports..." indicates a port list

 type2 childB(ports...); // which will be explained later

 endmodule

 module type1(ports...);

 type3 leaf1(ports...);

 type3 leaf2(ports...);

 endmodule

 module type2(ports...);

 type3 leaf3(ports...);

 type1 node1(ports...);

 endmodule

 module type3(ports...);

 // this module does not instantiate any other modules

 endmodule

The module definition by itself does not create a module. Modules are created by being instantiated in another module, like this:

 module <module_name_1> (<portlist>);

.

.

 <module_name_2> <instance_name> (<portlist>);

.

.

 endmodule

[image: image6.png]
There is one exception to the above rule, and that is for the top level modules

By definition, the top level module is not instantiated by any other module. For the top level module, the module name, which is really its type name, is also used as its instance name. Thus, in the following, module foo is the top level module

module foo;

 bar bee (port1, port2);

 endmodule

 module bar (port1, port2);

 ...

 endmodule
[image: image7.png]
The child module is named bee, and it is of type bar.

Ports are Verilog structures that pass data between parent and child modules. Thus, ports can be thought of as wires connecting modules. The connections provided by ports can be either input, output, or bi-directional (inout).

	Type
	Data Direction

	input
	parent->child

	output
	child->parent

	inout
	child<->parent

[image: image8.png]
In this diagram there are three ports represented by red lines. These ports connect modules represented by blue boxes.

Ports are listed in the port list in the module definition, and their direction is declared following the module statement. The module definition refers to those ports by name just as it would any other module structure.

[image: image9.png]
Module instantiations also contain port lists. This is the means of connecting signals in the parent module with signals in the child module. A "signal" is not a formal Verilog term, but we use it in a general way to mean something that has a value, such as a wire or a reg. The value a signal may take is either 0, 1, x, z, or a drive strength value. (Drive strength is covered later in this chapter.)

[image: image10.png]
Note: a wire is a data element that will be described later

What is wrong with the following module definition?

module A (p1, p2, , p4);

input p1, p2;

output p4;

...

endmodule

Top of Form

a. [image: image11.wmf]the missing port must be declared
b. [image: image12.wmf]missing ports are not allowed in module definitions
c. [image: image13.wmf]there must be at least one inout port
d. [image: image14.wmf]nothing is wrong

Signal names in the instance port list are matched up left-to-right with signal names in the module definition port list. If you want to omit a port in the instance list, simply use consecutive commas. E.g.,

 foo f1 (source1, , sink1, , bus);

would leave the second input port and the second output ports unconnected. Verilog imposes no restrictions on the order of ports in a port list in the definition. That is, inputs, outputs, and inouts can be mixed in any order in the definition. In the instantiation, however, the order must match the definition. Any number can be omitted in the instantiation. It does not make sense, however, to omit a port in the module definition.

[image: image15.png]
Signal names in the instance port list can also be matched up with the signal names in the module definition by name.

 foo f1 (.in1(source1), .in2(source2), .out1(sink1),
 .out2(sink2), .bidi(bus));

The port name in the module definition follows the period, and the port expression to be connected to it is enclosed in parentheses.

When ports are assigned by name, there is no ordering consideration. Also, omitting a port assignment requires no special notation, you simply don't include an assignment for the omitted port. The following is equivalent to the previous example.

 foo f1 (.bidi(bus), .out1(sink1), .in1(source1));
[image: image16.png]
You cannot mix Positional and Named port assignments. This statement is illegal:
 foo f1(source1, .bidi(bus), source2, .out1(sink1), sink2);
It is often surprising that a Verilog simulator will not tell you when you made an error in port assignment. There are several reasons for this. The most common error is to leave out a port assignment. However, since this is legal, the simulator can't tell that you didn't intend to do it. The usual consequence of omitting a port assignment is that succeeding assignments are made to the wrong signals. Sometimes this can look like an error, for instance if the sizes mis-match, but often even that will be legal, though not what you want.

[image: image17.png]
A common error is to connect a signal which is supposed to be an input to an output port. Because Verilog is so flexible with regard to connecting ports, this will usually not be caught until simulation time, when a wire has two drivers on it when it should only have one, or when a wire has no drivers on it. These errors can be difficult to track down.

Many people feel strongly that named port assignments are "better" than positional port assignments. When you have a module, corresponding to the top level of a large ASIC which has 600 pins, it is definitely easier to get the port connections right if they each have a name. However, it is roughly twice as much typing (and, more importantly, reading). The fact is, most Verilog code is written with positional port assignments.

[image: image18.png]
Verilog models are made up of modules. Modules, in turn, are made of different types of components. These include
· Parameters

· Nets

· Registers

· Primitives and Instances

· Continuous Assignments

· Procedural Blocks

· Task/Function definitions
A module may contain any number, including zero, of these components. There is no required order among the different module components. However, net and register declarations must be appear before the net or register is used. However, other components can appear anywhere in the module.

Typically, a module would look like this:
 module example (port1, port2, ...);

 input port1; // port definitions

 output port2;

 ...

 parameter width = 64; // parameter definitions

 ...

 wire n1, n2, n3; // net definitions

 ...

 reg r1, r2, r3; // register definitions

 ...

 and a1(n1, r1, r2); // primitive instantiations

 ...

 foo f1(r1, r2, n2, ...); // module instantiations

 ...

 assign n3 = r1 | r2; // continuous assignments

 ...

 initial begin // procedural blocks

 r1 = 0;

 #1 r2 = 1;

 ...

 end

 always @(posedge clock) // more procedural blocks

 r2 = #1 r3;

 ...

 task t1 (ports...); // task/function definitions

 ...

 endtask

 endmodule

Parameters are constants whose values are determined at compile-time. They are defined with the parameter statement:

 parameter identifier = expression;

The identifier which has been defined as a parameter follows the same scope rules as register declarations at the same level. That is, if it is defined at the module level, it is visible anywhere in the module. If it is defined at a task, function, or block level, it is visible at that level or in enclosed blocks.

The following are examples of parameter definitions:
 parameter width = 8, msb = 7, lsb = 0;

 parameter delay = 100;

 parameter maxval = (1 << width) - 1;

 parameter r = 5.7;

 parameter state1 = 4'b0001, state2 = 4'b0010,

 state3 = 4'b0100, state4 = 4'b1000;

Parameters are used wherever a constant expression is allowed. Common uses of parameters include vector range specifications, delay values, and case selector values.

the Example how the following parameters might be used:
wire [msb:lsb] bus;

 reg [width-1:0] bus_driver;

 ...

 assign #delay bus = (bus_driver == maxval) ? 8'h0 : bus_driver;

 ...

 always @(posedge clock)

 case (state)

 state1: newstate = state + bus;

 state2: newstate = state3;

 state3: newstate = state - bus;

 state4: newstate = state1;

 endcase

 ...

 real load_factor;

 initial

 load_factor = $itor(packets)/($time-lasttime) * r;

Parameters are useful because they can be redefined on a module instance basis. That is, each different instance of module foo can have different parameter values. This is particularly useful for vector widths. For example, the following module implements a shifter:

 module shift (shiftOut, dataIn, shiftCount);

 parameter width = 4;

 output [width-1:0] shiftOut;

 input [width-1:0] dataIn;

 input [31:0] shiftCount;

 assign shiftOut = dataIn << shiftCount;

 endmodule

This module can now be used for shifters of various sizes, simply by changing the width parameter. Parameters can be changed per instance in either of two ways.

There are two ways to change parameter values from their defaults, defparam statements and module instance parameter assignment

The defparam statement allows you to change a module instance parameter directly from another module. This is usually used as follows:
 shift sh1 (shiftedVal, inVal, 7); //instantiation of shift module

 defparam sh1.width = 16; // parameter redefinition

Note that the defparam statement changes just the named parameter in the named module instance. The same parameter in all other instances of this module type remains unchanged.

Parameter values can be specified in the module instantiation directly. This is done as follows:
 shift #(16) sh1 (shiftedVal, inVal, 7); //instance of 16-bit shift module

Using this method of parameter redefinition, it is very clear that the parameter being redefined belongs only to the instance, and not any other. However, it is not so clear when there is more than one parameter in the module being instantiated. In that case, all parameters to be given new values are listed in the parentheses, in the order they are defined in the module definition, and the new values are assigned positionally.

So, if there are 3 parameters in the module, named par1, par2, and par3, then the instantiation would look like:

 foo #(10,20,30) f1 (in1, out1);

and par1 would get 10, par2 would get 20, and par3 would get 30. However, this method has a problem if you want to redefine some, but not all, parameters in an instance. All parameters which are to get new values must be defined consecutively. That is, if you want to redefine the first and third parameters, but not the second, you can't do it with this method. You can do that using defparam, since it is insensitive to parameter order.

Given these module definitions and instantiations:

module modA;

...

modB #(4,5,6) mb1 (p1, p2, p3, p4);

modB #(7,8) mb2 (p4, p2, p3, q4);

...

endmodule

module modB (port1, port2, port3, port4);

input port1, port2;

inout port3;

output port4;

...

parameter par1 = 1,

par2 = 2,

par3 = par1+par2;

...

endmodule

	a. [image: image19.wmf]True [image: image20.wmf]False
	In instance modA.mb1, par3 will have the value 3.

	b. [image: image21.wmf]True [image: image22.wmf]False
	In instance modA.mb1, par3 will have the value 6.

	c. [image: image23.wmf]True [image: image24.wmf]False
	In instance modA.mb1, par3 will have the value 9.

	d. [image: image25.wmf]True [image: image26.wmf]False
	In instance modA.mb2, it is incorrect to use p4 as an input port since p4 has already been used as an output port in modA.mb1.

Given the following module:

module modB (port1, port2, port3, port4);

input port1, port2;

inout port3;

output port4;

...

parameter par1 = 1,

par2 = 2,

par3 = par1+par2;

...

endmodule

	a.[image: image27.wmf]Legal [image: image28.wmf]Illegal
	modB #(7,8) mb2 (p4, p2, p3, q4);

	b.[image: image29.wmf]Legal [image: image30.wmf]Illegal
	modB mb2 (p4, p2, p3, q4);

	c. [image: image31.wmf]Legal [image: image32.wmf]Illegal
	modB (p1, p2, p3, p4);

Nets are the things that connect model components together. They are usually thought of as wires in a circuit. Nets are declared in statements like this:

 net_type [range] [delay3] list_of_net_identifiers ;

or

 net_type [drive_strength] [range] [delay3]
 list_of_net_decl_assignments ;

Typical net declarations would be:

 wire w1, w2;
 tri [31:0] bus32;
 wire wire_number_5 = wire_number_2 & wire_number_3;
Nets should be declared before they are used. However, if you don't declare one before it is used in an instance port list, it will default to a predefined net type, normally a scalar wire.

net_type

Typical values for net_type include wire, tri, tri0, tri1, wand, wor, triand, trior, supply0, supply1

range

This is an indication of how many bits wide the net should be. The form is [msb:lsb], where msb is the most significant bit number, and lsb is the least significant bit number.

The range specifier can used to declare a multi-bit quantity for a net. The Verilog word for a multi-bit quantity is a "vector." Vectors are covered in more detail later in this chapter.

delay3

This is a numeric value which specifies the length of time between when a driver on this net changes value and when that value is seen by other elements the net drives. The "3" indicates that this can be a single number or three numbers, for rise, fall, and turnoff delays.

Delays are specified in several ways in Verilog. Delays are introduced with the "#" character. A delay can be assigned to a net driver (either a gate, primitive, or continuous assignment), or it can be assigned to the net directly. Delays are covered in more detail later in this chapter

list_of_net_identifiers

The above notation means that a list of identifiers. Identifiers may be made up of any number of letters, digits, and {_$}:

 simple_identifier ::= [a-zA-Z_]{[a-zA-Z0-9_$]}

That is, the first character must be alphabetic or "_", and the rest may be alphabetic, numeric, "_", or "$". Identifiers may be as long as 1 million characters and are case-sensitive. Identifiers are covered under Lexical Conventions in Chapter 2.

drive_strength

This is an indication of the strength of the signal being driven by the assignment. Signal strength is covered in more detail under Scalar Nets later in this chapter.

list_of_net_dec_assignments

This is a list of assignments. These are the same as continuous assignments.

Nets are driven by net drivers. Drivers may be

· output port of a primitive instance

· output port of a module instance

· left-hand side of a continuous assignment

There may be more than one driver on a net. If there is more than one driver, the value of the net is determined by a resolution function. In Verilog, the possible resolution functions are built-in. Which resolution function is used is determined by the net type. For example, a net declared as wand has an and resolution function.

Each bit in a net can take on one of four values: 0, 1, x, or z. In addition, nets can have different driving strengths. That is, a net can be connected to a driver which has weak or strong driving strength.

Are the following statements syntactically correct?

	a.[image: image33.wmf]Yes [image: image34.wmf]No
	wire [1:0] w1, w2;

	b.[image: image35.wmf]Yes [image: image36.wmf]No
	wire w1, [1:0] w2;

The first statement is correct and the second statement is incorrect. Here is an example of a correct statement for for b.:
b. wire w1; wire[1:0]w2;

Registers are storage elements. Values are stored in registers in procedural assignment statements. Registers can be used as the source for a primitive or module instance (i.e. registers can be connected to input ports), but they cannot be driven in the same way a net can.

Registers are declared in statements like this:

 reg [range] list_of_register_identifiers ;
or integer list_of_register_identifiers ;
or time list_of_register_identifiers ;
or real list_of_real_identifiers ;
or realtime list_of_real_identifiers ;

Typical register declarations would be:

 reg r1, r2;
 reg [31:0] bus32;
 integer i;
 real fx1, fx2;
There are four types of registers:

	1. Reg
	This is the generic register data type. A reg declaration can specify registers which are 1 bit wide to 1 million bits wide. A register declared as a reg is always unsigned.

	2. Integer
	Integers are 32 bit signed values. Arithmetic done on integers is 2's complement.

	3. Time
	Registers declared with the time keyword are 64-bit unsigned integers.

	4. Real (and Realtime)
	Real registers are 64-bit IEEE floating point. Not all operators can be used with real operands. Real and realtime are synonymous.

Each bit in a register can take on one of four values: 0, 1, x, or z. These are the only values a register can contain.

Verilog allows arrays of registers, called memories. Memories are static, single-dimension arrays. Memories will be covered in more detail in Chapter 2.

The Verilog term for an array is memory. In Verilog, arrays are restricted to be singly-dimensioned, and may only be registers. The format of a memory declaration is:

reg [range] identifier range ;

The first range specifier indicates how wide each element is, just like in a regular register declaration. The second range specifier indicates how many elements are in the array. In both cases, the range specifiers must be composed of constant expressions.

The following are examples of memory declarations:

reg [7:0] memdata[0:255]; // 256 8-bit registers

reg [8*6:1] strings[1:10]; // 10 6-byte strings

reg membits [1023:0]; // 1024 1-bit registers

The maximum size of a memory is implementation-dependent, but is at least 2^24 (16,777,216) elements.
Top of Form

Are the following statements syntactically correct?
	a.[image: image37.wmf]Yes [image: image38.wmf]No
	reg x, y, z;

	b.[image: image39.wmf]Yes [image: image40.wmf]No
	reg [5:0] x, [5:0] y;

The first statement is correct and the second statement is incorrect. Here is an example of a correct statement for for b.:
b. reg [5:0]x,y;

Primitives are pre-defined module types. They can be instantiated just like any other module type. The Verilog primitives are sometimes called gates, because for the most part, they are simple logical primitives.

	1-output
	1-input
	tristate
	pull

	and,nand
or,nor
xor,xnor
	buf,not

	bufif0,notif0
bufif1,noif1
	pullup
pulldown

A tristate primitive is one which can produce a 'z' output on a wire

A pull primitive is one which can drive a 1 or 0 at pull strength on its output. Pull strength is weaker than the default drive strength, so it can be overridden be another primitive driving the same wire with a different value.

There is an additional class of primitives called the switches, which are used mostly for modelling at the transistor level.

	MOS switches
	bidirectional switches

	cmos,rcmos
nmos,rnmos
pmos,rpmos
	tran,rtran
tranif0,rtranif0
tranif1,rtranif1

Primitives are instantiated in a module like any other module instance. For example, the module represented by this diagram:

[image: image41.png]
would be instantiated:

 module test;

 wire n1, n2;

 reg ain, bin;

 and and_prim(n1, ain, bin);

 not not_prim(n2, n1);

 endmodule

The built-in primitives are very straight-forward. The output port is listed first, and the input ports are listed last. The and, or, and xor primitives each have one output and may have as many input ports as desired. The buf and not primitives have as many output ports as desired, and only one input. Another difference between built-in primitives and other instances is that a built-in primitive may be instantiated without an instance name.

It is quite possible to have a module defined completely in terms of built-in primitives.

The following module implements a 2-bit to 4 decoder.
 module decodeX4 (b0, b1, b2, b3, in0, in1);

 output b0, b1, b2, b3;

 input in0, in1; // select inputs

 not N1 (t0, in0); // invert inputs

 not N2 (t1, in1);

 and A1 (b0, t1, t0); // decode inputs => outputs

 and A2 (b1, t1, in0);

 and A3 (b2, in1, t0);

 and A4 (b3, in1, in0);

 endmodule

Are the following statements syntactically correct?

	a.[image: image42.wmf]Yes [image: image43.wmf]No
	and #1 a1 (a, b, c);

	b.[image: image44.wmf]Yes [image: image45.wmf]No
	and (a,b,c), (d,e,f);

	c.[image: image46.wmf]Yes [image: image47.wmf]No
	AND #1 (a, b, c);

The first two statements are correct and the third statement is incorrect. Here are two examples of correct statements for c.:
c. and #1 (a,b,c);
or
c. AND #1 myand (a,b,c);
Note that "AND #1 myand (a,b,c);" instantiates a module which is not a primitive.

Continuous assignments are sometimes known as data flow statements because they describe how data moves from one place, either a net or register, to another. They are usually thought of as representing combinational logic. In general, any logic functionality which can be implemented by means of a continuous assignment can also be implemented using primitive instances. A continuous assignment looks like this:

assign [drive_strength] [delay3] list_of_net_assignments ;

Examples:

 assign w1 = w2 & w3;
 assign (strong1, pull0) mynet = enable;
 assign #1 busout = enable ? data : 16'bz;

Scalar nets can have different strength levels. A strength level is associated with each driver on the net. If a strength is not specified, then the default for that driver is used. The usual default is "strong". The net itself takes on a value which is a combination of all the drivers on it, according to a set of rules. Driving strength is covered in more detail later in this chapter.

A continuous assignment is declarative. That is, it describes a relation between the left-hand side net and the right-hand expression.

During simulation, whenever any component of the right-hand side expression changes in value, the right-hand side expression is re-evaluated, and the value is assigned to the left-hand side net. The assignment may be delayed by the specified amount, and it may have a given strength. If no delay is specified, the assignment happens at the current simulation time, and if no strength is specified, the default value is used.

Just as with primitives, the behavior of a module may be defined solely by using continuous assignments.

Here is a module with behavior determined solely by continuous assignments:
 module decodeX4 (b0, b1, b2, b3, in0, in1);

 output b0, b1, b2, b3;

 input in0, in1; // select inputs

 assign b0 = ~in1 & ~in0; // decode inputs => outputs

 assign b1 = ~in1 & in0;

 assign b2 = in1 & ~in0;

 assign b3 = in1 & in0;

 endmodule

The primary rule with continuous assignments is that the left-hand side must be a net. The reason for this rule is that registers get values at discrete times, but nets are always driven by a value. Changes to a net may happen asynchronously, any time anything on the right-hand side changes, the left-hand side may change its value.

Continuous assignments are very similar to port connections between parent and child modules. An input port is essentially a continuous assignment with the instance port expression being the right hand side and the module definition port name being the left-hand side. Likewise, an output port has the same properties as a continuous assignment between the output port expression in the module definition and the port assignment in the module instantiation. For example,

 ... module foo (in, out);
 foo f1 (source1a+source1b, sink); input in; output out;

is the same as:

 ...
 assign in = source1a+source1b;
 assign sink = out;
 ...

Declarative statements in general, and continuous assignments in particular, are controlled by signal propagation. Propagation is the process of updating expression values and subsequently signals which depend on those values. It can be illustrated by the following:

 1 assign x = f(in);
 2 assign y = g(x);
 3 assign out = h(y);

When in changes value, say from 0->1, then

· Statement (1) will be executed. More precisely, the right hand side expression, f(in), will be evaluated, and if its value is different from what it was before, then x will get the new value.

· If x has changed value, then g(x) will be evaluated, in statement (2), and y will get a new value, if the value of g(x) has changed.

· If y has changed, then h(y) will be evaluated in statement (3). If it changes, then out will be updated.

Continuous assign statements are not executed in source order.

 1 assign x = f(in);
 2 assign y = g(x);
 3 assign out = h(y);

The result of this process is that when in changes, the effects will ripple through all continuous assignments which depend on it until all signals which appear on the left hand sides of the assignments are updated.

In this regard, continuous assignments act the same as primitives and module instantiations. For a module instantiation or primitive, input ports act like the right hand side of a continuous assignment, and output ports act like left hand sides.

Are the following statements syntactically correct?
	a.[image: image48.wmf]Yes [image: image49.wmf]No
	assign #10 x = f(y);

	b.[image: image50.wmf]Yes [image: image51.wmf]No
	assign x = f(y);

	c.[image: image52.wmf]Yes [image: image53.wmf]No
	assign #(5,10) x = a ? b : c;

 All three statements are syntactically correct

Procedural blocks are the part of the language which represents sequential behavior. A module can have as many procedural blocks as necessary. These blocks are sequences of executable statements. The statements in each block are executed sequentially, but the blocks themselves are concurrent and asynchronous to other blocks.

There are two types of procedural blocks, initial blocks and always blocks.

 initial <statement> always <statement>

All initial and always blocks contain a single statement, which may be a compound statement, e.g.

 initial
 begin statement1 ; statement2 ; ... end

All initial blocks begin at time 0 and execute the initial statement. Because the statement may be a compound statement, this may entail executing lots of statements. There may be time or event controls, as well as all of the control constructs in the language. As a result, an initial block may cause activity to occur throughout the entire simulation of the model.

When the initial statement finishes execution, the initial block terminates. If the initial statement is a compound statement, then the statement finishes after its last statement finishes.

initial x = 0; // a simple initialization

initial begin
 x = 1; // an initialization
 y = f(x);
#1 x = 0; // a value change 1 time unit later
 y = f(x);
end

initial begin
 a = 0;
@(posedge clk)
 a = 1; // change value on the clock edge
 for (I=0; I<10; i=i+1)
 @(posedge clk) ; // wait for 10 clock cycles
 $finish; // terminate simulation
end
Always blocks also begin at time 0. The only difference between an always block and an initial block is that when the always statement finishes execution, it starts executing again. Note that if there is no time or event control in the always block, simulation time can never advance beyond time 0. Example,

 always
 #10 clock = ~clock;
There may be many initial and always blocks in a module. Since there may be many modules in a model, there may be many initial and always blocks in the entire model. All of them begin execution at time 0. However, there is no defined order between them. There is no guarantee that any statement will execute before or after any other statement which is not in the same block unless there is a time or event control to establish that relationship.

What is the correct way to sample the signal x whenever clock transitions from 0 to 1?

	a. always (clock) sample = x;

	b. always @(posedge clock) #1 sample = x;)

	c. always @(posedge clock) sample = #1 x;

	d. always @(posedge clock) sample = x;

	e. always @(clock) sample = x;

	f. always (posedge clock) sample = x;

	g. a or f

	h. b or c

	i. c or d

	j. none of the above

The correct answer is i.

Tasks and functions are declared within modules. The declaration may occur anywhere within the module, but it may not be nested within procedural blocks. The declaration does not have to precede the task or function invocation.

Tasks may only be used in procedural blocks. A task invocation, or task enable as it is called in Verilog, is a statement by itself. It may not be used as an operand in an expression.

Functions are used as operands in expressions. A function may be used in either a procedural block or a continuous assignment, or indeed, any place where an expression may appear.

Time can elapse during the execution of a task, according to time and event controls in the task definition. For example,

 task do_read;

 input [15:0] addr;

 output [7:0] value;

 begin

 adbus_reg = addr; // put address out

 adbus_en = 1; // drive address bus

 @(posedge clk) ; // wait for the next clock

 while (~ack)

 @(posedge clk); // wait for ack

 value = data_bus; // take returned value

 adbus_en = 0; // turn off address bus

 count = count + 1; // how many have we done

 end

 endtask

The above task might be used like this:

 initial begin

 ...

 do_read('h0000, val);

 if (val != 'h81) $display("Error!");

 do_read('h5a5a, val);

 ...

 end

Tasks may have zero or more arguments, and they may be input, output, or inout arguments.

In contrast to tasks, functions must execute in a single instant of simulated time. That is, not time or delay controls are allowed in a function. Function arguments are also restricted to inputs only. Output and inout arguments are not allowed. The output of a function is indicated by an assignment to the function name. For example,

 function [15:0] relocate;

 input [11:0] addr;

 input [3:0] relocation_factor;

 begin

 relocate = addr + (relocation_factor<<12);

 count = count + 1; // how many have we done

 end

 endfunction

The above function might be used like this:

 assign absolute_address = relocate(relative_address, rf);

 initial begin
 ...
 rf = 0x2;
 relative_address = 0xffc;
 $display("the relocated address is %0x",
 relocate(relative_address, rf));
 ...
 end

Functions may have zero or more arguments, but they may only be inputs.

Questions

What is wrong with the following function definition?

 function f (x);
 input x;
 f = ~x[2];
 endfunction

Top of Form

	a.
	x should be declared reg.

	b.
	x has the wrong declaration for selecting bit 2.

	c.
	function needs a return type

	d.
	the statement f = ~x[2]; needs to be surrounded by begin - end.

	e.
	nothing

The correct answer is b. x has the wrong declaration for selecting bit 2.

Which one of the following Verilog structures may occur outside of other structures?
	Top of Form

a. [image: image54.wmf]modules

	b. [image: image55.wmf]ports

	c. [image: image56.wmf]parameters

	d. [image: image57.wmf]instances

Of these structures, only modules may occur outside other structures.

What is wrong with the following module instantiation?

 module modA;
 ...
 modB #(1,2) (p1, p2,, p4);
 ...
 endmodule
	Top of Form

a. [image: image58.wmf]missing ports are not allowed in instantiations

	b. [image: image59.wmf]the module instance name is missing

	c. [image: image60.wmf]the module instance parameter values must be after the port list

	d. [image: image61.wmf]nothing

The correct answer is b. The module instance name is missing.

Given these module definitions and instantiations:
module modA;

...

modB #(4,5,6) mb1 (p1, p2, p3, p4);

modB #(7,8) mb2 (p4, p2, p3, q4);

...

endmodule

module modB (port1, port2, port3, port4);

input port1, port2;

inout port3;

output port4;

...

parameter par1 = 1,

 par2 = 2,

 par3 = par1+par2;

...

endmodule

	Top of Form

a. [image: image62.wmf]True [image: image63.wmf]False
	In instance modA.mb2, par3 will have the value 3.

	b. [image: image64.wmf]True [image: image65.wmf]False
	In instance modA.mb2, par3 will have the value 6.

	c. [image: image66.wmf]True [image: image67.wmf]False
	In instance modA.mb2, par3 will have the value 15.

	d. [image: image68.wmf]True [image: image69.wmf]False
	In the definition of modB, port4 must be declared as a reg.

Bottom of Form

Given the following module:

module modB (port1, port2, port3, port4);

input port1, port2;

inout port3;

output port4;

...

parameter par1 = 1,

 par2 = 2,

 par3 = par1+par2;

...

endmodule

Indicate whether the following instances of modB above are legal or illegal.
	a.[image: image70.wmf]Legal [image: image71.wmf]Illegal
	modB mb2 (p1, , p3, p4);

	b.[image: image72.wmf]Legal [image: image73.wmf]Illegal
	modB #(7,8,9,10) mb2 (p1, p2, p3, p4);

	c.[image: image74.wmf]Legal [image: image75.wmf]Illegal
	modB mb2 (p1, p2, p3);

	d.[image: image76.wmf]Legal [image: image77.wmf]Illegal
	modB mb2 (p1, p2, p3,);

Are these two ways of redefining the parameter par2 equivalent?

modB #(,5,) mb1 (p1, p2, p3, p4);

and

modB mb1 (p1, p2, p3, p4);
defparam mb1.par2 = 5;

A: No

You can't do what this is attempting by means of a module instance parameter assignment. The defparam is the only way to change the value of only the second parameter in a module.

Are the following statements syntactically correct?
a. [image: image78.wmf]Yes [image: image79.wmf] No reg [5] x;

b. [image: image80.wmf]Yes [image: image81.wmf]No reg #10 x;

They're both incorrect. Here are examples of correct statements:
a. reg[5:1]x;
b. reg x;// can't attach a delay to reg definition

Are the following statements syntactically correct?
a. [image: image82.wmf]Yes [image: image83.wmf]No wire w1; wire [1:0] w2;

b. [image: image84.wmf]Yes [image: image85.wmf]No wire #10 x;

Bottom of Form

Yes. Both statements are correct.

Are the following statements syntactically correct?
a. [image: image86.wmf]Yes [image: image87.wmf]No and #1 a1 (a,b,c), a2 (d,e,f);

b. [image: image88.wmf]Yes [image: image89.wmf]No buf #10 (o1, o2, in1);

Yes. Both statements are correct.

Are the following statements syntactically correct?
a. [image: image90.wmf]Yes [image: image91.wmf]No initial x #1 = f(y);

b. [image: image92.wmf]Yes [image: image93.wmf]No initial x = #1 f(y);

c. [image: image94.wmf]Yes [image: image95.wmf]No initial begin x = 1; y = 0; end

Only the first statement is incorrect. Here are two examples of correct statements for a.:
a. initial #1 x = f(y);
or
b. initial x = #1 f(y);

Are the following statements syntactically correct?
Top of Form

a. [image: image96.wmf]Yes [image: image97.wmf]No function f [1:0] (x);

b. [image: image98.wmf]Yes [image: image99.wmf]No function f (x[1:0]);

Both statements are incorrect. Here are examples of correct statements:
a. function [1:0]f; input x;
b. function f; input [1:0]x;

Chapter 2: Syntax, Lexical Conventions, Data Types, and Memories

· Objectives

· Syntax

· Lexical Conventions

· Tokens

· White Space

· Comments

· Operators

· Constants

· Integer Constants

· Real Constants

· Strings

· Identifiers

· Escaped

· Hierarchical References

· Namespaces

· Keywords

· System Tasks and Functions

· Macros

· Data Types

· Scalar

· Signal Strength

· Keywords

· Trireg Nets

· Vector

· Operations

· Bit-Select

· Part-Select

· Concatenation

· Repeat Concatenation

· Integer

· Real

· Time

· Memories

· Access

· Exercises

· Question 1

· Question 2

· Question 3

· Question 4

· Question 5

· Question 6

OBJECTIVES

On completion of this chapter you will be able to:

· compose and modify simple modules to produce specified outputs

· predict the output of simple modules
The language is made up of statements, groups of statements, and keywords to identify the different types of statement groups.

These are properties of Verilog statements:

· Statements are composed of tokens.

· Statements can be continued across line boundaries, but individual tokens cannot.

· Statements within a given group are usually separated by ";", but statement groups are usually not separated by ";".

· In general, the ";" is a statement separator, not a terminator.

Verilog syntax appears to be something of a cross between C and Pascal.

Verilog is a token-based language. The source stream which a Verilog processor sees is a sequence of tokens. These are the types of Verilog tokens:

· White Space

· Comments

· Operators

· Constants

· Identifiers

· Keywords

· System Tasks and Functions

White space is any sequence of space, tab, newline, or formfeed. White space separates tokens and may be arbitrarily long between tokens.

Verilog has two kinds of comments:

// single line comment

// All text from the "//" double character to the end of the line is treated
// as comment.
// This includes keywords, comment characters, back-quote - everything.
// Comments can be very long, liiiiiiiiiiikkkkkkkkkkkkkkeeeeeeeee ttttttttthhhhhhhhhiiiiiiiiissssssss oooooooonnnnnnnnneeeeeeee,
// but they end with the newline character.

// Single line comments are usually used to add notations to other statements,
// like this:

always #period/2 // this is the clock loop

clk = ~clk; // clk must be set to 0 initially
 // (somewhere else)
 /* block comment */

/* All text between the comment start "/*" token and comment end token - */
/* is treated as comment. This includes text of all types, including
newlines. However, it does not include the comment end token.
This is another way of saying that you cannot nest block comments. As is
demonstrated above, when we wanted to include the */ /* token in the
first line, we had to start the comment over with the next token.
We had to do that here, too. */

/* Block comments are good for removing unwanted code without deleting it,
* as in the following example.
*/

 always @(ain or bin /* or cin */)
 newstate = func(ain, bin);
Which of the following are legal comments?

Top of Form

[image: image100.wmf]a. x = y; // this is a comment
[image: image101.wmf]b. x = y; /* this is a comment
[image: image102.wmf]c. // x = y; /* this line is commented out
[image: image103.wmf]d. /* x = y; // this !@#$*/$# is commented out!
[image: image104.wmf]e. // x = y; // this !@#$*/$# is commented out!
[image: image105.wmf]f. /* x = y; /* this is a comment */ removed!! */

Bottom of Form

The three highlighted statements are legal. Statement (b) has an unclosed comment, which would cause the following line(s) to be treated as comment until a closing "*/" was encountered. The comments in statements (d) and (f) are prematurely closed by the first "*/" in the line. Subsequent text would be treated as a statement.

OPERATORS

Verilog uses the same symbols as C does for operators, with a few extras. Operators are single, double, or triple character combinations. There are unary and binary operators, as well as one ternary operator (?:). The +, -, &, |, ^, and ~^ operators can be either unary or binary, depending on context.

	{}, {{}}
	concatenation, replication

	+ - * /
	arithmetic

	%
	modulus

	> >= < <=
	relational

	!
	logical negation

	&&
	logical and

	||
	logical or

	==
	logical equality

	!=
	logical inequality

	===
	case equality

	!==
	case inequality

	~
	bit-wise negation

	&
	bit-wise and

	|
	bit-wise inclusive or

	^
	bit-wise exclusive or

	^~ ~^
	bit-wise equivalence

	&
	reduction and

	~&
	reduction nand

	|
	reduction or

	~|
	reduction nor

	^
	reduction xor

	~^ ^~
	reduction xnor

	<<
	left shift

	>>
	right shift

	?:
	conditional

Verilog uses three types of constants

· Integer Constants

· Real Constants

· String

Integer constants are specified with three components:

1. Size - an unsigned decimal number base

2. Base - a radix specifier: one of 'd, 'b, 'h, 'o

3. Value - an unsigned number, which consists of digits appropriate for the specified radix. The letters x and z are also allowed (in all radixes), as well as the _ character. Underscores may be used indiscriminately, and are ignored.

The size and radix are both optional, but if a size is present, the radix must be also. There may be spaces between each of the three constant components.

These are examples of integer constants:

123

1'b1

8'h81

'o7773

12'bx

16'd5

3'b1xz

32'h8f_32_ab_f7

Sized vs. Unsized
A sized constant has the size specifier present, while an unsized constant does not. Unsized numbers have a default size of 32 bits.

Signed vs. Unsigned
If both the size and radix are omitted, the constant is a signed number, represented in 2's complement. Otherwise, the constant is an unsigned, positive number. This is only visible if the constant is preceded by a unary minus sign.

Radix Specifiers
The radix specifier indicates that the digits following are decimal ('d), hexidecimal ('h), octal ('o), or binary ('b). Each digit represents the appropriate number of bits for the radix.

Padding and Truncation

The number of bits represented by the digits in the value part of the constant may be more or less than the given size. If there are more, then the high order bits are truncated. For example,

7'h8f is equivalent to 7'h0f

If the size is greater than the number of bits in the value part (which is a much more common case), then the number is padded on the left (high order part) with 0. However, if the left-most digit in the value part is x or z, then the number is padded with x or z.

	12'h3
	is equivalent to
	12'b000000000011

	12'h3x
	is equivalent to
	12'b00000011xxxx

	12'bx
	is equivalent to
	12'bxxxxxxxxxxxx

	12'oz37
	is equivalent to
	12'bzzzzzz011111

Real numbers are represented in IEEE standard 754-1985 double precision format. Constants can be written in decimal notation or scientific notation. If a decimal point is present in the number, there must be at least one digit on either side of it. When real numbers are converted to integers, they are rounded, not truncated. Numbers which end in .5 are rounded away from zero. For example, 1.5 rounds to 2 and -1.5 rounds to -2.

These are examples of real constants:

1.2

0.1

123.456

1.2E12

13.0e-2

23e10

123.111_222_333E-22

A string constant is a sequence of characters enclosed in " (double quotes). String constants may be used whereever a vector is allowed, and, in general, is equivalent to a vector whose width is 8 times the number of characters in the string. The value of the vector is the same as if the ASCII values of each character were concatenated.

For example,

"Hello World" is represented as 88'h48656c6c6f_20_576f726c64

Strings may be assigned to vectors, or used with operators in expressions. They are most commonly used as arguments to system tasks (like $display). Note that, though you can use a string constant whereever a vector is allowed, the reverse is not true. That is, you cannot put a format string into a variable and use that in a $display task invocation. (You can do it, it just won't do what you would expect.)

Identifiers name objects. Objects which can be named are modules, instances, nets, registers, parameters, tasks, functions, blocks, and source macro. Identifiers may be made up of any number of letters, digits, and {_$}:

simple_identifier ::= [a-zA-Z_]{[a-zA-Z0-9_$]}

That is, the first character must be alphabetic or "_", and the rest may be alphabetic, numeric, "_", or "$". Identifiers may be as long as 1 million characters and are case-sensitive

Here are some examples of identifiers:

shiftreg_a

busa_index

error_condition

merge12

_bus23

 n$657

Identifiers may be "escaped" by the backslash. That is, an identifier may begin with \ (backslash) and encompass all characters up to the first white space (blank, newline, or tab). Escaped identifiers are used when translating the Verilog source from some other design representation which allows funny characters in names.

Here are some examples of escaped identifiers:

\wire*

\busa+index

\-clock

error-condition

\net1/\net2

Identifiers can also be "hierarchical". That is, an identifier can be composed of more than one simple_identifier linked by periods:

identifier ::= identifier [{.identifier}]

Here are some examples of hierarchical identifiers:

abc.def

top.foo.bar.xyz

 system.board.chip.wire123

A scope is a set of identifiers which must be unique. That is, all of the identifiers in the same scope must be different from each other, but they may be the same as identifiers in a different scope.

Verilog defines several scopes in which identifiers are defined. They are:

	1. Module
	Net names, top-level register names, task names, function names, module and primitive instance names, and port names exist in the module's scope. That is, two different modules can each have a net named "net1 or a module instance named "foo_inst". However, there can be only one "net1" or "foo_inst" in a single module.

	2. Task, Function, Block
	Tasks, functions, and named blocks allow registers, parameters, and named blocks to be defined within them. These names exist in hierarchical name spaces. That is, an identifier in an outer scope (module, task, function, or block) may be redefined in an inner scope (task, function, or block).

	3. Global
	There is a single scope which contains all module types (i.e. the name used in the module definition). Thus, there can be only one module of type "DF99".

	4. Macros
	Source macros have a single global scope that crosses module boundaries.

Verilog contains keywords, which are predefined, non-escaped identifiers. An escaped identifer is not treated as a keyword. For example, \begin is not a keyword.

Keywords in Verilog:

	always
	inout
	rtranif0
	and
	input
	rtranif1

	assign
	integer
	scalared
	begin
	join
	small

	buf
	large
	specify
	bufif0
	macromodule
	specparam

	bufif1
	medium
	strength
	case
	module
	strong0

	casex
	nand
	strong1
	casez
	negedge
	supply0

	cmos
	nmos
	supply1
	deassign
	nor
	table

	default
	not
	task
	defparam
	notif0
	time

	disable
	notif1
	tran
	edge
	or
	tranif0

	else
	output
	tranif1
	end
	parameter
	tri

	endcase
	pmos
	tri0
	endmodule
	posedge
	tri1

	endfunction
	primitive
	triand
	endprimitive
	pull0
	trior

	endspecify
	pull1
	trireg
	endtable
	pulldown
	vectored

	endtask
	pullup
	wait
	event
	rcmos
	wand

	for
	real
	weak0
	force
	realtime
	weak1

	fork
	reg
	while
	function
	release
	wire

	highz0
	repeat
	wor
	highz1
	rnmos
	xnor

	if
	rpmos
	xor
	initial
	rtran
	

System tasks and functions are predefined tasks and functions which provide common operations. Identifiers which start with "$" are considered to be system tasks or system functions. These are used to provide common facilities to the model. This includes output capabilities and information facilities. Like user-defined tasks, system tasks must be invoked as a procedural statement.

The most commonly used system tasks are:

$display - Used to print output on the standard output device and the simulation log file.

$monitor - Used to trace all value changes of the arguments.

$readmem - Read in initial values to a memory.

$stop - Temporarily suspends simulation to enter the user interface to the simulation.

$finish - Terminate simulation.
System functions are just like system tasks, except that they are used as an operand in an expression (like any other function). System functions typically return some information about the model.

The most commonly used system functions are:

$time - Return the current simulation time (64 bits).

$stime - Return the current simulation time as a 32-bit number.

$random - Return a 32-bit random nnumber.

$bitstoreal - Return the real value of the argument.

$realtobits - Return the unsigned integer value of the real argument.

Verilog program to output: hello world 1 2 3

module hello;

initial $display("hello world");

endmodule

Source macros are a special case of a general class of statements called compiler directives. A Verilog source macro is very similar to the source macro facility in C which is implemented by the C preprocessor. In Verilog, the source macro is defined by means of a `define statement. Notice that the first character is "`", the back-quote.

An identifier is defined as a macro by associating a string of text to be substituted whenever the macro identifier is used. Macro identifiers are marked in the text by preceding them with the "`" (back-quote again). For example,

`define mymacro this is some text

...

$display("`mymacro");

...
This would print the string

this is some text

Note that there is no trailing semi-colon in the macro definition. If there was, it would be included in the macro text to be substituted. It is possible to have a macro invocation within the macro text definition.

Macro definitions are global, and are text-order dependent. That is, the definition must appear before it is used, but the macro may be used in any module which appears in the source stream thereafter. It is possible to redefine a macro, and the new definition overrides the old one for all subsequent uses.

Macro definitions may appear anywhere in the source stream, both within and outside of module definitions. A macro definition remains in effect for the remainder of the source stream, or until the macro is redefined.

Which one of the following Verilog structures can occur outside other structures?

Top of Form

[image: image106.wmf]a. `define
[image: image107.wmf]b. parameter
[image: image108.wmf]c. function
[image: image109.wmf]d. task

Bottom of Form

Of these structures, only macro definitions can occur outside other structures.

Verilog has just a few basic data types that it deals with. These data types are built-in, and cannot be changed or added to, as in some other languages. The data types are:

· scalar

· vector

· integer

· real

· time

A scalar quantity is a single bit. The value of this bit can be one of

· 0 - logic zero (false)

· 1 - logic one (true)

· x - unknown value

· z - high-impedance value

Registers (reg) and nets can be declared to be scalars. This is the default, so if a range specification is not present in the declaration, then the item being declared is a scalar.

Scalars are the fundamental type in Verilog. Ultimately, hardware is built up out of single-bit constructions.

A scalar can have one of 0, 1, x, or z as its value. This is the familiar 4-value set. Scalars are not restricted to just these four values, however. A scalar value can be one of a range of 120 different possible values, which represent different strength levels of the signal.

wire a, b, c;
// three scalar nets

reg ff1, ff2;
// two scalar registers

wand control_sig;
// a wired-and net

trireg stored_charge;
// a charge-storage scalar

You can assign a scalar value to a single bit of a vector, but they do not have the same representational ability. That is, if the scalar has a value other than 0, 1, x, or z, the value will be converted to one of the 4-value set before being stored to the bit of the vector.

Scalar nets can have different strength levels. A strength level is associated with each driver on the net. If a strength is not specified, then the default for that driver is used. The usual default is "strong". The net itself takes on a value which is a combination of all the drivers on it, according to a set of rules.

Driving strength can be specified on a built-in primitive. The format of a primitive instance is:

gate_type [drive_strength] [delay2] gate_instance;

A driving strength can also be specified for a continuous assignment. The format of a continuous assignment is:

assign [drive_strength] [delay3] list_of_net_assignments;

Note that [drive_strength], [delay2], and [delay3] are optional syntactic constructs.

Example built-in primitive:
and (strong1, weak0) and_gate1(out, in1, in2, in3);

Example continuous assignment:
assign(pull1, strong0)x = f(y);

For both built-in primitives and continuous assignments, the strength is associated with the driver, and it consists of one or two keywords, like this:

(strength0, strength1)
or
(strength1, strength0)

strength0 and strength1 are keywords, which can have the following values:

	strength0
	strength1

	supply0
	supply1

	strong0
	strong1

	pull0
	pull1

	weak0
	weak1

	highz0
	highz1

Trireg nets, which model charge storage devices, can have different charge strengths associated with the net. The format of a trireg declaration is:

trireg [charge_strength] [range] [delay3] list_of_identifiers;

An example of a trireg declaration with a charge_strength is:

trireg (medium) medCap;

The Verilog word for a multi-bit quantity is a vector. If arithmetic is performed on a vector, the vector value is considered to be an unsigned integer.

Both nets and registers can be declared as vectors. They are declared by using a range specifier in the declaration:

wire [msb:lsb] w1;
and

reg [msb:lsb] r1;

Both msb and lsb must be constant valued expressions. The bit order can be either big-endian or little-endian, i.e. both msb<lsb and msb>lsb are allowed.

The following statements declare vectors:

reg [15:0] accum_lo;

reg [31:16] accum_hi;

wire [1:48] system_bus;

wire [0:7] bus_slice0, bus_slice1, bus_slice2;

There are four operations that can be performed on vectors

· Bit-Select

· Part-Select

· Concatenation

· Repeat Concatenation

Bit-select is the Verilog term for accessing a single bit of a vector. You can use a vector bit-select on either the right-hand side or the left-hand side of an assignment.

It is permissable for the bit-select index to be an expression in a right-hand side expression, or in the left-hand side bit-select in procedural code. However, if the bit-select appears on the left-hand side in declarative code (i.e. in a continuous assignment), the bit-select index must be a constant-valued expression.

If the bit-select index is out of range of the vector, then the result is x. The result is also x if the index itself is x. It is illegal to apply bit-select to a real register.

The following are examples of bit-select operations:

assign w = vec[3];

assign vec[5] = f(x,y,z);

...

x = vec[f(x,y,z)];

vec[y] = z;

Part-select is the Verilog term for accessing a subset of bits from a vector. The set of bits accessed must be contiguous, and again this operation may be done for either obtaining or modifying the set of bits.

The following are examples of part-select operations:

assign vec[3:5] = 3'b011;

assign w[4:1] = vec[2:5];

...

x = vec[5:8];

 vec[2:3] = 2'h3;

Part-select bounds must always be constant-valued expressions, regardless of whether this is a left-hand side or a right-hand side access. Part-select bounds must also follow the declaration of the vector. That is, the following is incorrect

reg [1:20] vbad;

...

x = vbad[3:2];

because the part-select bounds (3:2) are the wrong way around.

If the part-select range is out of range of the vector, then the result is x. If the part-select range is partially out of range, then at least the out-of-range bits of the result will be x. Whether any of the bits will be valid data bits is implementation-dependent. The result is also x if either part-select bound is x. Because part-select bounds must be constants, this is a pretty unusual case. As with bit-select, it is illegal to apply part-select to a real register.

Vectors can be constructed from other data types by means of concatenation. The concatenation operator is {}, and there may be as many operands as desired.

The only restriction on concatenation is that the compiler must be able to figure out, at compile time, how many bits wide the result of the concatenation will be. So, there is a rule that any constants used as operands in a concatenation must be sized.

vec = {x, y, z};

{carry, sum} = opA + opB;

vec[2:5] = {1'b1, vec[1], 2'b00};

Repeat concatenation is a short-hand for replicating a bit or set of bits in a concatenation. The operator is {repeat_count{}}. The repeat_count value must be a constant.

A repeat concatenate may not be used on the left-hand side of an assignment, or any equivalent place, like in an output port list. A little thought will reveal why this restriction exists.

 vec[1:20] = {4{5'b10110}};

vec[1:5] = {1'b1, 2{vec[6:7]}};

Data types:

	Integer
	An integer is a signed, 2-s complement value. It is declared in an integer statement, and it is a register.

	Real
	Real values are contained in registers which are declared as real. Real values are represented in IEEE 64-bit format.

	Time
	Time values are 64-bit, unsigned integers. These values are contained in registers which have been declared using the time keyword in the declaration.

The Verilog term for an array is memory. In Verilog, arrays are restricted to be singly-dimensioned, and may only be registers. The format of a memory declaration is:

reg [range] identifier range ;

The first range specifier indicates how wide each element is, just like in a regular register declaration. The second range specifier indicates how many elements are in the array. In both cases, the range specifiers must be composed of constant expressions.

The following are examples of memory declarations.
	reg [7:0] memdata[0:255];
	// 256 8-bit registers

	reg [8*6:1] strings[1:10];
	// 10 6-byte strings

	reg membits [1023:0];
	// 1024 1-bit registers

The maximum size of a memory is implementation-dependent, but is at least 2^24 (16,777,216) elements.

A memory element is accessed by means of a memory index operation. A memory index looks just like a bit-select:
mem[index]
You can use a memory index as an operand in an expression, or you can use it on the left-hand side of an assignment in a procedural assignment statement. You can't use a memory index on the left-hand side of a continuous assignment.

Note that you cannot use a memory identifier on the left-hand side of an assignment. This is another way of saying that you can't assign a whole memory in one operation

Another limitation on memory access is that you can't take a bit-select or part-select of a memory element. Thus, if you want to get the 3rd bit out of the 10th element of a memory, you need to do it in two steps:

reg [0:31] temp, mem[1:1024];

...

temp = mem[10];

bit = temp[3];

Note that while you can use a memory index operand on the right-hand side of a continuous assignment, this is not very good practice. The reason is that some implementations of Verilog treat a change in value to any element in the memory as indistinguishable from any other, so the right-hand side expression in a continuous assignment would get re-evaluated whenever any element of the memory changed, not just when the desired element changed.

Just like bit-selects, if the memory index is x or z, then the result of a memory access with that index is x.

Questions

Which of the following statements are legal?

Top of Form

[image: image110.wmf]1. wire aBc;
[image: image111.wmf]2. wire \reg\;
[image: image112.wmf]3. wire ABC;
[image: image113.wmf]4. wire abc1;
[image: image114.wmf]5. wire 1abc;
[image: image115.wmf]6. wire $abc1;

Statements 2, 5, and 6 are illegal. Statement 2 is illegal because an escaped identifier must end with space. So the ";" is part of the identifier. Statements 5 and 6 are illegal because the first character of an identifier can't be numeric or a "$".

Which of the following statements are legal?

Top of Form

[image: image116.wmf]1. $time;
[image: image117.wmf]2. $display("hello sparky");
[image: image118.wmf]3. x = $time;
[image: image119.wmf]4. y = $display("hello sparky");
[image: image120.wmf]5. if (done) $finish;
[image: image121.wmf]6. always @(x) $display($time, " x -> ", x);

Statement 1 is illegal because $time is a function, not a task. Therefore, it can't stand alone as a statement. Statement 4 is illegal because $display is a task and can't be used as a right-hand side of an expression.

Which of the following models generates a clock waveform that has the clock high 2 time units and low 2 time units, starting at 0 with the first rising edge at time 10?

	A

module q2;

 reg clock;

 initial begin

clock = 0;

 #8
forever begin

#1 clock = 0;

#2 clock = 1;

end

 end

endmodule

[image: image122.wmf]
	B

module q2;

 reg clock;

 initial begin

clock = 0;

 #8
forever begin

#2 clock = 1;

#2 clock = 0;

end

 end

endmodule

[image: image123.wmf]
	C

module q2;

 reg clock;

 initial begin

clock = 0;

 #8
forever begin

#1 clock = 1;

#2 clock = 0;

end

 end

endmodule

[image: image124.wmf]

Bottom of Form

The correct answer is B.

In the first field write a module which produces a 4 bit output that counts the number of rising clock edges which have occurred. The output should be produced on the falling edge of the clock. Name this module Q4. In the second field modify module Q2 so that it instantiates module Q4.

module Q4 (count, clock);

 input clock;

 output count;

 reg [3:0] count, count_reg;

 initial count_reg = 0;

 always @(posedge clock)

 count_reg = count_reg + 1;

 always @(negedge clock)

 count = count_reg;

endmodule

module Q2;

reg clock;

wire [3:0] count;

Q4 counter (count, clock);

initial begin

 clock = 0;

#8 forever begin

 #2 clock = 1;

 #2 clock = 0;

 end

end

endmodule

Modify module Q4 from the previous screen to use a continuous assign to drive the count output. Name your new module Q5. Hint: take advantage of the fact that the falling edge occurs 2 time units after the rising edge.

module Q5 (count, clock);

 input clock;

 output [3:0] count;

 reg [3:0] count_reg;

 initial count_reg = 0;

 always @(posedge clock)

 count_reg = count_reg + 1;

 assign #2 count = count_reg;

endmodule

Modify module Q5 from the previous screen to use a parameter for the time delay from rising to falling edge. Name this new module Q6.

module Q6 (count, clock);

 input clock;

 output [3:0] count;

 parameter clktoq = 2;

 reg [3:0] count_reg;

 initial count_reg = 0;

 always @(posedge clock)

 count_reg = count_reg + 1;

 assign #clktoq count = count_reg;

endmodule

Chapter 3: Memories, Expressions, and Simulation Mechanics

OBJECTIVES

On completion of this chapter you will be able to:

· describe the resulting value of Verilog expressions

· state the order of statement execution for Verilog models

· predict how statement execution order will change given a change in a Verilog model

· make changes to Verilog models to realize a given statement execution order

An expression is a combination of operands and operators which produces a single result. It is a function of its operands. An expression can be used anywhere that a value is needed in a statement.

Typical expressions are:

1+2
3'b100 >> shift_cnt
{control, data, check_bit}
bus[31:28] * state_val

The result of an expression has a bit-length, just like any constant, net, or register. The rules governing the resulting length of an expression are fairly complicated, but generally they obey the principle of least surprise. That is, the result length is usually what you would expect.

An expression whose value is determined at compile time is a constant expression. Constant expressions are often used instead of constant numbers to document the meaning of the constant value. For example,

	This...
	Is better than this...

	reg [8*6:1] string6;
parameter buswidth = 24;
input [buswidth-1:0] bus;
	reg [48:1] string6;

input [23:0] bus;

Note that parameters can be used in constant expressions.

There are places in Verilog statements where a single bit value is called for. Expressions used in these places are called scalar expressions. A scalar expression has a single bit value. If the expression evaluates to a multi-bit result (usually because it has vector operands), then the low-order bit of the result is used as the scalar expression value.

Here are examples of code that contain scalar expressions:

 if (a == b) begin ... end; // a == b is a scalar expression

 xor #5 x1(out, c1+c2, f(d)); // c1+c2 is a scalar expression

 // f(d) is also a scalar expression

Expressions can be used for delay values. These are introduced with the #, and can be used on primitive instantiations, continuous assignments, net declarations, and procedural statement controls.

Any place where an expression can be used to specify a delay, a triple can be used, in the form min:typ:max. Each of min, typ, and max are themselves expressions. At simulation time, only one of the three values will be used, and it will always be the same one from all delay expression triples. That is, if the simulation uses the min value, then all delay expression triples will have the value of the min expression. Which of the three values to use in any particular simulation run is determined external to the model.

Here are examples of delay expressions:

assign #(5:10:15) sum = a + b;

nand #(rise_min:rise_typ:rise_max, rise_min-1:rise_typ-2:rise_max-3)

 (cbar, a, b);

In the second example, rise_min, rise_typ, and rise_max would have to be parameters, since constant expressions are required here.

Expressions are made up of operands and operators. Operands can be

· constant

· net

· register

· bit-select

· part-select

· concatenation

· memory element

· function call

You can think of bit-select and part-select as unary operators, but they are not quite the same, since they can be used in places where general expressions are not allowed (like the left hand side of an assignment). The same is true for concatenations. So, Verilog generally treats them as separate classes of entities.

Verilog uses three types of constants

· Integer Constants

· Real Constants

· String

	Operand declaration

wire w1, cntrl;

wire [0:7] muxout;

reg [31:0] delayVal;

delayVal[muxout]

reg r1, sel;

reg [31:0] mem[1:100];
	Example operands

w1, cntrl

muxout, muxout[2:3]

delayVal,

r1, sel

mem[muxout]

(note: mem by itself is not a legal operand)

This table shows how different elements can be used as operands.

	constants
	nets
	registers

	15
32'hdeadbeef
1.02e23
"hello there"
	w1
muxout
cntrl
	r1
delayVal
sel

	bit-select
	part-select
	concatenation

	muxout[6]
delayVal[31]
	muxout[0:3]
muxout[2:5]
	{w1, muxout[1:7], sel}
{r1, 3{w1}, delayVal[31:28]}

	memory element
	function call
	

	mem[10]
mem[muxout]
	func(w1,r1)
$time
	

Top of Form

Indicate which of the following are legal operands.
	[image: image125.wmf]Legal [image: image126.wmf]Illegal
	abc

	[image: image127.wmf]Legal [image: image128.wmf]Illegal
	$time

	[image: image129.wmf]Legal [image: image130.wmf]Illegal
	$monitor

	[image: image131.wmf]Legal [image: image132.wmf]Illegal
	#1

	[image: image133.wmf]Legal [image: image134.wmf]Illegal
	123

	[image: image135.wmf]Legal [image: image136.wmf]Illegal
	1'bx

 The statement "$monitor" is a task, not a function, so it can't be used in an expression. Also, "#1" is a delay expression, not an operand.

Operators are single, double, or triple character combinations. There are unary and binary operators, as well as one ternary operator (?:). The +, -, &, |, ^, and ~^ operators can be either unary or binary, depending on context.

Arithmetic

	+a
	unary plus: same as a

	-a
	unary minus a

	a + b
	a plus b

	a - b
	a minus b

	a * b
	a multiply by b

	a / b
	a divide by b

	a % b
	a modulo b

Relational

	a < b
	a less than b

	a > b
	a greater than b

	a <= b
	a less than or equal to b

	a >= b
	a greater than or equal to b

	a === b
	a equal to b, including x and z

	a !== b
	a not equal to b, including x and z

	a == b
	a equal to b, may be unknown

	a != b
	a not equal to b, may be unknown

The === and !== are called case equality and case inequality, respectively. The normal equality and inequality operators will result in x if either of their operands have any bits whose value is x. However, case equality and case inequality never result in x, because they compare all bit values.

Logical

	!a
	not a

	a && b
	a and b

	a || b
	a or b

These operators are logical, as opposed to bit-wise. That is, their result is one bit wide: 0 - false 1 - true x - unknown. Logical not means "equal to 0".

!read

is the same as

read ==0

Bit-Wise

	~a
	not a

	a & b
	a and b

	a | b
	a or b

	a ^ b
	a xor b

	a ~^ b
a ^~ b
	a xnor b

The bit-wise operators always operate on bits. That is, ~ inverts each bit in the operand. The & operator ands each bit in operand a with the corresponding bit in operand b, and the result is the same length as the longest of the two operands. The truth tables for these operands are identical to the corresponding primitives.

Reduction

	&a
	and all bits of a

	|a
	or all bits of a

	^a
	xor all bits of a

	~&a
	~(and all bits of a)

	~|a
	~(or all bits of a)

	~^a
	~(xor all bits of a)

The reduction operators produce a single bit result. The operand is usually a vector, since these operators applied to a scalar are degenerate. The operation proceeds by doing the operation on the first two bits, then successively performing the same operation on the resulting bit value and the next bit, until all bits of the operand have been operated on. Reduction xor is particularly useful for computing parity.

Shift

	a << b
	a shift left by b

	a >> b
	a shift right b

These shift operators are always logical shifts. Filled bit positions are always filled with 0. If the shift amount (b above) is unknown (x or z), then the result is unknown (x).

Conditional

The conditional operator is ?:. It is a ternary operator, and is used like this:

 condition ? expression1 : expression2

The condition is an expression which has a logical result. If it is true, then the value of the expression is expression1. If it is false, then the value is expression2.

If the condition is unknown (x), then the value is x unless both expression1 and expression2 have the same value, in which case the result will be that value. This ambiguity resolution is done bit-by-bit, so the result will be non-x for those bits in expression1 and expression2 which agree, and x for those which do not.

In general, the resulting size of an expression, or its "bit length,"* is the size of its operands. Thus, given the following operands,

reg r1, p1;

reg [15:0] r16, p16, s16;

reg [16:0] s17;

some expressions and sizes are

	Expression
	Size

	r1 & p1

r16 ^ p16

r16 + p16
	1

16

16

However, if the operands have different sizes, then things get more complicated. Some operations produce a predefined result, like concatenation or bit-select. For other operations, the shorter operand is expanded to be as long as the longer operand, and then the operation is done with the result being the length of the longer operand. If an expression has several operators, then this size matching operation can be done pair-wise on each pair of operands, and the result will be the length of the largest operand.

	Expression
	Size

	r1 & r16
	16

	{r1, r16}
	17

	r16 & s17
	17

	r16[s17]
	1

The result of an operation is determined by either the operation itself (it is self-determined) or by the operation's context (it is context-determined). Self-determined expressions are often called "fixed-size" expressions. Operands which have an explicit bit length (e.g. reg[5:1] r5;) are also called "fixed-size" operands. Context-determined expressions are often called "non-fixed size" expressions. Operands which do not have an explicit bit length (e.g. 15) are also called "non-fixed size" operands.

The following table gives the rules for resulting bit-lengths of self-determined expressions. L(i) indicates the length of operand i.

	Expression
	Bit length

	unsized constant number
	same as integer

	sized constant number
	as given

	i op j, where op is:
+ - * / % & | ^ ^~ ~^
	max(L(i),L(j))

	op i, where op is:
+ - ~
	L(i)

	i op j, where op is:
=== !== = = != && || > >= < <=
	1 bit

	op i, where op is:
& ~& | ~| ^ ~^ ^~
	1 bit

	i op j, where op is:
>> <<
	L(i)

	i ? j : k
	max(L(j),L(k))

	{i,...,j}
	L(i)+...+L(j)

	{i{j,...,k}}
	i*(L(j)+...+L(k))

For context-determined expressions, the context is the surrounding expression or the statement the expression is used in. The most common context for an expression is the left-hand side of an assignment statement. In the following expression,

sum = a + b;

the length of the expression is determined by the length of a, b, and sum.

That is,

	Expression
	Context

	s16 = r16 + p16;
s17 = r16 + p16;
	16

17

Thus, when you use the above table to determine the length of a result, those entries which have

max(L(i),L(j))

are replaced with

max(L(i),L(j),context)

When a complex expression is evaluated, the context of each operation is the entire expression. So, in the following expression,

s16 = (r16 + p16) >> 1;
the context is 16, L(r16) = L(p16) = 16, so the addition is done in 16 bits. Consequently, s16[15] will always be 0. This is probably not what you intend.

The solution to this is to modify the expression so that either one of the operands is at least 17 bits long, or to modify the context. Both of the following will work:

s17 = (r16 + p16) >> 1;

s16 = (r16 + p16 + 17'd0) >> 1;
Given

parameter p1 = 4;

reg [4:0] x;

wire [3:2] y;

reg z;

Enter the bit length for each of the following expressions:

	32
	 p1

	5
	 x+y

	2
	 x[4:3] & y

	1
	 x[4] == z

Verilog is a hardware description language but it is also a simulation language. The behavior which is described using Verilog can be reproduced by a Verilog simulator. The principal difference between the behavior exhibited by the model under simulation and the real hardware that the model represents is the time that the model's operation takes is much different from the time the real hardware will take. This difference can be orders of magnitude.

A simulation model, which is what a Verilog hardware description is, is made up of a collection of simultaneous activities, or processes. These processes exhibit some behavior over time, possibly interacting with each other. (In formal modelling terminology, the processes each have a set of states which they transition between. The trail of states is called a state trajectory. The union of all the sets of states is called the state space. Any given simulation run produces a single state trajectory out of the multitude of possible ones.)

A process is composed of a set of discrete actions, each one taking place at a single point in time. These actions are called events, and this whole method is called discrete event simulation. So a process goes from event to event, each event takes place instantaneously, and time may pass in between events.

[image: image137.png]
Time is kept as a relative value, and is global to the entire set of processes (the model). We usually call this simulation time. In Verilog, simulation time is a 64-bit unsigned integer (time is always positive), and it can be obtained by the $time system function. The amount of time which passes between different events in a process affects the interaction with other processes. The total of all the delays in a given path through a process will determine how long that process takes.

The following Verilog code takes 90 time units to execute:

initial begin

 x = 0;

 #10 x = x + 1;

 #20 x = x + 2;

 #30 x = x + 3;

 #20 x = x + 2;

 #10 x = x + 1;

end

When simulated, x takes on different values at the different time instants:

[image: image138.png]
When a simulation begins, the value of simulation time is 0. There is nothing particularly important about this choice of starting value, and 0 is the obvious choice.

Time always advances. Like in real life, it can't back up. Also as in real life, time is relative. Though there is an absolute time kept in the simulator, in a sense it is irrelevant to the model. What counts in the definition of a process is how long something takes to happen (a delay). Consequently, delays are always specified as relative values, to be interpreted as "now + delay_value".

It is important to emphasize that simulation time is an abstract concept. It really is just a mapping of integers to events in a monotonically increasing order. That is to say, a delay value of "10" in Verilog is not 10 picoseconds, or 10 nanoseconds, or 10 seconds, or 10 years. It could be any of those, or none of them -- it all depends on an interpretation external to the model.

There is a way in Verilog to associate time units to the numbers which are used for delay values (see timescale in Chapter 6), but that is simply an interpretation placed on the abstract notion of simulation time. You may like to think of time delays in terms of familiar units, but to the simulator, time is just a set of integers, starting at 0.

In Verilog, the simulation time is a 64-bit quantity. When the simulation time is interpreted as very small real time units, like femtoseconds, 64 bits is necessary to represent a reasonable amount of real time. With 64 bits, 18,447 seconds can be represented if the smallest unit is femtoseconds. If a 32 bit quantity was used for time, then only 4.3 microseconds could be represented.

Delays are specified in several ways in Verilog. Delays are introduced with the "#" character. A delay can be assigned to a net driver (either a gate, primitive, or continuous assignment), or it can be assigned to the net directly.

For example, the following are all legal delay specifications:

assign #10 net1 = ra + rb;

xor #3 xo1(a, b, c);

wire #(4,2) control_line;

A delay can also be specified in procedural statements, causing time to pass before the execution of the next statement.

always

begin

#period/2 clk = ~clk;

end
In a procedural delay, the delay value may be an arbitrary expression. By contrast, a delay in a declarative statement must be able to be evaluated at compile time, which is another way of saying it must be a constant or constant-valued expression.

Delays that are associated with nets in declarations or continuos assignments can have multiple values. There can be one, two, or three delay values specified:

 #(rise_delay, fall_delay, turnoff_delay)

These are used when the value of the net makes the corresponding change:

rise_delay 0, x, or z -> 1

fall_delay 1, x, or z -> 0

turnoff_delay 0, 1, or x -> z

The delay values are interpreted positionally. That is, the first one is the rise delay, the second is the fall delay, and the third is the turnoff delay. When the net value becomes x, then the smallest of the three delay values is used.

Some nets are not expected to take a z value, so it is not necessary to specify the turnoff delay. For these nets, you can simply use the rise and fall delays. If, by chance, the net does make a transition to z (or to x), the delay used will be the smaller of the two which are specified.

Similarly, most of the gate primitives cannot drive a z value, so it does not make sense to supply a turnoff delay for them. For these gates, the syntax specifies that you can only provide two delay values (the syntax description uses the term delay2, instead of delay3). The following gates take only two delay values:

and, nand, or, nor, xor, xnor, buf, not
If only one delay is specified, then it is used for all value transitions. Any place where a multiple delay value can be used it is also permissable to use a single delay value.

Single delay values are always used in procedural code.

Verilog falls in the class of discrete event simulation languages. Other languages in this class are GPSS, Simula, and Simscript, as well as VHDL and ISP'. All of these languages share a common simulation paradigm, which is based on instantaneous events with time elapsing between them.

The fundamental data structure in simulators for these languages is the Future Event List, or just the event list. This is a list which contains pointers to events and associates a time with them. The time values in this list are absolute time values. I.e. in the list, an entry will indicate that event A should happen at time t. With an ordered list like this, the simulation operation is simply

1. Take the first event off the list

2. If the event's time is greater than the current time, advance the current time to the event's time.

3. Do the event.

The following code

 module top;

 wire w1, w2;

 reg r1, r2;

 assign #5 w1 = r1 & r2,

 w2 = r1 | r2;

 initial begin

 r1 = 1; r2 = 0;

 #10 r2 = 1;

 end

 endmodule

would result in an event list which would look like this

[image: image139.png]
It is important to keep in mind that actions only actually happen at discrete time instants. When one of the above assignments takes place, time is stopped. It will move on after all assignments (or events in general) at that time have been accomplished. An event which in real life takes some amount of time to occur is idealized to occur only at a single instant. If the process of occuring is important to the model, then more than one event must be used to delineate it (usually a start and a stop event, though you could have mid-process events as well).

[image: image140.png]
Events can be identified explicitly in the source of a model. The most common use of events is to cause a process to wait for an event to occur before proceeding. An event is identified by the "@" character. For example,

initial begin

 ...

 @(posedge clk) x = f(y);

 ...

end

The @(posedge clk) is called an event control. When execution gets to that statement, it will wait until the clock makes a transition from 0 to 1 before the assignment statement will be executed.

Hardware is parallel by nature. The Verilog Hardware Description Language captures that behavior, as it is a parallel language. The language allows models to be constructed of concurrent, asynchronous processes. These processes are parallel, in the sense that they execute at the same time, and have no inherent ordering which is defined by the language semantics.

However, an implementation of Verilog, and here we mean a simulator, does not necessarily reflect truly parallel operation. Simulation on a single processor computer, which is the norm, must emulate parallel behavior. At best, a uni-processor simulator can reproduce just one of many possible trajectories through the simulation space of the model.

A typical Verilog model contains many separate processes. These include procedural blocks -- always and initial blocks -- as well as continuous assigns and primitive instances. Each of these can be thought of as an independent process.

Processes are concurrent and asynchronous, but there are features in the language with which processes can be synchronized. These include time delays, event controls, and value propagation.

Here is an example of two processes which are concurrent and independent.

initial begin initial begin

 r1 = f(x); s1 = f(a);

#d1 r2 = f(y); #d2 s2 = f(b);

end end

These two processes both begin at time 0, but because the delays d1 and d2 may be variable, you cannot tell which one will finish first without knowing the values of d1 and d2 at the time of execution. They are independent because neither one affects the execution of the other.

We could decouple these two processes even more strongly by using a wait event control, as follows.
initial begin initial begin

 r1 = f(x); s1 = f(a);

wait(x!=y); #d2 ;

 r2 = f(y); s2 = f(b);

end end

Here, you cannot determine when the r2 assignment will happen without determining when x and y will have different values.

Processes consist of a collection of events. In most cases, the events within a single process are completely ordered (this is not true when using the fork statement, however!). That is, each event can be said to be before or after every other event within that process.

However, events in different processes are only partially ordered. That is, there may be some events for which you cannot say whether one precedes the other or not. Here is an example of two processes which are concurrent and have events which are only partially ordered:

always @(posedge clock) begin always @(posedge clock) begin

 state1 = newstate1; state2 = newstate2;

#10 newstate1 = func(state1, in1); #11 newstate2 = func(state2, in2);

end end

In this example, each always block is a separate process. Both begin at the same instant of simulated time, namely when the clock rises. However, it is not specified which one will begin first. What is guaranteed is that both state1 and state2 will have their new values before simulation proceeds past the time instant of the rising clock edge. It is also guaranteed that the two assignments to newstate1 and newstate2 will be executed at different time instants. If we call the clock edge tr, then newstate1 will be assigned at tr+10 and newstate2 will be assigned at tr+11. Thus, there is no guaranteed ordering in the first part of these two processes, but there is a guaranteed ordering in the second part.

Graphically, the event ordering looks like this:

[image: image141.png]
Events 1 and 2 are unordered, while events 3 and 4 are ordered with respect to each other.

Because some events are unordered, when they are executed (at the same instant of simulated time), it is undefined which one will execute first. What this means is that it is permissable for a simulator to execute them in either order it chooses. Two different simulators may execute the events in a different order, or the same simulator may execute them in a different order at different times during the simulation. Or, going further, a truly parallel simulator could execute them both at the same time, with either one finishing first, due solely to chance.

The implication of all this is that you had better not write Verilog code which has a different result depending on the order of execution of simultaneous, unordered events. This is known generally as a race condition, and it occurs when one event samples a data value, another event changes the data value, and the two events are unordered with respect to each other

A classic example of a race is as follows:
 always @(posedge clock) always @(posedge clock)

 dff1 = f(x); dff2 = dff1;

This attempt at a pipeline doesn't work, because the value of dff2 may be either the old or the new value of dff1 When simulation starts, all of the nets and registers in the model must have some initial value. Since all nets and registers have a minimum of 4 data values, and one of them is the unknown value x, it is natural for all initial values to be x.

There is a distinction between initialization time and time 0. Initialization time is when the time is 0 and no events have occurred. The first events will occur at time 0, at least one for each procedural block in the model. All nets and registers have their initial values before the first event executes.

While we normally think of a net as having a value, the value is derived from the values of whatever drivers there are on that net. For initialization, this actually makes a difference, since the drivers are the things which have x as their initial values, and the net resolution function works normally. So, at initialization, if a net has any drivers attached to it, the net will take on the value of the driver (x), unless there is a resolution function which overrides it.

Possible initial values for a net:

	x
	 the net has 1 or more drivers

	z
	 the net has no drivers

	0 or 1
	 the net is supply0 or supply1

Registers are simpler than nets. They always start out x and will keep that value until the first procedural assignment yields a non-x value.

Comparator
This is a simple module to compare two inputs and produce an output that is 0 or 1, based on the sense of the comparison (another input).

The following example has a simple hierarchy, with a top-level module and two sub-modules. The module being designed is a comparator, which takes three inputs and produces one output. There is a test module which produces test data and displays the result.

[image: image142.png]
module system;

 /* This is a test fixture for testing a comparator */
 wire greaterNotLess; // sense of comparison
 wire [15:0] A, B; // comparand values - 16 bit

 wire result; // comparison result

 // Module instances
 comparator #(16, 2) comp (result, A, B, greaterNotLess);

 testGenerator tg (A, B, greaterNotLess, result);

endmodule

module comparator (result, A, B, greaterNotLess);

 parameter width = 8;

 parameter delay = 1;

 input [width-1:0] A, B; // comparands

 input greaterNotLess; // 1 - greater, 0 - less than

 output result; // 1 if true, 0 if false

 assign #delay result = greaterNotLess ? (A > B) : (A < B);

endmodule

module testGenerator (A, B, greaterNotLess, result);

 output [15:0] A, B;

 output greaterNotLess;

 input result;

 parameter del = 5;

 reg [15:0] A, B;

 reg greaterNotLess;

 initial begin // produce test data, check results

 A = 16'h1234;
 B = 16'b0001001000110100;

 greaterNotLess = 0;

 #del
 check(0);

 B = 0;

 greaterNotLess = 1;

 #del

 check(1);

 A = 1;

 greaterNotLess = 0;

 #del

 check(0);

 $finish;

 end

 task check;

 input shouldBe;

 begin

 if (result != shouldBe)

 $display("Error! %d %s %d, result = %b", A, greaterNotLess?">":"<",

 B, result);

 end

 endtask

endmodule

Clock Reducer
This is a divide-by-3 clock reducer.

This example has a top-level module and three sub-modules.

This design is supposed to be a divide-by-3 clock reducer. The input to the module is a reference clock, and the output is a clock signal which has a pulse every three cycles of the reference clock. The pulse width should be the same for both clocks.

[image: image143.png]
module system;

 /* This is a test fixture for testing a divide-by-3 circuit */
 wire slowClk, clk; // two clocks
 // Module instances
 divideBy3 d3 (.outClk(slowClk), .inClk(clk)); // clock divider

 clkGen #(10) cg (clk); // clock generator

 initial begin

 $monitor ($stime, " clk: %b slowClk: %b", clk, slowClk);

 #150 $finish;

 end

endmodule

module divideBy3 (outClk, inClk);

 parameter delay = 1;

 input inClk; // reference clock

 output outClk; // stepped down clock

 reg ff1, ff2, temp; // local storage

 initial begin ff1 = 0; ff2 = 1; end

 assign outClk = ff2 & inClk; // output assignment

 always @(posedge inClk)
 begin

 temp = ff1;

 ff1 = ff2;

 ff2 = ~(temp | ff2);

 end

endmodule

module clkGen (clk);

 parameter period = 2;

 output clk;

 reg clk;

 initial clk = 0; // start off with 0, so first edge is rising

 always // clock loop

 #(period/2) clk = ~clk;

endmodule
Shift Register with Counter
This example is a simple shift register with a counter that tells how many ones are present in the register at any time.

This example has a top-level module and three sub-modules.

This design is supposed to satisfy the following requirements:

· Implement a shift register. A data value is shifted in on every clock cycle, on the rising edge, and the oldest value is shifted out. The shift register is fifo.

· Count the number of ones which are present in the shift register. The counter should be 32 bits wide (admitedly, this is overkill).

· The depth of the shift register should be parameterized.

· The module ports are: data input (1 bit), clock (1 bit), data output (1 bit), counter (32 bits).

[image: image144.png]
module system;

 /* This is a test fixture for testing a combination shift register

 and counter */

 wire data, clk; // nets to connect up the pieces
 wire delayedData; // data out of the fifo

 wire [31:0] nOnes; // number of ones contained in fifo

 // Module instances
 shiftAndCount SandC (delayedData, nOnes, data, clk); // shift register

 clkGen #(10) cg (clk); // generate the clock

 testGenerator tg (data, delayedData, nOnes, clk); // create data, check result

endmodule

module shiftAndCount (bitOut, count, dataIn, clk);

 parameter width = 8;

 output bitOut; // data shifted out

 output [31:0] count; // count of ones

 input dataIn, clk; // inputs

 integer count; // the counter

 reg bitOut; // temporary

 reg [width-1:0] lastBits; // shift register

 initial begin count = 0; lastBits = 0; end

 always @(posedge clk) begin

 bitOut = lastBits[width-1];

 lastBits = (lastBits<<1) | dataIn;

 if (bitOut > dataIn)

 count = count - 1;

 else

 if (bitOut < dataIn)

 count = count + 1;

 end

endmodule

module clkGen (clk);

 parameter period = 2;

 output clk;

 reg clk;

 initial clk = 0; // start off with 0

 always // clock loop

 #(period/2) clk = ~clk;

endmodule

module testGenerator (dataBit, delayedBit, count, clk);

 output dataBit;

 input delayedBit;

 input [31:0] count;

 input clk;

 reg dataBit;

 task emitBits; // helper task to emit n bits

 input [7:0] bits, n; // task inputs

 begin

 repeat (n) begin // assume clk is at negedge

 dataBit = bits[0]; // take just the low order bit

 bits = bits >> 1;

 @(negedge clk) ;

 end // leave at negative edge

 end

 endtask

 task check;

 input bit;

 input [31:0] shouldBe;

 begin

 if (delayedBit != bit)

 $display($time," delayed bit is %b but should be %b",

 delayedBit, bit);

 if (count != shouldBe)

 $display($time," Count is %d but should be %d",

 count, shouldBe);

 end

 endtask

 initial begin // produce test data, check results

 $monitor($time," dataBit: %b delayedBit: %b", dataBit, delayedBit);

 emitBits(0, 1); // take care of first cycle

 emitBits('b10010, 5);

 check(0, 2);

 emitBits('b101101, 6);

 check(0, 5);

 emitBits('b01, 2);

 check(1, 5);

 $stop;
 end

endmodule
[image: image145.png]
The results of running this example are as follows:

 0 dataBit: 0 delayedBit: x
 5 dataBit: 0 delayedBit: 0
 10 dataBit: 1 delayedBit: 0
 20 dataBit: 0 delayedBit: 0
 40 dataBit: 1 delayedBit: 0
 60 dataBit: 0 delayedBit: 0
 70 dataBit: 1 delayedBit: 0
 90 dataBit: 0 delayedBit: 0
 95 dataBit: 0 delayedBit: 1
 100 dataBit: 1 delayedBit: 1
 105 dataBit: 1 delayedBit: 0
 120 dataBit: 0 delayedBit: 0
 125 dataBit: 0 delayedBit: 1
Stop at simulation time 130

Exercises

Given

parameter p1 = 4;

reg [4:0] x;

wire [3:2] y;

reg z;

Classify these expressions as "constant", "scalar", "delay", "fixed-size", or "non-fixed-size":These are the correct answers:
	1. p1-1
	constant

	2. #x
	delay

	3. x != p1
	scalar

	4. z
	scalar

	5. x*y
	non-fixed-size

	6. x & y
	fixed-size

Given the following values,

parameter p1 = 4;

reg [4:0] x;

wire [3:2] y;

reg z;

x = 4'b1011;

y = 2'b10;

z = 1'b1;

and the current time is 5

These are the correct answers. Statement 1 is illegal because $time is a function, not a task. Therefore, it can't stand alone as a statement. Statement 5 is illegal because $display is a task and can't be used as a right-hand side of an expression.

	Top of Form

1. p1 + #(x+y)
	illegal, because a delay expression (#(x+y)) cannot be an operand of another expression.

	2. #($time+p1)
	9

	3. #($time == x)
	0

	4. ~{x, 1'bx}
	5'b0100x

	5. ~{x, 13}
	illegal, because 13 is not sized, and all components of a concatenation must be sized.

	6. x ^ |y
	4'b1010

	7. {x, p1}
	illegal, because p1 is not sized, and all components of a concatenation must be sized.

	8. z === 1'bx
	1'b0

	9. z == 1'bx
	1'bx

	10. 1'bx == 1'bx
	1'bx

Given the following module:

 module M;

reg clock;

integer x, i;

initial begin

x = 1;

// 1

#1
x = 2;

// 2

for (i=1; i<4; i=i+1)
// 2a

@(posedge clock)
// 2b

if (x == 4)
// 3

$finish;
// 4

end

always @(posedge clock) begin

x = x + 1;

// 5

end

initial clock = 0;

// 6

always

#2 clock = ~clock;

// 7

 endmodule

Which of the following diagrams correctly indicates the order of statement execution. Note that, in some places, statement execution order is indeterminate and can proceed down alternative paths. Click Done to check your answer.

[image: image146.png]
Given the following module:

 module M;

reg clock;

integer x, i;

initial begin

x = 1;

// 1

#1
x = 2;

// 2

for (i=1; i<4; i=i+1)
// 2a

@(posedge clock)
// 2b

if (x == 4)
// 3

$finish;
// 4

end

always @(posedge clock) begin

x = x + 1;

// 5

end

initial clock = 0;

// 6

always

#2 clock = ~clock;

// 7

 endmodule

These are the correct answers.
	1. What is the value of x at the end of execution?
	4

	2. Is the value of x determinate? (Yes/No)
	Yes

	3. What is the time at the end of execution?
	6 or 10

	4. Is the value of time determinate? (Yes/No)
	No

Given the following module:

module M;

 reg clock;

 integer x, y, i;

 initial begin

 x = 1; // 1

 forever @(negedge clock) // 2

 if (x == 4) // 3

 $finish; // 4

 end

 always @(posedge clock) begin

 x = x + 1; // 5

 end

 always @(posedge clock) begin

 y = x; // 6

 end

 initial clock = 0; // 7

 always

 #2 clock = ~clock; // 8

endmodule

The value of y at the end of execution is indeterminate. That is, it may be either 3 or 4, depending on whether statement 5 or 6 is executed first at each positive clock edge. Suppose you needed to change only one statement so that when this module finishes, y has the same value as x.

There are several correct answers. Line 5 could be changed to any of:
#1 x = x + 1;
x = #1 x + 1;
x <= x + 1;
x <= #1 x + 1;

Chapter 4: Gate Level Modelling

· Objectives

· Review

· Modelling Levels

· Netlists

· Port Expressions

· Expressions in Port Definitions

· Expressions in Port Instances

· Port Connection Rules

· Connecting a Driven Net to an Output Port

· Built-in Primitives

· Single Output

· Single Input

· Tri-State

· MOS Switches

· cmos and rcmos

· Bidirectional Switches

· Implicit Nets

· More on Delays

· Inertial Delays

· Transport Delays

· More on Signal Strength

· Unambiguous Signals

· Ambiguous Signals

· Switch Level Models

· A Static RAM Model

· User-Defined Primitives

· Definition

· Use

· Combinatorial

· Example: 2-Input Multiplexor

· Sequential

· Edge-Sensitive

· Initialization

· Examples

· 4-bit Adder (Gate version)

· 4-bit Adder (UDP version)

· Shift Register

· Exercises

· Question 1

· Question 2

· Question 3

· Question 4

· Question 5

On completion of this chapter you will be able to:

· predict the output of a gate level Verilog model given its inputs

· describe how to correct a gate level Verilog model given its source code, inputs and output

· write a Verilog gate-level model corresponding to a given simple schematic

· determine the schematic for a gate level Verilog model given its source code

· identify Switch-Level and User-Defined primitives in a Verilog model

Each Verilog model is of a particular "level." The level of a model depends on statements and constructs it contains. The levels of Verilog models are:

· Behavioral

· Register Transfer (RT)

· Gate, and

· Switch

This chapter will focus on the constructs used to write Gate and Switch level models.

Netlists are just Verilog models which do not have any continuous assignments or procedural blocks in them. For example, the following is a netlist:

module DEC1OF8 (X0B, X1B, X2B, X3B, X4B, X5B, X6B, X7B, SL0, SL1, SL2, ENB);

 output X0B, X1B, X2B, X3B, X4B, X5B, X6B, X7B;

 input SL0, SL1, SL2, // select signals

 ENB; // enable (low active)

//Module Description

 not // invert SL0-SL2,

 N1 (sl0b, SL0), // & ENB

 N2 (sl1b, SL1),

 N3 (sl2b, SL2),

 N4 (enbb, ENB);

 nand // select outputs

 NA1 (X0B, sl2b, sl1b, sl0b, enbb), // (low active)

 NA2 (X1B, sl2b, sl1b, SL0, enbb),

 NA3 (X2B, sl2b, SL1, sl0b, enbb),

 NA4 (X3B, sl2b, SL1, SL0, enbb),

 NA5 (X4B, SL2, sl1b, sl0b, enbb),

 NA6 (X5B, SL2, sl1b, SL0, enbb),

 NA7 (X6B, SL2, SL1, sl0b, enbb),

 NA8 (X7B, SL2, SL1, SL0, enbb);

endmodule

The above netlist has only primitives in it, but it is quite common for a netlist to have a combintation of primitive and other module instantiations.

Netlists are most often used in Verilog when simulating the output of logic synthesis. They are also used for timing simulation, and there are additional Verilog features which allow you to specify the timing delays in great detail. See the specify block discussion in Chapter 6.

There are two parts to port connections, the port definition and the port instance. Naturally enough, the port definition is found in the module definition port list, and the port instance is found in the module instantiation port list.

Port expressions are one of

· identifier

· bit-select

· part-select

· concatenation

· constant

These are the same types of entities which can appear on the left-hand side of a continuous assignment statement.

A port expression can be specified in the port list as either the expression by itself, or with a port identifier using the .id(expr) notation. This is true in both the definition and the instance.

The ports in the definition may be port expressions. The following are legal port lists in definition statements:

module foo (port1, port2[1455], port3[3:7],

 {port4_bit1, port4_bit2, port4_bit3});

module bar (.port1(int1), .port2(int2[1455]), .port3(int3[3:7]),

 .port4({bit1, bit2, bit3}));

The use of expressions in the definition is questionable practice at best, and most of the time it is downright obscure. While you can make a case for using concatenations -- it is a convenient way of breaking out bit fields from a vector -- using a bit-select or part-select in a port definition is not recommended.

Likewise, using the .portid(id) notation in the definition is not common practice. You don't need to define ports this way in order to refer to them in the instantiation by name, so it usually isn't done.

Using expressions in port instances is more natural, and consequently is much more common. In general, different types of expressions are allowed, depending on the port type.
	Port Type
	Type of Expression

	input
	any expression

	output
	port expression

	inout
	port expression

Any expression is legal in an input port. This is because it is treated just like the right-hand side of a continuous assignment. Whenever one of its operands changes, the expression is evaluated, and its result is propagated into the input port.

Output ports may only take port expressions, however. This is because essentially a port assignment is a continuous assignment, and the expression which connects to an output port acts as a left-hand side of the assignment. That is, it is the thing receiving the data.

Inout ports essentially act like both an input and an output port. As a result, the rules on them are the union of all the restrictions.

Assuming port1 and port2 are input, port3 is output, and port4 is inout, the following instantiations are legal:

foo bar1(a*b, controlFunc(a/b), {data[1:0], data[2], data[5:4]},

 bus[28:30]);

foo bar2(.port1(sel?x:y), .port2(a[4]), .port3(ext[7:3]),

 .port4({b1, b2, b3}));

There are two Port Connection Rules:

	Rule 1
	Rule 2

	An input port or inout port must be defined to be a net.
	Ports which are defined to be output or inout may only have the following connected to them in the instantiation:

· a net (scalar or vector)

· constant bit-select of a net

· part-select of a net

· concatenation of the above

A simple summary is:

· nets receive signal values

· net or register port expressions send values

[image: image147.png]
Modify Module vabc so that it uses Module abc as a child module. Click the Answer button to see the solution.

module vabc (d, s);

 input [1:0] s;

 output [3:0] d;

 not (s1_, s[1]), (s0_, s[0]);

 and (d[3], s1_, s0_);

 and (d[2], s1_, s[0]);

 and (d[1], s[1], s0_);

 and (d[0], s[1], s[0]);

endmodule

module abc (a, b, c, d, s1, s0);

 input s1, s0;

 output a, b, c,d;

 not (s1_, s1), (s0_, s0);

 and (a, s1_, s0_);

 and (b, s1_, s0);

 and (c, s1, s0_);

 and (d, s1, s0);

endmodule

Answer:

module vabc (d, s);
 input [1:0] s;
 output [3:0] d;

 abc a1 (d[3], d[2], d[1], d[0], s[1], s[0]);
endmodule
What happens when you connect a driven net to an output port? If the module has a port defined to be an output, and you connect a net which has other drivers to that port, then the result is much the same as if you had a net on the left-hand side of two continuous assignments. While this might seem like an error, it may not be, so Verilog allows you to do this. It is up to you to synchronize the multiple drivers, however.

...

assign outnet = a & b;

vabc v1 (outnet, s); // there are two drivers of outnet

...

Built-in primitives

There are five types of built-in primitives:

· Single Output

· Single Input

· Tri-State

· MOS Switches

· Bidirectional Switches

Single output primitives have one output (the first port) and multiple inputs. They each must hve at least two inputs, but may have more. The truth tables for the two input case is given below.

[image: image148.png]
As the name implies, single input primitives have one input but multiple outputs. All of the outputs have the same value, so the common use of these primitives is with a single output.

[image: image149.png]
The bufif0 and bufif1 primitives are the tri-state drivers. They take two inputs, a data and a control input. Their behavior is described by the following tables:

 [image: image150.png]
In the above tables, the L symbol represents an output value of either 0 or x. The H symbol represents an output value of either 1 or x. In both cases the output value is an ambiguous signal (see screen 4-24) whose value is a range of signal strengths. For L, the values range from HiZ0 through the driving strength of the gate with value 0, and for H, the values range from HiZ1 through the driving strength of the gate with value 1.

For example, if the driving strength of the gate was (Weak0, Strong1), then L would have the range (We0-HiZ0) and H would have the range (HiZ1-St1). See More on Signal Strength later in this chapter for the discussion of signal strength ranges.

MOS switches are supposed to model PMOS and NMOS transistors. Each one has a resistive variation (the name begins with "r") which reduces the strength of the signals which propagate through them. The four primitives nmos, pmos, rnmos, and rpmos have behavior which is similar to bufif0 and bufif1, as shown by the following tables:

[image: image151.png]
The behavior of rpmos is the same as pmos, and rnmos is the same as nmos, with the only caveat being that the strength of the data value is reduced one level in the "r" version. That is, if the data input is strong1, then the output will be pull1 if the control input is the appropriate value.

Question:

What are the outputs of the following module under the given inputs?

module abc (a, b, c, d, s1, s0);

input s1, s0;

output a, b, c,d;

not (s1_, s1), (s0_, s0);

and (a, s1_, s0_);

and (b, s1_, s0);

and (c, s1, s0_);

and (d, s1, s0);

endmodule

	Inputs:
	Outputs (abcd)
	Correct answer

	1. s1=0, s0=1
	[image: image152.wmf]

1

	0100

	2. s1=1, s0=1
	[image: image153.wmf]

0

	0001

	3. s1=1, s0=0
	[image: image154.wmf]

1

	0010

	4. s1=x, s0=0
	[image: image155.wmf]

1

	x0x0

	5. s1=1, s0=z
	[image: image156.wmf]

0

	00xx

Question:

Select the schematic that correctly represents module abc.

module abc (a, b, c, d, s1, s0);
 input s1, s0;
 output a, b, c,d;
 not (s1_, s1), (s0_, s0);

 and (a, s1_, s0_);
 and (b, s1_, s0);
 and (c, s1, s0_);
 and (d, s1, s0);
endmodule
[image: image157.png]
The cmos (and rcmos) primitive is just a combination of nmos and pmos. It takes one data input and two control inputs, and produces one output.

cmos (w, datain, ncontrol, pcontrol);

is equivalent to

nmos (w, datain, ncontrol);

pmos (w, datain, pcontrol);

There are two built-in primitives which take a single signal as a port:

pullup(signal);

pulldown(signal);

These primitives drive the given signal with a value whose strength is "pull". See Implicit Nets later in this chapter. These primitives are used to put default logic values on a net which is otherwise undriven (that is, all of itнs drivers have a value of z).

The bidirectional switches are tran, tranif1, tranif0, and their resistive variations. These switches differ from the others in that they do not allow delays propagating signals through them. The tran (and rtran) primitive simply passes the value of a signal on one of its ports through to the other one. The rtran reduces the strength one level as it passes the signal through. Both ports are inout, and signals can go through this switch in either direction.

The conditional bidirects, tranif1 and tranif0 (and rtranif1 and rtranif0), act like a tran (rtran) switch if the control is enabled, and do not pass anything if the control is disabled. These switches can have delays specified with them, but the delay only effects the turn-on and turn-off propagation time.

In general, nets and registers must be declared before they can be used in a module. However, there is one important exception to this rule. A previously unused identifier may be used in a port list of a module or primitive instantiation, in which case it will be implicitly declared to be a net of the default type with zero delay.

There is a compiler directive, `default_nettype, which can be used to specify what the default net type should be. If `default_nettype does not appear, then wire is the default.

The reason this exception was made was for the case of large netlist models which were created in schematic capture programs and translated to Verilog. Many such translations did not declare the nets that were used, so it was convenient to allow Verilog to default them.

As described in Chapter 3 (see section on Multiple Delays), built-in primitives can take either 2 delay values or 3 delay values, depending on the primitive. (Pullup and Pulldown do not allow any delay specification.)

The delay simply means that if a gate input changes value at time t, the gate output will change value at time t+d. Delays which are attached to each primitive in the netlist are called distributed delays, because they are distributed throughout the circuit.

While delays can be specified on built-in primitives (and user-defined primitives), they cannot be specified on arbitrary modules. This is primarily because primitives have a simple, direct relationship between inputs and output(s), but normal modules do not. Therefore, if you want to associate delays with the outputs of a module, you must put the delays on the output drivers, either primitive or continuous assignment.

Primitive delays work like this:

[image: image158.png]
The gate in the figure has a delay of d, which causes the output to lag the input by d time units.

Delays specified on primitives are inertial delays. That is, if a second input change occurs before the first delay has expired, then the output will change only once. In the "standard" inertial delay, the output would look like this:

[image: image159.png]
However, Verilog-XL introduced the so-called "XL algorithm" which accelerated simulation of gate level models, at the expense of some accuracy in situations like this. The XL algorithm operates by noticing, when the second input event occurs, that an event for the output of the gate has already been scheduled to happen. It leaves the event time the same, but changes the new value. So, with the XL algorithm, the above case would look like this:

[image: image160.png]
Though at first glance, this appears to be exceedingly inaccurate, in fact, it seldom causes problems. The XL algorithm is almost universally used, both with Verilog-XL and other Verilog simulators.

Gate delays do not implement transport delay. Standard transport delay would look like this:

[image: image161.png]
The only mechanism in Verilog with which you can produce transport delay behavior is the non-blocking assignment. You can't do it with distributed gate delays.

There are eight strength levels which a signal can take on, and the signal can have a 0 or 1 value at each of the eight levels. Of the eight levels, 4 are driving strengths:

 supply strong pull weak

three are charge storage strengths:

 large medium small

and one is undriven

 highz

These levels are related as follows:

[image: image162.png]
The standard way of thinking of strength levels is as a range:

[image: image163.png]
A signal driven by a primitive has a single value from this set. The default driving strength is strong (St0 and St1). When a signal comes from a gate, it may be blended with other drivers on the same net by a resolution function, which takes the values of all the drivers and determines the value of the net.

If all of the drivers have values in the 0 part of the table, or all of them drive values in the 1 part of the table, the value is known, and is 0 or 1 respectively. A signal which has a single strength value is an unambiguous signal, and one with more than one value from the table is an ambiguous signal (for example, Pu1 and St1).

Signals are combined on a net by having two (or more) primitives with the same net as output. For example,

buf (strong1,pull0) b1(Result, A);

buf (strong1,pull0) b2(Result, B);

When unambiguous signals are combined on a net, the result is either unambiguous 0, unambiguous 1, or ambiguous x. If two drivers drive different strength levels, the stronger one wins, and the result is unambiguous. If they drive the same strength level, but different values, then the result is x:

[image: image164.png]
The last entry in this table has an ambiguous result, having all values from St0 to St1.

Ambiguous signals are signals which have multiple strength levels. Primarily, they are created by primitives with x values on their inputs. When two ambiguous signals are themselves combined, they generally produce an ambiguous result. For example, given this gate,

and (strong1, highz0) (out, a, b);

a = 1

b = x

would produce

out = StH (HiZ0,HiZ1,Sm1,Me1,We1,La1,Pu1,St1)

A complete discussion of ambiguous strengths is beyond the scope of this course. The most important thing to keep in mind is that different driving strengths can produce ambiguous results when combined on a single net.

Most models written in Verilog are either behavioral, RTL, or gate level. The distinction between them lies in how much use is made of procedural constructs. However, there is another level, lower than gate level, which is the switch level. Switch-level models are netlist models made up of switch primitives and nets which have strength values. These models can represent individual transistors and capacitors.

[image: image165.png]
Here's a switch-level model of a static RAM.

[image: image166.png]
 module sram (dout, addr, din, write);

 output dout;

 input addr, din, write;

 wire dio, ds, dv;

 bufif1 wctl(dio, din, write); // write control

 tranif1 ag(dv, dio, addr); // addr == 1 selects cell

 not (pull0, pull1)

 s1(ds, dv), s2(dv, ds); // feedback loop

 buf b1(dout, dio); // output

endmodule

This model uses pull drive strength for the feedback loop between the two not gates. To access the cell, the tranif1 gate is turned on, and the saved value becomes available on wire dio. If the write control gate (wctl) is turned on, the new value will be driven onto dio (its strength will override the pull strength), and it will be forced back through the tranif1 gate into the feedback loop. If the write control is turned off, then wctl drives a z, in which case dio remains unchanged from the feedback loop. The two features which makes this work are

· tranif1 is bidirectional

· strong drive strength on dio overrides the pull drive strength on dv

In general, switch-level modelling uses bi-directional primitives and differing drive strengths.

UDP

User-defined primitives, or UDPs, are customized logic functions. This is a powerful way to define your own primitive logic operation with up to 10 inputs and a single output. Logic functions defined as UDPs are very efficient, because their evaluation requires only a single table lookup.

Historically, UDPs were added to the language in order to improve the efficiency of gate-level simulation. They did this by exposing the underlying gate evaluation mechanism for the built-in primitives (and, or, xor, etc.), which is a simple table lookup. In general, UDPs are good to use in all Verilog simulation implementations. UDPs are found mostly in libraries.

UDPs are defined just like modules, but with a different set of keywords. The definition starts with primitive and ends with endprimitive. The description of the logic function is done by means of a table.

Example:

 primitive AO(OUT, A, B, C);

 output OUT;

 input A, B, C;

 table

 // A B C : OUT

 1 1 ? : 1;

 ? ? 1 : 1;

 0 ? 0 : 0;

 ? 0 0 : 0;

 endtable

 endprimitive

[image: image167.png]
In the example, notice the use of the comment. This is not required, but it is a convention which is universally used to provide labels for the table columns

User-defined primitives are used just like built-in primitives. You simply instantiate a UDP like a gate or module.

 ...

 AO ao1 (cmplx, and_in1, and_in2, or_in2);

There are two kinds of UDPs

· combinational

· sequential

Combinational UDPs are simply logic functions described by a table. There may be up to 10 inputs and one output. Each line in the table contains an entry for each input port, and the output port.

For example, the and primitive could be described as follows:

 primitive andudp(out, in1, in2);

 output out;

 input in1, in2;

 table

 // in1 in2 : out

 0 0 : 0;

 0 1 : 0;

 1 0 : 0;

 1 1 : 1;

 endtable

 endprimitive

This is not quite the same as the built-in and primitive, because this does not describe the behavior with x's. If a table does not have an entry for every combination of inputs, those for which there is no table entry will have a value of x as the output. Consequently, the above table would be expanded to this:

 table

 // in1 in2 : out

 0 0 : 0;

 0 1 : 0;

 1 0 : 0;

 1 1 : 1;

 0 x : x;

 1 x : x;

 x 0 : x;

 x 1 : x;

 x x : x;

 endtable

In this form, it is apparent that this is not the same as the built-in and primitive.

To make it easier to cover all the input cases, the ? character can be used in an input field of the table. This means the iteration of 0, 1, and x, so a line which was

 0 ? : 0;

would be equivalent to

 0 0 : 0;
 0 1 : 0;
 0 x : 0;

So, the following table would yield identical behavior to the built-in and:

 table
 // in1 in2 : out
 0 ? : 0;
 ? 0 : 0;
 1 1 : 1;
 endtable
As another example, a 2-input multiplexor could be defined like this:

 primitive mux2(out, sel, a, b);

 output out;

 input sel, a, b;

 table

 // sel a b : out

 0 1 ? : 1;

 0 0 ? : 0;

 1 ? 0 : 0;

 1 ? 1 : 1;

 x 0 0 : 0; // note pessimism reduction

 x 1 1 : 1;

 endtable

 endprimitive

In the above table, the following lines were omitted, since the default output value of x is the desired output.

 0 x ? : x;

 1 ? x : x;

The single biggest source of error in constructing UDP tables is leaving out table entries, resulting in undesired x output.

Sequential UDPs are just an extension of combinational UDPs. Their behavior is described by a table in just the same way, but they have an additional table entry, and that is the "current state".

The output port of a sequential UDP is declared as a reg, thus making it a state variable. Additionally, there is an extra field in the table entry for the current state.

Consider this description of a latch.

 primitive latch (q, ck, d);

 output q;

 reg q;

 input ck, d;

 table

 // ck d q q+

 0 1 : ? : 1;

 0 0 : ? : 0;

 1 ? : 0 : 0;

 1 ? : 1 : 1;

 endtable

 endprimitive

The column labelled q is the current state, and the column labelled q+ is the output, or next state.

The preceding description of a sequential UDP is dependent only on the value of the input ports and the current state variable. This is called level-sensitive behavior. While this can be very useful, it can be much more useful to be able to specify output behavior based on input transitions, or edges.

To do this, a sequential UDP table can contain entries which specify value transitions, like this: (01) 1 : ? : 1;

This entry says that on the rising edge of the first input, the output becomes the value of the second input.

There are a few rules governing edge-sensitive UDPs.

· There can be only one edge specifier in a single table row.

· All transitions which do not affect the output must be explicitly specified. This is because the output will be x for any unspecified transition. In the above example, if there was no other table entry, then it would be the same as if the table contained this line:
 (10) ? : ? : x;
· If there is an edge specifier for any input, there must be one for all inputs.

· If an input has both an edge-sensitive and a level-sensitive table entry, the level-sensitive one dominates. Consequently, most inputs do not need edge-sensitive specifiers on them.

Consider this example of a JK flip-flop with active low asynchronous set and reset.

primitive JKPRS_UDP(Q, J, K, CK, RB, SB);

 output Q; reg Q;

 input J, K, CK, RB, SB;

 // Positive edge triggered JK flip-flop with active low

 // asynchronous set and reset. Reset is dominant.

 table

 // J K CK RB SB : Qt : Qt+1

 0 0 (01) 1 1 : ? : -; // clocked JK.

 0 1 (01) 1 1 : ? : 0;

 1 0 (01) 1 1 : ? : 1;

 1 1 (01) 1 1 : 1 : 0;

 1 1 (01) 1 1 : 0 : 1;

 0 0 (x1) 1 1 : ? : -; // possible clocked JK.

 0 1 (x1) 1 1 : 0 : 0;

 1 0 (x1) 1 1 : 1 : 1;

 1 1 (x1) 1 1 : 1 : 0;

 1 1 (x1) 1 1 : 0 : 1;

 0 0 (0x) 1 1 : ? : -;

 0 1 (0x) 1 1 : 0 : 0;

 1 0 (0x) 1 1 : 1 : 1;

 1 1 (0x) 1 1 : 1 : 0;

 1 1 (0x) 1 1 : 0 : 1;

 ? ? ? 0 1 : ? : 0; // async reset.

 ? ? ? 1 0 : ? : 1; // async set.

 ? ? ? 0 0 : ? : 0; // async reset overrides.

 ? ? ? (?1) 1 : ? : -; // ignore changes on set

 ? ? ? 1 (?1) : ? : -; // and reset.

 ? ? (?0) 1 1 : ? : -; // ignore falling clock.

 ? ? (1x) 1 1 : ? : -;

 ? * ? ? ? : ? : -; // ignore edges on J and K.

 * ? ? ? ? : ? : -;

 endtable

endprimitive

In the example above, all of the edge changes on CK are specified: (01), (0x), (x1), (?0), and (1x). Because reset is asynchronous, level-sensitive entries will suffice when either set or reset becomes active (low). However, the (?1) entries are needed for when they both go inactive, since there is no other entry to provide the output for those cases. If these two table entries were not here, the output would go to x whenever RB or SB changed from 0 to 1, undoing the set or reset.

Notice the use of "-" in the output field of several of the table entries. This means "don't change", or equivalently, "use the last state value".

Notice also the last two table entries, which use the *. The * is used to represent (??), or all value transitions. These entries take care of any transitions on J and K.

The current output of a sequential UDP can be initialized with an initial assignment. For example, the following flip-flop has an initial value of 1.

 primitive ff1 (Q, S, R);

 output Q; reg Q;

 input S, R;

 initial Q = 1;

 table

 // S R Q Q+

 1 0 : ? : 1;

 f 0 : 1 : -;

 0 r : ? : 0;

 0 f : 0 : -;

 1 1 : ? : 0;

 endtable

 endprimitive

Notice in this example the use of "r" and "f" in the table. These stand for "rising edge" and "falling edge" respectively ((01) and (10)).

Example

This is a gate version of an adder.

This is a model of a 4-bit adder. It takes two 4-bit operands, inA and inB, and produces a 4-bit result, sum, and a 1-bit carry. It is composed of four 1-bit adders, each of which has a carry in as well as the two operand inputs.

[image: image168.png]
module ex2_1;

 /* gate level model to implement an adder */

 wire [3:0] sum, inA, inB;

 wire carry;

 adder4 a4 (sum, carry, inA, inB);

 adderTest at (inA, inB, sum, carry);

endmodule

module adder4 (sum, carry, inA, inB);

 output [3:0] sum;

 output carry;

 input [3:0] inA, inB;

 adder1 a0 (sum[0], c0, inA[0], inB[0], 1'b0);

 adder1 a1 (sum[1], c1, inA[1], inB[1], c0);

 adder1 a2 (sum[2], c2, inA[2], inB[2], c1);

 adder1 a3 (sum[3], carry, inA[3], inB[3], c2);

endmodule

[image: image290.png]module adder1 (s, cout, a, b, cin);

 output s, cout;

 input a, b, cin;

 xor (t1, a, b);

 xor (s, t1, cin);

 and (t2, t1, cin),

 (t3, a, b);

 or (cout, t2, t3);

endmodule

module adderTest (A, B, sum, carry);

 output [3:0] A, B;

 input [3:0] sum;

 input carry;

 reg [3:0] A, B;

 integer i, j;

 initial begin

 $monitor ("A: %d B: %d sum: %d carry: %d", A, B, sum, carry);

 for (i=0; i<16; i=i+1)

 for (j=0; j<16; j=j+1)

 begin

 A = i;

 B = j;

 #1 ;

 end

 $finish;

 end

endmodule

This is the same adder as the previous example, but it is implemented with two combinational UDPs.

This version replaces 5 primitive operations with 2. Even though the UDPs appear to be more complex, the time required to evaluate them is the same as the time to evaluate the built-in primitives. Consequently, significant savings can be realized using the UDP version.

	Original adder1 module

module adder1 (s, cout, a, b, cin);
output s, cout;
input a, b, cin;

xor (t1, a, b)
xor (s, t1, cin);
and (t2, t1, cin),
 (t3, a, b);
or (cout, t2, t3);
endmodule
	module adder1 (s, cout, a, b, cin);
output s, cout;
input a, b, cin;

adder1s (s, a, b, cin);
adder1c (cout, a, b, cin);
endmodule

1-Bit Adder UDPs

primitive adder1s (s, a, b, cin);

 output s;

 input a, b, cin;

 table

 // a b cin s

 0 0 0 : 0;

 0 0 1 : 1;

 0 1 0 : 1;

 0 1 1 : 0;

 1 0 0 : 1;

 1 0 1 : 0;

 1 1 0 : 0;

 1 1 1 : 1;

 endtable

endprimitive

primitive adder1c (c, a, b, cin);

 output c;

 input a, b, cin;

 table

 // a b cin c

 0 0 0 : 0;

 0 0 1 : 0;

 0 1 0 : 0;

 0 1 1 : 1;

 1 0 0 : 0;

 1 0 1 : 1;

 1 1 0 : 1;

 1 1 1 : 1;

 endtable

endprimitive

Example:

This example is very similar to the Shift Register example in Chapter 3. This shift register, however, does not have a counter.

This design is supposed to satisfy the following requirements:

· Implement a shift register. A data value is shifted in on every clock cycle, on the rising edge, and the oldest value is shifted out. The shift register is fifo.

· The depth of the shift register is 4 bits.

· The module ports are: data input (1 bit), clock (1 bit), data output (1 bit).

[image: image169.png]
module test;

 /* gate level model to implement a shift register */

 wire dataIn, dataOut, clk;

 shift4 s4 (dataIn, clk, dataOut); // 4-bit shift register

 clkGen #(10) cg (clk); // generate the clock

 shiftTest at (dataIn, dataOut, clk); // test generator

endmodule

module shift4 (dataIn, clk, dataOut);

 output dataOut;

 input dataIn, clk;

 wire [2:0] shiftreg;

 shift1 s0 (dataIn, clk, shiftreg[0]);

 shift1 s1 (shiftreg[0], clk, shiftreg[1]);

 shift1 s2 (shiftreg[1], clk, shiftreg[2]);

 shift1 s3 (shiftreg[2], clk, dataOut);

endmodule

module shift1 (bitIn, clk, bitOut);

 output bitOut;

 input bitIn, clk;

 /* single bit shift register */

 not (clk_, clk);

 latch pos (bitIn, clk, t), // data latched on clk = 1

 neg (t, clk_, bitOut); // output changes on clk = 0

endmodule

[image: image291.png]module latch (bitIn, clk, bitOut);

 output bitOut;

 input bitIn, clk;

 /* SR jam flip-flop with an enable */

 not (bitIn_, bitIn);

 nand (cin, bitIn, clk),

 (cin_, bitIn_, clk);

 nand (bitOut, cin, bitOut_),

 (bitOut_, cin_, bitOut);

endmodule

module clkGen (clk);

 parameter period = 2;

 output clk;

 reg clk;

 initial clk = 0; // start off with 0

 always // clock loop

 #(period/2) clk = ~clk;

endmodule

module shiftTest (dataBit, delayedBit, clk);

 output dataBit;

 input delayedBit;

 input clk;

 reg dataBit;

 task emitBits; // helper task to emit n bits

 input [7:0] bits, n; // task inputs

 begin

 repeat (n) begin // assume clk is at negedge

 dataBit = bits[0]; // take just the low order bit

 bits = bits >> 1;

 @(negedge clk) ;

 end // leave at negative edge

 end

 endtask

 always @(posedge clk) // display results

 $strobe($stime," dataBit: %b delayedBit: %b", dataBit, delayedBit);

 initial begin // produce test data

 emitBits(0, 1); // take care of first cycle

 emitBits('b10010, 5);

 emitBits('b101101, 6);

 emitBits('b01, 2);

 emitBits(8'b00000010, 8);

 $finish;

 end

endmodule
[image: image170.png]
Questions

Rewrite module abc above so that the input is a 2-bit vector s[1:0], and the output is a 4-bit vector d[3:0]. Call this module vabc.

module abc (a, b, c, d, s1, s0);

 input s1, s0;

 output a, b, c,d;

 not (s1_, s1), (s0_, s0);

 and (a, s1_, s0_);

 and (b, s1_, s0);

 and (c, s1, s0_);

 and (d, s1, s0);

endmodule
Answer:

module vabc (d, s);

 input [1:0] s;

 output [3:0] d;

 not (s1_, s[1]), (s0_, s[0]);

 and (d[3], s1_, s0_);

 and (d[2], s1_, s[0]);

 and (d[1], s[1], s0_);

 and (d[0], s[1], s[0]);

endmodule

Change module abc so that its outputs change 3 time units after the inputs change. Call this module dabc.

module abc (a, b, c, d, s1, s0);

 input s1, s0;

 output a, b, c,d;

 not (s1_, s1), (s0_, s0);

 and (a, s1_, s0_);

 and (b, s1_, s0);

 and (c, s1, s0_);

 and (d, s1, s0);

endmodule
Answer:

module dabc (a, b, c, d, s1, s0);

 input s1, s0;

 output a, b, c,d;

 not (s1_, s1), (s0_, s0);

 and #3 (a, s1_, s0_);

 and #3 (b, s1_, s0);

 and #3 (c, s1, s0_);

 and #3 (d, s1, s0);

endmodule

What is the output of the following model?
primitive xxx (w, x, y, z);

output w;

input x, y, z;

table

//
x
y
z
:
w

0
0
0
:
0;

0
0
1
:
0;

0
1
0
:
1;

0
1
1
:
0;

1
0
0
:
1;

1
0
1
:
0;

1
1
0
:
1;

1
1
1
:
0;

endtable

endprimitive

module t;

reg b, c, d;

xxx xxx1 (a, b, c, d);

initial begin

b = 0; c = 0; d = 0;

#1
$display(a);

b = 1;

#1
$display(a);

c = 1;

#1
$display(a);

d = 1;

#1
$display(a);

end

endmodule

Answer:

0 1 1 0
Write a Verilog module named mod that corresponds to the following schematic (input is in1, in2, s and output is out).

[image: image171.png]
One possible answer is:
module mod (in1, in2, s, out);

 input in1, in2, s;

 output out;

 or (out, o1, o2);

 and (o1, in1, s);

 and (o2, in2 s_);

 not (s_, s);

endmodule

Write a Verilog module called xyz which corresponds to the following schematic (input is a, output is b).

[image: image172.png]
Answer:

module xyz (a, b);
 input a;
 output b;
 not (a_, a);
 nand (t1, a, b);
 nand (b, a_, t1);
endmodule
Chapter 5: Behavioral and Register Transfer Level Modelling

· Objectives

· Review

· Modelling Levels

· Declarative Constructs

· Simulation Controls

· Program Counter

· Time Controls

· Event Controls

· Events are Transient

· Declared Events

· Transition Events

· Edge Events

· event or Events

· Level-Sensitive Event Control

· Procedural Assignments

· Blocking Assignments

· Intra-Assignment Delay

· Intra-Assignment Event Control

· Example Problem

· Non-Blocking Assignments

· Normal Case

· Intra-Assignment Delay

· Intra-Assignment Event Control

· Example Problem

· Subtleties of Non-Blocking Assignments

· Propagation

· Multiple Assignments

· Assignment Evaluation

· Assignment Propagation

· Control Statements

· Conditional

· Null Statements

· Dangling else

· if-else-if

· Case

· Case with "don't cares"

· Loops

· for Loop

· while Loop

· repeat Loop

· forever Loop

· Compound Statements

· Sequential Blocks

· begin ... end

· Parallel Blocks

· fork ... join

· Named Blocks

· Examples

· 4-bit Adder

· Shift Register

· Register with Scan Function

· Finite State Machine

· Exercises

· Question 1

· Question 2

· Question 3

· Question 4

· Question 5

· Question 6

· Question 7

· Question 8

On completion of this chapter you will be able to:

· state the relationships among gate, register transfer, and behavioral level modelling

· identify the modelling structures that are used for behavioral and RTL modelling, including statement controls, procedural assignments, control statements, and compound statements

· correct the syntax for each of the modelling structures that are used for behavioral and RTL modelling

· write a behavioral or register transfer level module to produce a given output

· predict the output of a given behavioral or register transfer level module

Here are some topics you might want to review before learning about behavioral and register transfer level modelling. Click a topic to return to the screen where it was introduced.

· procedural constructs (chapter 1)

· expressions (chapter 3)

· operands (chapter 3)

· operators (chapter 3)

· bit length (chapter 3)

This chapter will focus on the constructs used to write Behavioral and Register Transfer level models

[image: image173.png]
Verilog code can be divided into three general categories:

1. Definitions
 nets, registers, tasks, and functions

2. Declarative Code
 continuous assignments
 module (and primitive) instantiations

3. Procedural Code
 initial and always blocks

As with everything else in Verilog, there is some fuzziness in this categorization, since you can combine a continuous assignment with a net definition. However, we can generally consider any continuous assignment or module instantiation as declarative, and initial and always blocks as procedural.

In general, declarative code corresponds to combinational logic. Combinational logic is distinguished by its propagation properties (see Propogation under Continuous Assignments in Chapter 1). That is, whenever a net gets a new value, that value gets propagated to all of the other circuit elements which are connected to that net.

Procedural code, on the other hand, may correspond to either combinational or sequential logic. That is, using the proper event controls, you can write procedural code which behaves identically with declarative code. The reverse is not true, however.

For example,

 assign bus = bus_driver ? f(in) : 1'bz;

can be written as

 always @(bus_driver or in)

 if (bus_driver)

 busReg = f(in);

 else

 busReg = 1'bz;

These two pieces function identically. The only difference is that bus is a net in the continuous assignment, and busReg is a register in the procedural case.

Simulation controls can be applied to any procedural statement, and they can also be used within procedural assignment statements. The general format is:

[control] <statement>

If the control is present, then the condition that it specifies must be satisfied before the statement can be executed. If no control is present, then the statement can be executed immediately when the program counter gets to it. (Program counters are explained on the next screen.)

The statement to which the control is attached may be null. For example,

control ;

is legal.

There are two types of simulation controls:

#delay - time control

@event - event control

Procedural code has a notion of sequentiality. A procedural block is defined as:

 always <statement>
or initial <statement>

where <statement> can be:

 a single statement
 a sequential block (begin <statement> ... ; <statement> end)
 a parallel block (fork <statement> ... ; <statement> join)

When a sequential block is executed, the statements are executed one after the other, beginning with the first one. Each sequential block has its own program counter, which indicates which statement is being executed. Note that simulation time may pass between sequential statements or during a single statement.

Unlike traditional sequential programming languages, there may be many program counters in a Verilog model. In fact, there is one for each process in the model. For example, two processes might have program counters (pc) in the following configurations:

 always begin always begin

 a = f(x); b = f(x);

 pc-> #10 a = g(x); #10 b = g(x);

 #20 a = h(x); pc-> #10 b = h(x);

 end end

A parallel block is really no different, except that it has a program counter associated with each of its statements. In effect, it creates a new process for each of its parallel statements.

There are two types of simulation controls

#delay - time control

@event - event control

Time controls are simply delays, in the same format as delays used on wire declarations, continuous assignments, and primitives:

#delay_expression

The delay expression indicates the amount of simulation time which must elapse before the statement to which it is attached may execute. Thus, the delay is a relative time value.

In contrast to delays used in declarative code, time controls allow the delay to be specified using an arbitrary expression as the delay_expression. (In declarative code, the delay_expression must be constant-valued.)

Examples:

#1 a = f(x);

#delayparam vecGenTask(3);

#f(x) x = x + 1;

#(x+y+z/2) ;

Exercise:
Write a time control that will cause the controlled statement to execute at time 501234, assuming that the preceding statement executes sometime before that, but exactly when it executes is unknown. (hint: $time returns the current time)

...
#(501234-$time) ; // wait until time 501234
...

Event expressions may be one of the following

event_identifier

net_or_register

posedge net_or_register

negedge net_or_register

event_expression or event_expression

Event controls have no analog in declarative code - they are only used in procedural code.

Examples:

wire clk;

reg state, newstate;

event e1;

...

@e1

a = f(x);

@state

out = g(state);

@(posedge clk)

x = x + 1;

@(negedge state)
;

@(e1 or posedge clk or newstate)
state = newstate;

Note the use of parentheses in the above examples. It is necessary to use parentheses whenever the event expression contains any white space. So, to use posedge or negedge, you must use parentheses, as well as whenever the event expression consists of more than one event linked with "or".

The most notable feature of events is their transient nature. When an event happens, all event controls which are currently waiting for that event will be satisfied. That is, any statement which is blocked from executing by its event control will now be unblocked. However, any new event control for that event will not be satisfied, and must wait for the next occurrence.

For example,

always begin

@(posedge clk) state1 = newstate1;

@(posedge clk) state2 = newstate2;

end

In the above, state1 would be assigned on the first rising edge of clk, and state2 would be assigned on the second rising edge of clk. The always loop would take two cycles to complete, and each assignment would be made every other cycle.

The simplest event expressions consist of an event identifier. An event identifier is an identifier which was declared as an event, as in the declaration above of e1.

event e1;

Declared events have no value, they just are impulses. The only way a declared event can occur is for an event trigger statement to be executed:

->e1;

When it occurs, any event control waiting on that event will be satisfied. Any new event control for that event which is subsequently executed will wait for the next execution of an event trigger for that event.

Declared events are rarely used.

When the event expression consists of a net or register, any value change on that net or register satisfies the event. In the example above, @state would be satisfied whenever state changed value. This could happen for any number of reasons, most commonly continuous or procedural assignment, but including task parameter update and port assignment. Note that x->z and z->x are considered value changes, as are 1->x, 0->x, x->1 and x->0.

In this way, simulation is somewhat different from real life, since the x in simulation is a 1 or 0 in real life. Consequently, the simulation may indicate a change event that the real circuit might not see.

The edge events are extremely useful. They are defined as:

	posedge
	negedge

	0,x,z->1
	1,x,z->0

Edge events are useful for modelling clocked logic elements, like flip-flops. They are also useful for synchronizing activity in a model based on a common clock. For example, in the following two always blocks,

 always @(posedge clock) always @(negedge clock)

x = f(y);

z = x;

the value of z will always be assigned the previously computed value of x.

An event expression can be composed of several events by using the event or operator. The event control will be satisfied when any one of the events in the expression occurs. For instance,

@(a or posedge b or negedge c)

will be satisfied if a changes value, b goes to 1 or c goes to 0.

Question:
Why is there an “or” event operator, but not an “and”?

A: Events are instantaneous, so there can never be two events happen at precisely the same instant. Two events can occur at the same value of simulated time, but they always have an order, even if that order is indeterminate. Therefore, it wouldn't make sense to specify a condition of "event a and event b".

There is a level-sensitive event control called wait. This is written as
wait (expression)

When the program counter reaches this event control, the expression is evaluated, and, if false, then execution is suspended until the expression becomes true. If the expression is true when the statement is reached, then the wait has no effect, and execution proceeds to the controlled statement.

This event control is a convenience, since you can achieve the same effect using a combination of the other controls. For example,

wait (f(x, y, z)) s1;

is equivalent to

while (!f(x, y, z)) @(x or y or z) ;

s1;

Again, the "while" statement is explained under Loops later in this chapter.

Procedural assignments look like this:

lhs op [control] rhs ;

where:

 lhs is

 register identifier

 bit-select

 part-select

 concatenate

 op is

 = blocking assignment

 <= non-blocking assignment

 rhs is

 any expression

As with any procedural statement, there may be a control construct preceding the statement itself.

All assignments have the same semantics with respect to the actual movement of data from right-hand side (source) to left-hand side (sink).

Procedural assignment statements which use the "=" operator are called blocking assignments. They have the form

 lhs = [control] rhs ;

The reason they are called "blocking" is that the next statement after the assignment statement does not begin executing until the assignment has finished.

This is not a very radical notion, since in procedural code, it is usually the case that each statement is executed sequentially. The real reason these statements are called "blocking" is to distinguish them from non-blocking assignment statements which do not have that property.

The notion that an assignment "blocks" is more than trivial, however, in the case where a control is present within the assignment. This situation is called an intra-assignment delay or an intra-assignment event control.

x = #5 y + z;

This statement is executed as follows:
 1. evaluate the right-hand side expression and save the result
 2. wait for the specified delay
 3. perform the assignment

The execution of this statement causes simulation time to advance by the specified amount before the next statement executes. In that sense, the assignment statement blocks the next statement until the delay is finished.

x = @(posedge clk) y + z;
This statement is executed similarly to the intra-assignment delay, except that the event control is used:

1. evaluate the right-hand side expression and save the result

2. wait until the specified event occurs
 (in this example, the rising edge of clk)

3. perform the assignment

As before, downstream statements are blocked until the event control has been satisfied.

We saw an example of a race condition before where a two-stage pipeline was coded as:

always @(posedge clock) always @(posedge clock)

 dff1 = f(x); dff2 = dff1;

As noted before, this doesn't work because dff1 is being both sampled and changed at the same instant of simulated time in different processes. Think about how you would solve this problem.

Solution 1

This race can be fixed by the use of an intra-assignment delay:

 always @(posedge clock) always @(posedge clock)

 dff1 = #1 f(x); dff2 = #1 dff1
The execution sequence of events is:

1. wait until the rising edge of clock

2&3. evaluate f(x) and save
evaluate dff1 and save

4. wait 1 time unit

5&6. assign saved f(x) to dff1
assign saved dff1 to dff2

dff2 will now get the value of dff1 which it has at the posedge of clock.

Solution 2

The race can also be solved with an intra-assignment event control:

always @(posedge clock) always @(posedge clock)

 dff1 = f(x); dff2 = dff1;

As noted before, this doesn't work because dff1 is being both sampled and changed at the same instant of simulated time in different processes. Think about how you would solve this problem. Then, click each Solution button to see sample solutions.

Q: Does the following code work for a 4-stage pipe?

 always @(posedge clock) begin always @(posedge clock) begin

 dff1 = #1 f(x); dff2 = #1 dff1;

 dff3 = #1 dff2; dff4 = #1 dff3;

 end end

A: No. There is a race condition between the assignment to dff2 and the use of it, as both occur at (posedge clock)+1

Procedural assignment statements which use the "<=" operator are called non-blocking assignments. They have the form:
 lhs <= [control] rhs ;

They are called "non-blocking" because the assignment does not block the following statement, even in the presence of an intra-assignment control.

x <= y + z;
The normal non-blocking assignment is executed as follows:
1. evaluate the right-hand side expression and save the result

2. finish executing all other events except for other non-blocking assignments (nba's)

3. perform the assignment

x <= #5 y + z;

This statement is executed as follows:
1. evaluate the right-hand side expression and save the result

2. put the assignment on a list of nba's to be performed after the specified delay (t+5 in this example)

3. at the designated time, finish executing all other events except for other non-blocking assignments (nba's)

4. perform the assignment

The next statement is executed at the current time (t).

Intra-assignment event control

 x <= @(posedge clk) y + z;

This statement is executed similarly to the intra-assignment delay, except that the event control is used:

1. evaluate the right-hand side expression and save the result

2. put the assignment on a list of nba's to be performed when the specified event occurs (in this example, the rising edge of clk)

3. at the designated time, finish executing all other events except for other non-blocking assignments (nba's)

4. perform the assignment

As before, the next downstream statement will execute at the current simulation time.

Example

You need to fix the same two-stage pipeline race condition as in the Blocking Assignments example problem:

always @(posedge clock) always (@posedge clock)

 dff1 = f(x); dff2 = dff1;

Solution:

This race can be fixed by the use of non-blocking assignment:

 always @(posedge clock) always @(posedge clock)

 dff1 <= f(x); dff2 <= dff1;

The execution sequence of events is:

1. wait until the rising edge of clock

2&3. evaluate f(x) and save
evaluate dff1 and save

4. wait until all other events have executed

5&6. assign saved f(x) to dff1
assign saved dff1 to dff2

This reliably solves the problem.

Q: Does the following code work for a 4-stage pipe?

 always @(posedge clock) begin always @(posedge clock) begin

 dff1 <= f(x); dff2 <= dff1;

 dff3 <= dff2; dff4 <= dff3;

 end

A: Yes. This is why non-blocking assignments were added to the language

Propagation

If you look carefully at the execution paradigm for nba's, you can see some interesting cases. Non-blocking assignment events happen after all other events have happened. What if a non-blocking assignment propagates to a continuous assignment, or an input port of a module or primitive instantiation? Because of propagation and event controls, you could have regular events scheduling nba events, which then schedule regular events, etc., all without simulation time advancing.

For example,

 always @(posedge clk)

 dff1 <= f(x);

 assign fsm_in = f(dff1);

 assign fsm_out = fsm_state;

 always @(fsm_in)

 fsm_state <= g(fsm_in);

The answer is that yes, indeed, this situation can occur. However, it is handled by grouping all the nba events together. When all regular events have been executed, all the nba events are performed. If any new regular events have been scheduled as a result of the nba assignments, do them now and repeat. The scheduler alternates between regular events and nba events, until both sets of events are empty.

In the above example, the continuous assignment to fsm_in is a regular event which is triggered by the nba assignment to dff1. The always @(fsm_in) event is a regular event triggered by the continuous assignment. The nba assignment to fsm_state triggers the assignment to fsm_out
Multiple assignments

A more interesting problem is what happens if you make multiple assignments to the same register using non-blocking assignments? Consider the following:

 for (i=0; i<5; i=i+1)

 x <= i;

This will cause x to successively be assigned the values 0 through 4. However, since all the non-blocking events are executed together, you can't see the values 0..3, only the final value of 4.

Now consider this case:

 for (i=0; i<5; i=i+1)

 x <= #i i;

When this loop executes at time t, it will have scheduled 5 events to occur at time t, t+1, t+2, t+3, and t+4. Each will assign a different value to x. This is the only mechanism in Verilog to effect a transport delay.

Assignment evaluation

The assignment mechanics are pretty straightforward. The value of the right-hand side expression (rhs) is assigned to the left-hand side (lhs) register. Click each expression to learn about how it is evaluated.

lhs = rhs;
There is only one complicating factor to this case. If the lhs has a different size than the rhs expression result, the appropriate value for the assignment must be determined. There are two cases:

L(lhs) > L(rhs)
The context of the rhs is the size of lhs, so this case can only happen if the rhs is self-determined. If the size of the rhs is smaller than the lhs, then the rhs value is zero-filled to the lhs size.

L(lhs) < L(rhs)
The rhs value is truncated on the left, so that as many of the low-order bits as are needed are put into the lhs

lhs[partmsb:partlsb] = rhs;
This case is similar to the bit-select case. The assignment requires partmsb-partlsb bits to be put into the lhs. So, that many bits are taken from the low order bits of the rhs expression and put into the part-select. Again, which bits are used depend on the declaration of the vector.

 reg [0:7] lhs1;

 reg [7:0] lhs2;

 reg [8:1] lhs3;

 lhs1[1:3] = 3'b10x; // _ 1 0 x _ _ _ _

 lhs2[3:1] = 3'b10x; // _ _ _ _ 1 0 x _

 lhs3[3:1] = 3'b10x; // _ _ _ _ _ 1 0 x

lhs[bit] = rhs;
The low-order bit of the rhs expression is assigned to the specified bit position of the lhs. All other bits in the lhs are left unchanged. Which bit gets the new value is determined by the declaration of the register. In these three examples, the bit position in the lhs is not the same.

 reg [0:7] lhs1;

 reg [7:0] lhs2;

 reg [8:1] lhs3;

 lhs1[2] = 1'b1; // _ _ 1 _ _ _ _ _

 lhs2[2] = 1'b1; // _ _ _ _ _ 1 _ _

 lhs3[2] = 1'b1; // _ _ _ _ _ _ 1 _

{lhs1, lhs2} = rhs;
Assignment to a concatenation on the lhs can be constructed from the previous cases. Each element of the concatenation has a specified size, so the operation can be constructed as follows:

 reg [L1:1] lhs1;

 reg [L2:1] lhs2;

 reg [L1+L2:1] temp;

 ...

 {lhs1, lhs2} = rhs;

is equivalent to

 temp = rhs;

 lhs2 = temp[L2:1];

 lhs1 = temp[L1+L2:L2+1];

When a procedural assignment is made to a register, the new value must potentially be propagated to a number of places. Specifically, that register could appear on the right hand side of a continuous assignment, or it could appear in an event control in some other procedural statement.

For example,

 reg [7:0] x, y;

 wire [8:0] out;

 assign out = x + y;

 always

 @x y = y + 1;

 initial begin

 x = 0; y = 0;

 ...

 #2 x = 5;

 ...

 end

In the above, when x changes value, its new value must be propagated to both the continuous assignment and to the event control "@x". This propagation must occur before simulation time can advance. However, it is not defined exactly when in relation to other events at the current time the propagation will take place.

Some simulators will propagate an assignment before the next procedural statement is executed, and some simulators will continue to execute procedural statements until encountering a statement which is blocked, at which time all left-hand sides of assignments will be propagated. Either method is logically correct.

If we added the following statement to this example:

 always

 @y x = x + 1;

then there is a guaranteed order of execution at time 2:

 x = 5; -> y = y + 1; -> x = x + 1; -> out = x + y;

The continuous assignment to out may execute before the last time as well, and could, in fact, execute as many as three times or as few as once.

Question:
In the above example, find the a race between the assignments of x and y, and the propagation of x. What are the two different possible outcomes if you display y at time 1?

A: The assignments x=0; y=0; at time 0 may happen either before or after the always @x is armed and waiting. So, if you display y at time 1, you could get y='x' (the uninitialized value) if the assignment y=0 was done first, or you could get y='1' if the always @x was done first.

The statements which control execution flow are very similar to control constructs in sequential programming languages like C. They include:

· Conditional Statements
IF and IF-THEN-ELSE statements are standard conditionals.

· Case Statements
CASE, CASEX, and CASEZ are variations of a standard case or switch statement.

· Loop Statements
FOR, WHILE, REPEAT, and FOREVER are the looping statements.

Control statements, of course, may only appear in procedural blocks of code.

Conditional statements are the standard IF with an optional ELSE clause. It looks like:

 if (expression) statement_or_null [else statement_or_null]
where

 statement_or_null is statement or ;

The expression is a logical expression, which means it evaluates to a 1-bit result. The 1-bit result is obtained by comparing the expression result with 0, not by truncating the expression result to one bit. The following are equivalent:

 if (expression) ... is equivalent to if (expression != 0) ...

 not to if (expression[0]) ...

The meaning assigned to the 4 possible values is:

0 false

1 true

x false

z false

If either part of the if statement is intended to be null, a semi-colon is used to indicate that there is a null statement, like this:

	 if (control)

 ;

 else

 x = f(y);
	 if (control)

 x = g(y);

 else

 ;

While a null statement in the else part is silly, since you would just leave out the else entirely, a null if part can be useful. Consider

	 if (control != 1)

 $display("screwed up here");
	 if (control == 1)

 ;

 else

 $display("screwed up here");

In the first case, if control is x or z, the error message will not be printed, because the expression evaluates to x, (x != 1 is x). In the second case, the error message will be printed in all cases except if control is 1.

Note that the === and !== operators are provided as another means of solving the same problem. The !== operator could be used to make this code more natural:

 if (control !== 1)

 $display("screwed up here");

This will do what you want.

Verilog resolves the dangling else in the standard way. That is, if there is more than one if that the else could be associated with, it is associated with the lexically nearest one.

 if (cond_1)

 if (cond_2)

 result = x;

 else

 result = y;

In the above, the else is associated with the inner if, as implied by the indentation.

If you want to associate the else with a different if, then you must use begin...end, like this:

 if (cond_1) begin

 if (cond_2)

 result = x;

 end

 else

 result = y;

The if-else-if construct is really not a special case, but it does occcur frequently. That is,

 if (cond_1)

 statement1;

 else if (cond_2)

 statement2;

 else if (cond_3)

 statement3;

 else

 statement4;

This works as you would expect. If any of cond_1 .. cond_3 are true, the first one encountered will cause its associated statement, and only its associated statement to be executed. If none of cond_1 .. cond_3 are true, then statement4 will be executed.

There are three variations of the case statement in Verilog. They have the form:

 case (selector) case_item {case_item} endcase

or casex (selector) case_item {case_item} endcase

or casez (selector) case_item {case_item} endcase

where

 case_item is

 item {, item} : statement_or_null

 or default : statement_or_null

 selector and item are expressions

The semantics of the case statement is that the selector expression is evaluated and its result is compared with each item expression in turn. If equality is found, then the item's statement is executed and the case statement terminates. Unlike C, there is no need for a break statement between cases (there isn't one in the language).

Notice that the semantics of the case statement include the priority of selector-item matching. This can cause extra logic to be generated during logic synthesis which may or may not be what is desired.

Another feature of case comparison is that x and z bits match exactly. That is, the comparison is actually:

 selector === item

For this reason, the === operator is called "case equality".

Note that both the selector and the item are expressions. In particular, either may be a constant. This can be useful as in the following:

 case (1'b1)

state[0]: state0;

state[1]: state1;

state[2]: state2;

default: $display("error: bad state");

 endcase
Casex and casez are variations of case which allow for "don't care" bits in the comparison operations. Depending on the keyword, if a bit is z (casez) or x or z (casex) in either the selector or the item expression, then that bit does not participate in the comparison. Since the expression values are determined at simulation time, the don't care bits can be dynamic.

As a convenience for specifying constants used in item expressions, the ? character can be used in constants to indicate a z value (not x!).

Example

 casez (sel)

 4'b0000: case0; // task named case0

 4'b0001: case1;

 4'b?1??: case2;

 4'b10??: case3;

 endcase

In the above example, execution would yield the following, depending on sel

	sel

	task
executed

	0000
0001
0100, 0101, 0110, etc.
1000, 1001, 1010, etc.
	case0
case1
case2
case3

In the above example, the same result would be achieved with casex. However, casex can be used for dynamic masking in ways that casez cannot, since operations with z bits in operands generally turn into x bits in the results.
Here is another example:

 reg [2:0] sel, mask;

 ...

 mask = whichbit ? 3'bx11 : 3'b11x;

 casex (sel & mask)

 3'b010: state1;

 3'b111: state2;

 endcase

This code would either compare sel[1:0] or sel[2:1] with 2'b00 and 2'b11, depending on the value of whichbit.

Question:
If whichbit == 0 and sel == 3'b011, which task will be executed?

The answer is state1. If whichbit == 0, then mask == 3нb11x and sel&mask == 3нb01x. Using casex, the x bits do not participate in the comparison, so 3нb01x will match 3нb010, causing state1 to be selected.

There are four looping statements:

for (index_stmt; cond_expr; incr_stmt) statement

while (cond_expr) statement

repeat (count_expr) statement

forever statement

The for and while statements are very similar to the same constructs in C, while the repeat and forever are additional loop types that provide a convenient shorthand notation for some common situations.

In all the loop statements, the looping construct precedes a single statement. In the common case where there is a set of statements to be included in the loop body, a sequential block (begin...end) is used. However, any statement could be used, including a parallel block (fork...join).

The for loop takes three expressions, just like the for loop in C:

index_stmt

May be any assignment statement, but usually an assignment to the loop index. This is a procedural assignment, so the left-hand side must be a register.

cond_expr

A logical valued expression which is evaluated at the beginning of each loop iteration. If true, the iteration is performed, if false, the loop terminates.

incr_stmt

May be any assignment statement, usually modifies the loop index. Again, the left-hand side must be a register.

	for (i=0; i<16; i=i+1) s1;
for (address=0; address<32'h8000; address = address+16) s2;
for (index=500; index>1; index=index-1) s3;
for (i=loop_start; i; i=i<<1) s4;

Simple loop control can be complicated by register size. Consider the following:

reg [3:0] indx;

...

for (indx=0; indx<16; indx=indx+1) s1;

This loop will never terminate because indx is declared [3:0], its values range from 0..15. Thus, its value is always less than 16, so the termination condition of the for loop will never be satisfied.

Loop control can also be complicated by unsigned arithmetic. Consider this code:

reg [31:0] index;

...

for (index=500; index>0; index=index-3) s3;

Because index is unsigned, it can never have a value less than 0, so this loop will not terminate. If index was declared as an integer, the loop would work as intended, since integers are signed, and can have negative values.

It is possible to write infinite loops in other ways, including using a constant expression for the cond_expr (eg. 1). Such a loop may either never terminate, like the forever loop, or it may be terminated externally by a disable statement.

Notice that Verilog does not have an increment operator like C does (++ or --), so the increment statement cannot be of the form "i++".

The while loop works just like the C while loop. The cond_expr is evaluated at the beginning of each iteration, and if it is true, the iteration is performed. If it is false, the loop is terminated.

Examples:

while (index<10) s1;

while (are_we_still_looping(i)) s2;

while (1) s3;

The repeat loop is a very simple construct. The loop body is executed as many times as indicated by the count_expr. The count expression is evaluated once, before loop execution begins, so the loop count is not affected by changes to any of the variables used in the expression.

If the repeat count is negative or x, the loop is not executed. Unlike the other loop statements, all repeat loops must eventually terminate.

Examples:

repeat (5) s1;

repeat (f(x,y)) s2;

repeat (loopcount) s3;

The forever loop is the simplest loop. It never terminates.

There is only one example:

forever s1;

This construct is redundant, since the same effect can be acheived by use of the other looping constructs. However, it provides additional clarity to a model when the intent is for a loop to be never-ending.

It is interesting to note that:

always s1;

is equivalent to:

initial forever s1;

Correct the following code fragment:

 for (i = 0; i < n; i++)

The correct answer is:
 for (i = 0; i < n; i = i + 1)

You must write out "i++" as "i = i + 1" because "i++" is not a legal Verilog operator.

Wherever a single statement can be used, a compound statement can also be used. (A compound statement is just another kind of statement, so this is consistent.) There are two types of compound statement:

1. Sequential Block

2. Parallel Block

In addition, either type of compound statement can be a Named block.

The sequential block is just the familiar sequence of statements bracketed by begin and end. The statements in the sequence are executed in order, though they may include all of the time or event controls, and may even include parallel blocks.

Examples:

begin

 x = f(y);

#10 y = z;

 do_vector;

end

begin

 indx = 1;

 while (indx < 10)

 begin

 vec[indx] = vec[indx-1];

 indx = indx+1;

 end

end

The parallel block, is also a sequence of statements lexically. Semantically, however, the statements are not sequential, but they are concurrent. That is they can all be considered to begin at the same simulation time. The compound statement does not terminate until the last of the constituent statements has completed.

The following illustrates the parallel block:

fork

x = #1 y;

y = #1 x;

join

In this example, both statements begin at the current time and end at t+1. This would swap the contents of x and y.

As another example, the following are equivalent:

	always @(posedge clk)
 state1 = newstate1;
always @(posedge clk)
 state2 = newstate2;
	always @(posedge clk)
fork
 state1 = newstate1;
 state2 = newstate2;
join

Compound statements, both sequential and parallel, may have a label attached to them like this

begin : name

...

end

The point of doing this is twofold,

1. You can define register variables local to the block if the block has a name.

For example,

begin : nextblock

integer localindx;

reg localbit;

...

end

2. You can stop execution of the block with a disable statement. (Disable is discussed in Chapter 6.)

Both begin...end and fork...join can be named. In both cases, the function of the name is the same.

Local registers declared in a named block have a scope which consists of just that block, and any blocks which may be contained within it. This is similar to local storage in C. However, there is a difference - local storage in Verilog is still static. That is, there is only one storage location associated with a register defined within that block in any single instance. Because procedural code is not recursive, this static property is generally not visible.

Semantically, a named block is just like a task which is enabled from only one place.

Examples:

This is an RTL model of a 4-bit adder. This is the same problem as the gate version 4-bit adder example in Chapter 4. It takes two 4-bit operands, inA and inB, and produces a 4-bit result, sum, and a 1-bit carry. Unlike the gate version of this, it just implements the 4-bit adder directly, rather than decompose it further.

[image: image174.png]
Example: 4-bit Adder

module ex3_1;

 /* Register-Transfer level model to implement an adder */

 wire [3:0] sum, inA, inB;

 wire carry;

 adder4 a4 (sum, carry, inA, inB);

 adderTest at (inA, inB, sum, carry);

endmodule

module adder4 (sum, carry, inA, inB);

 output [3:0] sum;

 output carry;

 input [3:0] inA, inB;

 assign {carry, sum} = inA + inB;

endmodule

module adderTest (A, B, sum, carry);

 output [3:0] A, B;

 input [3:0] sum;

 input carry;

 reg [3:0] A, B;

 integer i, j;

 initial begin

 $monitor ("A: %d B: %d sum: %d carry: %d", A, B, sum, carry);

 for (i=0; i<16; i=i+3)

 for (j=0; j<16; j=j+5)

 begin

 A = i;

 B = j;

 #1 ;

 end

 $finish;

 end

endmodule

This example is a register-transfer level version of the gate level shift register.

This design satisfies the following requirements:

· Implement a shift register. A data value is shifted in on every clock cycle, on the rising edge, and the oldest value is shifted out. The shift register is fifo. The shifted-out value is available after the falling edge of the clock.

· The depth of the shift register is 4 bits.

· The module ports are: data input (1 bit), clock (1 bit), data output (1 bit).

[image: image175.png]
Example: Shift Register

module test;

 /* gate level model to implement a shift register */

 wire dataIn, dataOut, clk;

 shift4 s4 (dataIn, clk, dataOut); // 4-bit shift register

 clkGen #(10) cg (clk); // generate the clock

 shiftTest at (dataIn, dataOut, clk); // test generator

endmodule

module shift4 (dataIn, clk, dataOut);

 output dataOut;

 input dataIn, clk;

 reg dataOut;

 reg [2:0] shiftreg;

 always @(posedge clk)

 {dataOut, shiftreg} = @(negedge clk) {shiftreg, dataIn};

endmodule

module clkGen (clk);

 parameter period = 2;

 output clk;

 reg clk;

 initial clk = 0; // start off with 0

 always // clock loop

 #(period/2) clk = ~clk;

endmodule

module shiftTest (dataBit, delayedBit, clk);

 output dataBit;

 input delayedBit;

 input clk;

 reg dataBit;

 task emitBits; // helper task to emit n bits

 input [7:0] bits, n; // task inputs

 begin

 repeat (n) begin // assume clk is at negedge

 dataBit = bits[0]; // take just the low order bit

 bits = bits >> 1;

 @(negedge clk) ;

 end // leave at negative edge

 end

 endtask

 always @(posedge clk) // display results

 $strobe($stime," dataBit: %b delayedBit: %b", dataBit, delayedBit);

 initial begin // produce test data

 emitBits(0, 1); // take care of first cycle

 emitBits('b10010, 5);

 emitBits('b101101, 6);

 emitBits('b01, 2);

 emitBits(8'b00000010, 8);

 $finish;

 end

endmodule

[image: image176.png]
This is an example of a register with reset and scan chain.

This design satisfies the following requirements:

· The register samples data on the rising edge of the clock.

· The register width is 8 bits, parameterized.

· The register has a clock enable that must be high for the register to clock data in.

· It has an asynchronous reset input that, if low, causes the register to reset to 0.

· It has a scan function, with 1 bit input, output, and enable.

· The module ports are: data output (n bits), data input (n bits), clock (1 bit), clock enable (1 bit), scan shift out (1 bit), scan shift in (1 bit), and scan shift enable (1 bit).

[image: image177.png]
Example: Register with Scan Function

module test;

 /* This is a test module for testing a register */

 wire clk; // output and clock

 wire [7:0] Q;

 wire scanOut; // scan data out

 reg [7:0] dataIn;

 reg notReset, scanIn, scanEn;

 // Module instances

 Reg8x r1 (Q, dataIn, notReset, clk, scanOut, scanIn, scanEn);

 clkGen #(10) cg (clk); // generate the clock

 integer i, scantest;

 initial begin // produce test data, check results

 $monitor($time," dataIn: %b Q: %b", dataIn, Q);

 notReset = 0; // reset at 0

 scanEn = 0;

 #15 notReset = 1; // register some data

 dataIn = 1;

 repeat (4)

 #10 dataIn = dataIn << 1;

 #5 notReset = 0; // reset again

 #10 notReset = 1; // try again on the clock edge

 repeat (4)

 #10 dataIn = dataIn << 1;

 #10 scanEn = 1; // test scan

 $monitor($time," dataIn: %b Q: %b scanIn: %b scanOut: %b",

 dataIn, Q, scanIn, scanOut);

 scanIn = 0;

 scantest = 12'b100110001110;

 for (i=0; i<12; i=i+1)

 #10 scanIn = scantest[i];

 #10

 $finish;

 end

endmodule

module Reg8x (regOut, regIn, notReset, clock,

 scanShiftOut, scanShiftIn, scanShiftEnable);

 /* Parameters: */

 parameter size = 8;

 parameter ckToQ = 1;

 parameter resetToQ = 1;

 /* I/O Descriptions: */

 output [size-1:0] regOut; /* register output */

 input [size-1:0] regIn; /* register input */

 input notReset; /* async reset */

 input clock;

 output scanShiftOut; /* output of scan chain */

 input scanShiftIn; /* serial scan input */

 input scanShiftEnable; /* '1' = shift */

 reg [size-1:0] regOut; /* temp variable */

 reg shiftOut; /* temp variable */

 /* Assignments: */

 assign scanShiftOut = regOut[size-1];

 /* Register Functionality */

 always @(posedge clock)
 if (notReset && (scanShiftEnable !== 1))

 regOut = #ckToQ regIn;

 /* Scan Operation */

 always @(posedge scanShiftEnable)

 while (scanShiftEnable === 1)

 @(posedge clock)

 if (scanShiftEnable && notReset)

 {shiftOut, regOut} = #ckToQ {regOut, scanShiftIn};
 /* Reset Operation */

 initial begin
 if (!notReset)

 regOut = #resetToQ {size{1'b0}}; // avoid start-up race

 forever @(negedge notReset)

 regOut = #resetToQ {size{1'b0}};
 end

endmodule /* Reg8x */

module clkGen (clk);

 parameter period = 2;

 output clk;

 reg clk;

 initial clk = 0; // start off with 0

 always // clock loop

 #(period/2) clk = ~clk;

endmodule

Below is an example of a finite state machine. This state machine has the following state transition table (state/output):

[image: image178.png]
In addition, the state machine has the following properties:

· The 1-bit input is sampled on the rising clock edge.

· State transitions are made after the clock edge.

· The output is available after the clock edge.

· The model is 0-delay.

Example: Finite State Machine

module test;

 /* this is a tester for a state machine */

 reg clock;

 reg din;

 stateMachine fsm1 (dout, din, clock);

 /* clock */

 always

 #10 clock = ~clock;

 /* test generator */

 initial begin: testgen // test state transitions

 integer i; // local registers

 reg [1:10] inputsequence, outputsequence;

 clock = 0; // first edge is rising

 inputsequence = 10'b0010110101;

 $display("input sequence is: %b\n", inputsequence);

 for (i=1; i<=10; i=i+1) begin

 din = inputsequence[i];

 @(negedge clock) outputsequence[i] = dout;

 end

 $display("\noutput sequence is: %b", outputsequence);

 $finish;

 end

 always @(posedge clock) // monitor input-output

 $strobe($stime," input: %b output: %b", din, dout);

endmodule

module stateMachine (dout, din, clock);

 output dout;

 input din, clock;

`define A 3'b001

`define B 3'b010

`define C 3'b100

 reg dout;

 reg [2:0] state;

 initial state = `A;

 always @(posedge clock)

 case (state)

 `A: begin

 dout <= din;

 state <= din ? `C : `B;

 end

 `B: begin

 dout <= ~din;

 state <= din ? `B : `C;

 end

 `C: begin

 dout <= din;

 state <= `A;

 end

 endcase

endmodule

	input sequence is: 0010110101

10 input: 0 output: 0
30 input: 0 output: 1

50 input: 1 output: 1

70 input: 0 output: 0

90 input: 1 output: 0

110 input: 1 output: 0

130 input: 0 output: 1

150 input: 1 output: 1

170 input: 0 output: 0

190 input: 1 output: 0

output sequence is: 0110001100

Exercises:

Identify the level of the following code fragment.

and n1 (a, b, c, d);

or o1 (b, e, f);

or o2 (c, e, g);

not (d, f);

Top of Form

[image: image179.wmf]1. gate
[image: image180.wmf]2. register transfer
[image: image181.wmf]3. behavioral

Bottom of Form

This is a gate-level fragment.
Identify the level of the following code fragment.

 always #10

 clock = ~clock;

Top of Form

[image: image182.wmf]

1. gate
[image: image183.wmf]

2. register transfer
[image: image184.wmf]

3. behavioral

Bottom of Form

This is a behavioral-level fragment.
Correct the following code fragment:

 assign s #1 = a + b;

The correct solution is:

assign #1 s = a + b;

Correct the following code fragment:
always #10; clock = ~clock;

A: The two possible answers are:
always #10 clock = ~clock;

and

always begin #10; clock = ~clock; end

Complete the following module so that it produces this output:

clk
x
y

0
0
0

1
0
0

0
1
0

1
1
0

0
0
1

1
0
1

0
0
0

A:

module test;

reg x, y, clk;

always

 #10 clk = ~clk;

initial begin

$display("clk x y");

x = 0; y = 0;

clk = 1;

forever

@clk
$strobe(" %b %b %b", clk, x, y);

end

initial begin

@(negedge clk) ;

@(negedge clk)

x = 1;

@(negedge clk)

x = 0;

@(posedge clk) ;

@(posedge clk)

$finish();

end

always @(posedge clk) ...

always @(negedge clk) ...

endmodule
Identify the level of the following code fragment. Click Done to check your answer.

initial begin

x = 0;

#10
x = 1;

#5
x = 0;

end

Top of Form

[image: image185.wmf]

1. gate
[image: image186.wmf]

2. register transfer
[image: image187.wmf]

3. behavioral

Write a gate version of the following assign statement. Click Answer to see a solution.

wire [1:0] s;

wire a, x, y, z;

assign #1 a = s==1 ? x : s==2 ? y : z;

A:

One possible solution is:

or #1 mux (a, t1, t2, t3);

not (s0_, s[0]);

not (s1_, s[1]);

and (sel1, s1_, s[0]);

and (sel2, s[1], s0_);

nor (sel3, sel1, sel2);

and (t1, sel1, x);

and (t2, sel2, y);

and (t3, sel3, z);

Chapter 6: Advanced Features

· Objectives

· Review

· Cross-module References (XMRs)

· References to a Different Scope within a Module

· References between Modules

· Downward References

· Upward Reference

· Using the Module Name

· Using Instance Names

· Quasi-Continuous Assigns

· Procedural Assign

· Force Statement

· Task Enabling

· Disable

· Disable within a Block

· Disable outside of a Block

· System Tasks and Functions

· Output Formats

· $display

· $write

· $strobe

· $monitor

· $readmem

· Data File Format

· $stop

· $finish

· Simulation Termination

· Timing Check Tasks

· Multi-Channel Descriptors

· $time and $stime

· $random

· Real Conversion Functions

· Time Scale

· time_unit and time_precision

· Specify Blocks

· Specparam

· PATHPULSE$

· Module Paths

· Path Operators

· Types of Paths

· Module Path Delays

· Timing Checks

· Examples

· Cross-Module References

· ALU

· AMD 2901

· Exercises

OBJECTIVES

Upon completion of this chapter you will be able to:

· identify cross module references, task enabling, disable, quasi-continuous assigns, time scale, specify blocks, and system tasks

· state the purpose of quasi-continuous assigns, time scale, specify blocks, and system tasks

· state the results of changing the parameters for quasi-continuous assigns, time scale, specify blocks, and system tasks on the output of a given Verilog model.

· compose a new test bench that generates inputs and evaluates outputs of a given Verilog model using cross module references, task enabling, disable, and system tasks $display and $monitor

· match a Verilog model with a diagram of the circuit it represents

· match a Verilog model with a diagram representing its logical behavior

Here are some topics you might want to review before continuing. Click a topic to return to the screen where it was introduced.

· Parameter Override

· Procedural Assignments

· Blocking assignment

· Non-Blocking assignment

· Events

· Tasks and Named Blocks
Verilog has a mechanism for globally referencing nets, registers, events, tasks, and functions called the cross-module reference, or XMR. This is in marked contrast to VHDL, which rejected the concept.

Cross-module references (XMR), or hierarchical references as they are sometimes called, can take several different forms:

· References to a Different Scope within a Module

· References between Modules

· Downward Reference

· Upward Reference

There is a static scope within each module definition with which one can locate any identifier. For example, in the following,

[image: image188.png]
 module A;

 reg x; // 1

 ...

 task B;

 reg x; // 2

 begin

 ...

 begin: C

 reg x; // 3

 ...

 end

 end

 endtask

 initial

 begin: D

 reg x; // 4

 ...

 end

 endmodule

there is a module, a task, and two named blocks. There are four distinct registers, each named x within its local scope.

[image: image189.png]
Identifier references are resolved by means of normal scope rules. So a reference that appears in block C will first get resolved by definitions found in C, then by those found in B, then by those found in A. A reference in C will not be resolved by an identifier declared in D.

However, you can reference an identifier outside of the normal scope rules by using its hierarchical name. This is known as a cross-module reference.

The same naming convention is extended across modules. This is no longer a static scope, but a scope that is determined by the hierarchical structure of the model.

In this example of a hierarchy,

[image: image190.png]
if there was an identifier named x in each module, there would be 9 identifiers in the model:

 full name

 top.x top.x

 childA.x top.childA.x

 leaf1.x top.childA.leaf1.x

 leaf2.x top.childA.leaf2.x

 childB.x top.childB.x

 leaf3.x top.childB.leaf3.x

 node1.x top.childB.node1.x

 leaf1.x top.childB.node1.leaf1.x

 leaf2.x top.childB.node1.leaf2.x

A fully qualified hierarchical path name begins with the top-level module name, followed by each module instance name until the enclosing module is reached, then followed by the task, function, or block names of the local scope of the identifier.

Any identifier in the model can be accessed from any location by means of its fully qualified path name. Such a cross-module reference can occur on the left or right-hand side of an assignment, both procedural and continuous, or it can be a task enable or function call

Example:

module top;

 wire x = 0;

 wire y = top.childB.b;

 type1 childA();

 type2 childB();

 endmodule

 module type1;

 wire a = top.x;

 endmodule

 module type2;

 wire b = top.childA.a;

 endmodule

Cross-module references are particularly straightforward when they are downward references. That is, if the identifier being referenced is below the reference point in the hierarchy, it can be referenced beginning with the instance it is contained in.

In our previous example, if the reference point was in:

 top.childB.node1

then:

 top.childB.node1.leaf2.x

could be simply referenced as:

 leaf2.x

Note that in our previous example, the top module could have been written:

 module top;

 wire x = 0;

 wire y = childB.b; // a downward reference

 type1 childA();

 type2 childB();

 endmodule

The rule is that the XMR begins with an instance name and proceeds downward. The instance name is found in the module which contains the reference. Downward references are always unambiguous and well-defined.

Upward references are much less straightforward than downward references. An upward reference is a reference to an identifier that is defined in some other part of the hierarchy than the reference point.

Again, using our example

[image: image191.png]
if you want to reference:

 top.childB.leaf3.x

from:

 top.childB.node1.leaf1

you can do it like this:

 type2.leaf3.x

Note that the first component of the XMR is a module name, not an instance name. This type of reference is useful if there is a common parent module type for all instances of the module containing the XMR.

Question:
What happens if there is an upward XMR of this type in module c, and module c is instantiated in both module a and module b? Can the XMR be resolved in both instances?

A: Sometimes. It depends on what else is above modules a and b. For instance, if a type1 module in the above hierarchy had the following XMR:
 type2.leaf3.x then it would correctly find the variable x in the type3 module leaf3.

However, if childA instantiated a type1 module called leaf2, instead of a type3 module called leaf2, then the XMR would not be able to be resolved, since the XMR would try to find a type2 module above it in the hierarchy and that would fail.

Upward references may also be done with a module instance name as the first component of the XMR. [image: image192.png]
Thus, if you want to reference:

 top.childB.leaf3.x

from:

 top.childB.node1.leaf1

you can do it like this:

 leaf3.x

The rules for resolving these types of reference are:

1. Look in the current module for a module instance with that name, and if found, proceed downward in that instance.

2. Look in the parent module for a module instance with the given name, and if found, proceed downward from there.

3. Repeat step 2, going up the hierarchy.

This is a well-defined procedure. However, you can construct XMRs and module hierarchies in which an upwards XMR can be resolved in some instances and not in others.

Exercise:

The following hierarchy uses an upward XMR with instance names which can not be resolved. Can you modify it so that both instances of module moda will print out the value of z contained in their sibling? That is, one should print xx.z = 2 and the other should print xx.z = 4.

module test;

 moda #(1) a1();

 modb #(2) xx();

endmodule

module moda;

 parameter zz = 0;

 initial $display("from %m: xx.z = %h", xx.z);

endmodule

module modb;

 parameter z = 0;

 moda #(3) xx();

 modc #(4) xc();

endmodule

module modc;

 parameter z = 0;

endmodule

Solution:

module test;

 moda #(1) a1();

 modb #(2) xx();

endmodule

module moda;

 parameter zz = 0;

 initial $display("from %m: xx.z = %d", xx.z);

endmodule

module modb;

 parameter z = 0;

 moda #(3) xa(); // <<< change instance name

 modc #(4) xx(); // <<< change instance name

endmodule

module modc;

 parameter z = 0;

endmodule

QSA

It is often useful to be able to override the normal operation of a model in order to temporarily fix a problem, or to cause a behavior that does not yet have a physical realization. The Quasi-Continuous Assign, or QCA, is used for these purposes.

For example, you may know that you want the output of a flip-flop to be high for 2 cycles after the occurrence of a reference signal, but you haven't yet designed the logic to make that happen. The following would allow you to model that behavior:

 module test;

 ...

 DFF dff1 (Q, D, clk);

 ...

 always @(posedge ref)

 begin

 assign Q = 1;

 repeat (2)

 @(posedge clk) ;

 deassign Q;

 end

 ...

 end

Quasi-continuous assign is a procedural assignment statement that acts like a continuous assignment. There are two forms of QCA,

· Procedural Assign

· Force

They can both be used with cross-module references or with local identifiers for overriding the normally assigned value of the assigned identifier.

The procedural continuous assign is simply an assign statement used in procedural code. It works just like a continuous assign, but it is applied only to a register. That is, the left-hand side of the assignment must be a register.

 assign lhs = rhs;

The effect of the assignment is like a continuous assignment, in that the left-hand side register will be updated with a new value whenever the right-hand side expression changes value.

Unlike a continuous assignment, however, the procedural continuous assign may be in effect for a limited period of time. It does not take effect until the assign statement is executed (remember, this is a procedural statement, so it does not get executed until the program counter reaches it).

Once the assign statement has been executed, the right-hand side expression writes over any previous value in the register. Subsequent blocking and non-blocking assignments to that register will be ignored as long as the assign is in effect.

The assign is in effect until either another assign statement for that register is executed, or until a deassign statement is executed.

A common use of QCAs is for modelling asynchronous reset, like this:

 module dff (q, d, clear, preset, clock);

 output q;

 input d, clear, preset, clock;

 reg q;

 always @(clear or preset)

 if (!clear)

 assign q = 0;

 else if (!preset)

 assign q = 1;

 else

 deassign q;

 always @(posedge clock)

 q = d;

 endmodule

In this example, if either clear or preset are held low, the output q will remain forced to 0 or 1 regardless of the input d at subsequent clock edges.

It is worth noting that the always @(posedge clock) loop will continue to trigger on rising clock edges, but the q = d assignment will be ignored as long as one of the assigns is in effect.

When the deassign is executed, the value of q remains unchanged until the next q = d assignment, which is no longer ignored.

The force quasi-continuous assign statement has the same syntax as assign, but uses the force keyword:

 force lhs = rhs;

The primary difference between force and the assign QCA is that the lhs of a force can be either a register or a net. If it is a register, then force acts very much like assign, the only difference being that force has higher precedence than assign.

If the lhs of the force is a net, then when the force is removed, the net reverts back to its "normal" value immediately, unlike a register, which will not change until the next procedural assignment.

The lhs may be a bit-select or part-select of a net, but not of a register.

The release statement is used to remove a force condition from a register or net:

 release lhs;

Force and release are often used to initialize flip-flops or other feedback circuits. Consider the following model from Shift Register example in Chapter 4.

[image: image193.png]
module latch (bitIn, clk, bitOut);

 output bitOut;

 input bitIn, clk;

 /* SR jam flip-flop with an enable */

 not (bitIn_, bitIn);

 nand (cin, bitIn, clk),

 (cin_, bitIn_, clk);

 nand (bitOut, cin, bitOut_),

 (bitOut_, cin_, bitOut);

endmodule

When clk is 0 initially, the output of this model is x. In real life, the output would be 0 or 1, though it is unknown which it would be. If the circuit which takes the output of this latch as input is insensitive to which it is, it can be useful to force the latch output to be a known value, like this:

 latch pos (dataIn, clk, dataOut);

 ...

 initial begin

 force pos.bitOut = 0;

 #1 release pos.bitOut;

 end

 ...

Tasks are essentially subroutines in Verilog, but they are subroutines which correspond to hardware. Click each of the bulleted items to learn more about it.

[image: image194.png]
Storage which is local to the task is not dynamic, like in most programming languages, but it is static. Thus, tasks are not recursive. Because time can pass while in a task, and a task can be enabled from several places, it is common for a task to be enabled from more than one place at the same time. Because of the static storage in the task, this can cause unexpected results. Arguments to tasks are specified by input, output, and inout statements that have the same syntax as port declarations in a module. However, they are not the same. All the formal arguments to a task are registers. Input and inout arguments have their actual values copied into the formal arguments at the time of the task enable, and inout and output arguments have their formal arguments copied out to the actual values when the task finishes.

Re-entrant Task Example

Consider the following example:

 task mul_div;

 input [31:0] opA, opB;

 input opcode;

 output [31:0] res;

 reg [31:0] temp;

 begin

 if (opcode) begin

 temp = opA * opB;

 repeat (2) @(posedge clk) ;

 end else begin

 temp = opA / opB;

 repeat (4) @(posedge clk) ;

 end

 res = temp;

 end

 endtask

 always @(posedge clk) // unit 1

 if (opvalid) begin

 opvalid = 0;

 mul_div(opA, opB, opcode, result1);

 end

 always @(posedge clk) // unit 2

 if (opvalid) begin

 opvalid = 0;

 mul_div(opA, opB, opcode, result2);

 end

In this example, there are two multiply/divide units that can be started independently on consecutive cycles. Notice that each invoking loop will take as many cycles as the operation that it initiates. (Notice that by turning opvalid off, both units will not start the same operation.)

The problem with this code is the static storage in the task. The task can be enabled from both places at the same time, but there is only one memory location named temp. Consequently, it will get overwritten by the later invocation, and will thus return the wrong result. Note that the same problem would occur if res was used in place of temp.

Task Argument Example

Consider this example:

 module test;

 task t;

 input [31:0] a;

 output [31:0] b;

 begin

 b = a;

 #100 ;

 end

 endtask

 reg [31:0] in, out;

 wire [31:0] outnet = out;

 initial begin

 $monitor($stime," outnet: %h", outnet);

 in = 32'ha5a5a5a5;

 t(in, out);

 $display($stime," in: %h out: %h", in, out);

 end

 endmodule

The output from this example is:

 0 outnet: xxxxxxxx

 100 in: a5a5a5a5 out: a5a5a5a5

 100 outnet: a5a5a5a5

Just as tasks can be enabled, they can be disabled, by the disable statement:

 disable task_or_block_name;

The disable statement will terminate the activity of the block which is named in it. The disabled block can be a:

· Task

· Named block

When disable is applied to a block or task, all activity in that block or task is terminated, and all events which have been scheduled but not yet executed are also cancelled.

In other words, all activity which has been initiated by the block or task but not yet completed is terminated. That means that any task which was enabled by this block or task is also disabled.

If a task is disabled, then the results of the following activities within that task are undefined (that is, they are implementation-dependent):

· Results of output and inout arguments

· Non-blocking assignments which have been executed in the disabled task, but the assignment has not yet been made

· Procedural continuous assignments made in the task

When a task is named in a disable statement, there is no way to distinguish between different enables of the same task. That is, the given task could be enabled more than once concurrently. In this case, all enabled instances of the task are disabled.

There are two cases which can occur with a disable statement:

· The block or task being disabled contains the disable

· The block or task being disabled does not contain the disable

Disable can be used to implement a variety of control constructs when it is used within the block being disabled. Click a statement to learn how it can be implemented in Verilog.

[image: image195.png]
Verilog does not have a goto, but the effect of a forward goto can be acheived like this:

 begin: thisblock

 ...

 if (a)

 disable thisblock;

 ...

 end

Execution will continue with the next statement after the end statement when the disable is executed.

Verilog does not have a return statement, but a similar effect can be acheived by the following:

 task thistask;

 ...

 begin

 ...

 if (done)

 disable thistask;

 ...

 end

 endtask

Note that this is not entirely equivalent to a return, since any output arguments may or may not get their values updated.

The continue statement in C causes the current iteration of a loop to be terminated, with execution continuing with the next iteration. To do the same thing in Verilog, you can do this:

 for (i=0; i<16; i=i+1) begin: continue

 ...

 if (abort)

 disable continue;

 ...

 end

The break statement in C can be emulated with disable like this:

 begin: break

 for (i=0; i<16; i=i+1) begin

 ...

 if (exit)

 disable break;

 ...

 end

 end

Disable can be used to disable some other block from the one which executes the disable. By definition, the disable statement is being executed from a different process than the one which contains the block to be disabled.

The following is an example of one process disabling another:

 always begin: proc_a

 #100 q = 0;

 end

 always @retrig begin

 disable proc_a;

 q = 1;

 end

This example will set q to 0 100 time units after retrig changes value. In the absence of retrig, the first always block will continue to loop, each time waiting for 100 time units then setting q = 0.

When retrig occurs, the proc_a block will be disabled, which simply causes the always to start over again, which means it starts the 100 time unit wait again. After the disable, q is set to 1. The overall behavior here is that q will be 1 for a length of time 100 units after the last retrig event, at which time it will go to 0.

Another example is the use of disable to implement a time out:

 fork

 begin: op

 @ev do_some_op;

 disable timer;

 end

 begin: timer

 repeat (3) @(posedge clk) ;

 disable op;

 end

 join

In this example, the op block does the work, but it has to wait for some external event, ev. If the external event does not occur in 3 clock cycles, then the timeout stops the activity.

System tasks are used just like tasks which have been defined with the task ... endtask construct. They are distinguished by their first character, which is always a "$".

There are many system tasks, but the most common are:

· $display, $write, $strobe

· $monitor

· $readmemh and $readmemb

· $stop

· $finish

· timing check tasks

Likewise, system functions are used just like functiosn which have been defined with the function ... endfunction construct. Their first character is also always a "$".

There are many system functions, with the most common being:

· $time ($stime)

· $random

· $bitstoreal

The general format of an output task is:

 $task_name(arg1, arg2, ...);

where argi is either

a format string or

an expression

Format strings and specifiers are used in all of the output tasks:

	$display
$displayb
$displayh
$displayo
	$write
$writeb
$writeh
$writeo
	$monitor
$monitorb
$monitorh
$monitoro
	$strobe
$strobeb
$strobeh
$strobec

If an argument is a string constant, then it is interpreted as a format string, which is very much like a C format string. That is, it consists of literal characters and format specifiers, which will cause output conversion of following argument expressions.

Special characters can be printed by using escape sequences in the format string.

Format specifiers:

[image: image196.png]
Escape sequences:

[image: image197.png]
Example:

 $display("val = %d", count);

 $display($time,,"new value is %h (%b)", newval, newval);

 $display($stime," execution is in %m now");

 $display("rval = %e", realval);

 $display("x = %d, which is %d%% of y (%d)", x, x*100/y, y);

Note that %m is the only format specifier that does not take a corresponding expression to convert.

This task simply prints output as specified by the optional format string and the argument expressions. It adds a newline character to the output string. There are several variations of the $display system task which are used for output. They all take the same arguments, and differ only in their default radix.

The general format is:

 $display(arg1, arg2, ...);

where argi is either:

a format string or

an expression

If there is no format string given, then each expression is converted to the default radix and printed. If an expression is given as an argument with no corresponding format specifier, then it is converted according to the default radix and inserted into the output string. If an argument is omitted, as indicated by consecutive ",", then a space is inserted into the output.

The default radix is determined by the name of the system task:

[image: image198.png]
In addition, all of the output system tasks have a "file" version - e.g. $fdisplay, $fdisplayb, etc. These differ from the regular version by their first argument being a multi-channel descriptor, which indicates a file to write the output to. Multi-channel descriptors are covered in detail later in this section.

The $write system task is just like $display, except that it does not add a newline character to the output string.

Example:

 $write ($time," array:");

 for (i=0; i<4; i=i+1)

 write(" %h", array[i]);

 $write("\n");

This would produce the following output:

110 array: 5a5114b3 0870261a 0678448d 4e8a7776

The $strobe system task is just like $display, except that it waits until the end of the time step before printing. This can be useful to be sure that the output comes after all value changes.

Example:

 always @(posedge clock)

 state1 = newstate1;

 always @(posedge clock)

 state2 = newstate2;

 always @(posedge clock)

 $strobe($stime,,state1,,state2);

This code would print out the new values of state1 and state2 at each rising clock edge, after all other processing had been completed. If you simply used $display here, you could not be sure that the displayed values were the new ones.

This system task is used for printing output whenever any of its arguments change. Like $strobe, when it does print, it does so after all other events in that time step have occurred.

$monitor takes the same arguments as $display (see the discussion of Output Formats earlier in this section).

 $monitor (arg1, arg2, arg3);

is equivalent to

 always @(arg1 or arg2 or arg3)

 $strobe (arg1, arg2, arg3);

There is a slight difference, in that $monitor only takes effect when the system task is executed. There is another difference in that the output line will be emitted at the time the $monitor is executed in order to provide a reference point for the argument values.

Only one $monitor may be active at a time. If a second $monitor task is executed, then the second one replaces the previous one. This is an annoying restriction.

There are two additional system tasks which affect the behavior of $monitor:

$monitoroff
 turns off an existing monitor
$monitoron
 turns an existing monitor back on

Example

 ...

 assign #20 net = driver;

 always @(negedge clock)

 driver = f(x);

 initial

 $monitor($stime," net is: %h driver is: %h", net, driver);

 ...

Note here the use of $stime. This system function will not cause the monitor to trigger at each time change, because there is no argument to the function. This is the same reason that

 assign mytime = $time;

won't work.

$readmem is the only input system task. It comes in two forms, $readmemb and $readmemh. The only difference between the two is the radix that they assume the input to be in (binary and hex, respectively).

$readmem has the form:

 $readmemh(file_name, input_memory, first_index, last_index);

The data values are read into the specified memory according to the indices given. If there are more data values in the file than memory locations specified, only the required number are read, and a subsequent readmem can be executed to continue reading from that point.

If there are fewer data values in the file than specified by the indices, then as many as available are read and a warning message is given. Remaining memory locations are left unchanged.

If the second index is omitted, the memory will be filled from the first index to the end of the memory as specified by the right-hand index in the memory declaration. If both the indices are omitted, then the entire array will be filled, beginning at the left-hand index and proceding to the right-hand index in the memory declaration.

Example:

For:

 reg [15:0] arr [1:35];

If the data file looked like this:

 ffff

 fffe

 fffd

 fffc

 0001

 0002

 0003

 0004

 abcd

 deff

then

$readmemh("data_file", arr, 1, 10);

 arr [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

 ffff fffe fffd fffc 0001 0002 0003 0004 abcd deff

$readmemh("data_file", arr, 26);

 arr[26] [27] [28] [29] [30] [31] [32] [33] [34] [35]

 ffff fffe fffd fffc 0001 0002 0003 0004 abcd deff

$readmemh("data_file", arr, 10, 1);

 arr [1] [2] [3]
 [4] [5] [6] [7]
 [8]
[9] [10]

 deff abcd 0004 0003
0002 0001 fffc fffd
fffe ffff

The data file must consist of the following:

1. binary or hexadecimal numbers

[@address] datavalue

where

address is a hexadecimal number (for both $readmemb and $readmemh)

datavalue is a binary or hexadecimal number which may contain x, z, and _, but does not contain a size or base

2. white space

3. comments (both types)

If an address appears before a datavalue, the datavalue will go in that memory location, and subsequent datavalues will go in subsequent memory locations, proceeding toward the last_index.

The $readmem task is a kludge, in the sense that it only works for memories, and the form of the input is very inflexible.

This system task is used to suspend simulation and enter whatever interactive environment the simulator may provide. Note that it is not useful for other, non-simulation activities, like synthesis or timing analysis.

Because each simulator provides a somewhat different interactive environment, what happens after $stop is executed is implementation-dependent. However, when the $stop task is executed, the simulation suspends at that point. It is not necessarily the case that simulation is at the end of a time step. It is the case that simulation is resumable as if the suspension had not happened.

Example:

 initial begin

 repeat (5)

 #1000 $stop;

 $finish;

 end

This example would allow the user to inspect the state of the simulation every 1000 time units 5 times before the simulation terminated.

This system task is used to terminate simulation. It can take an optional argument which indicates how much information the simulator should print out about the simulation execution. Typically this information will include the number of events, CPU time and amount of memory the model has consumed.

Example:

 case (data)

 `none: $finish;

 `some: $finish(1);

 `all: $finish(2);

 endcase

This contrived example shows how you might dynamically select how much data you want about the simulation run. Any statement after this case statement would not get executed.

Simulation terminates when $finish executes. It also terminates when there are no more events on the event list. This makes sense, since there is nothing more for it to do.

Simulation terminating because the event list is exhausted is nearly always an error. For this to be the case, the clock loop is not running. Since most models have a clock, this usually means the clock has gone to x, and probably everything else, too.

Timing check tasks may only appear in specify blocks, and are used to verify timing constraints on specified events. Because they appear in specify blocks, they don't really act like other system tasks which are executed in the course of executing procedural code. Timing check tasks always execute at time 0.

The timing check tasks are:

	
	$setup
$skew
	$hold
$recovery
	$setuphold
$width
	$period
$nochange

All of the I/O system tasks have a variation whose name begins with "f" that will write the output to one or more files. The file output system tasks are:

	
	$fdisplay
$fwrite
$fstrobe
$fmonitor
	$fdisplayb
$fwriteb
$fstrobeb
$fmonitorb
	$fdisplayh
$fwriteh
$strobeh
$fmonitorh
	$fdisplayo
$$fwriteo
$fstrobeo
$fmonitoro

MCD

The first argument of each of these system tasks is the multi-channel descriptor. This is an integer which is a bit-map to a set of files, or channels. A bit in the integer is assigned to a file by means of the $fopen system function.

This example shows how to open two files and write to each file as well as write to both files:

 integer mcdA, mcdB;

 initial begin

 mcdA = $fopen("file_1.data");

 mcdB = $fopen("file_2.data");

 end

 always @(siga)

 $fstrobe(mcdA, "signal a changed: %b", siga);

 always @(sigb)

 $fstrobe(mcdB, "signal a changed: %b", siga);

 always @(posedge clock)

 $fstrobe(mcdA|mcdB, $stime, " clock edge");

There is also a $fclose() system task that closes the file and allows the associated channel bits in the mcd to be reused.

The $time system function simply returns the current simulation time. Simulation time is a 64-bit unsigned quantity, and that is what $time is assumed to be when it is used in an expression.

Example:

 $display ("The current time is %d", $time);

 $display ($time," now the value of x is %h", x);

The value returned is scaled by the timescale units in effect for that module. See the discussion of time scale later in this chapter.

$stime (short time) is just like $time, except that it returns a 32-bit value of time. The low order 32 bits of the time are returned. If any high-order bits are non-zero, there is no warning or error message

The $random system function returns a random number. It is called like this:

 $random [(seed)]

$random returns a 32-bit signed integer.

The seed must be a reg, integer, or time register. If the seed is omitted, an arbitrary seed is used. It is recommended that you use a seed.

The seed is modified on each call to $random. This is one of the few places where a function can modify its argument.

Examples:

 integer rand;

 rand = $random % 60;

 seed = 17;

 rand = {$random(seed)} % 60;

The first example above produces a random number between -59 and +59. The second example produces a random number between 0 and 59, because the concatenation operator changes the signed integer into an unsigned one.

There are a set of conversion functions for handling real values.

$rtoi(real_value)

Returns a signed integer, truncating the real value.

$itor(int_val)

Returns the integer converted to a real value.

$realtobits(real_value)

Returns a 64-bit vector with the bit representation of the real number. This follows the IEEE 754 64-bit representation for real numbers. $realtobits is used to pass real numbers across ports, since you cannot put a real number in a port list.

$bitstoreal(bit_value)

Returns a real value obtained by interpreting the bit_value argument as an IEEE 754 floating point number. This is the inverse of $realtobits.

Example:

module driver (net_r);

 output net_r;

 real r;

 wire [64:1] net_r = $realtobits(r);

endmodule

module receiver (net_r);

 input net_r;

 wire [64:1] net_r;

 real r;

 always @(net_r)

 r = $bitstoreal(net_r);

endmodule
Simulation time is simply a 64-bit unsigned number. However, in many cases, it is convenient to give an interpretation to the time, as nanoseconds, microseconds, or some other time unit.

The way to do that in Verilog is by using the:

 `timescale time_unit/time_precision

compiler directive

This compiler directive tells the compiler how to interpret delays that it sees in the source. By using different values with `timescale, different modules or parts of the model can use delays with different time scales, and the compiler can scale them all correctly.

For example, one module could specify its delays in microseconds and another module could specify its delays in nanoseconds, and the simulator could handle them consistently

The time_unit argument specifies the unit for all delays which appear after the directive. That is, if the time_unit is milliseconds, all delays will be scaled as if they are milliseconds.

The time_precision argument tells what the minimum unit of accuracy is for the delays. That is, if the precision is microseconds, and the time unit is milliseconds, then any delay with more than 3 decimal digits would be rounded. For example, #4.12345 would be converted to 4123 microseconds.

The valid time_unit and time_precision arguments are:

[image: image199.png]
The time_precision argument must be at least as small as the time_unit argument.

Because there can be more than one `timescale directive in a model, the compiler must take the smallest time_precision and use that as a global precision for the simulation. If the smallest precision is 100ns, then 1 time unit of the simulation clock would correspond to 100ns.

Example:

module test;

 reg r, s;

 parameter d1 = 1.24, d2 = 1.26;

 `timescale 10ns/1ns

 initial begin

 #d1 r = 0; // delay scaled to 12ns

 #d2 r = 1; // delay scaled to 13ns

 end

 `timescale 100ns/1ns

 initial begin

 #d1 s = 0; // delay scaled to 124ns

 #d2 s = 1; // delay scaled to 126ns

 end

endmodule

Note: this is a somewhat contrived example. It is much more common to have timescale directives associated with a single file or library, such that each module has a single timescale. The primary motivation for putting this feature in the language was to deal with multiple libraries being used in a single model.

Q: What does the following model do? Click Done to check your answer.

`timescale 100ns/10ns

module dff (q, d, clk);

input d, clk;

output q; reg q;

parameter clktoq = 1.2;

always @(posedge clk)

q <= #clktoq d;

endmodule

`timescale 1us/10ns

module test;

reg clk, d;

dff ff (q, d, clk);

always #1 clk = ~clk;

initial begin

clk = 0;

d = 0;

#2
d = 1;

#2
d = 0;

#2
d = 1;

#2
$finish;

end

endmodule

A:

[image: image200.png]
The specify block is the construct which is used to provide detailed timing information about a model. This is a separate section of a module which contains timing parameters and the specifications for how long paths within the module will take, the module path delays, and for timing constraints, the timing checks.

[image: image292.png]Specify blocks look like

 specify

 <specparam declarations>

 <module path declarations>

 <timing checks>

 endspecify

Specify blocks appear inside the module definition.

Specify blocks use a lot of numbers - that's the nature of timing information. A class of parameters called specify parameters, or specparams, is defined to provide some readability, but more importantly, to provide names for back annotation.

A module may be defined with generic delay values as specparams which are then updated with specific delay values obtained from a delay calculator. The back annotation process is simulator-specific, but the mechanism used is the specparam.

Specify parameters are defined within the specify block, and can only be used within it. The general form is:

 specparam list_of_specparam_assignments ;

A specparam assignment is simply an assignment of the same form as a normal parameter assignment.

 specparam_name = constant_expression

The differences between a specparam and a regular parameter are somewhat artificial. You cannot use a parameter within a specify block, and you cannot use a specparam outside of the specify block. You cannot use defparam to override specparam values, but you can use the PLI to change them.

Example:

	 specify

 specparam tRise = 5, tFall = 7;

 specparam clkToQ = 10, clkToQbar = 11;

 endspecify

PATHPULSE$ is a special specparam which allows you to specify a range of pulse widths which will be allowed to propagate from the start to the end of a path.

In Verilog terminology, a pulse is a series of two transitions on a scalar which occur in a shorter period of time than the delay. That is, if there is a 10 unit delay on a module path from x to y, a pulse would be a rise and fall (or fall and rise) which took place in less than 10 units. The normal case is that pulses are rejected (see inertial delay in Chapter 4). That is, the output does not change if the input changes faster than the delay value.

With the PATHPULSE$ specparam, you can set a reject limit and an error limit for any path within the module. (Paths begin at an input port and end at an output port - see module paths later in this chapter).

reject limit

This is a time value which sets a minimum length for a pulse. Any pulse less than this limit will not propagate to the output, but will be ignored.

error limit

This is a time value which sets a length for a pulse below which the output value will be x. If the pulse is greater than the reject limit but less than the error limit, the output will be x. If it is greater than the error limit, the output will be as normal. The error limit is optional.

Pathpulse limits can be specified for all paths in the module or for specific paths. A specific path is indicated by appending the path source and sink identifiers to the PATHPULSE$ keyword, like this:

 PATHPULSEinout

where in is an input port name and out is an output port name.

specify

 (clk => q) = 12;

 (data => q) = 10;

 (clr, pre *> q) = 4;

 specparam

 PATHPULSEclkq = (2,9);

 PATHPULSEclrq = (0,4);

 PATHPULSE$ = 3;

 endspecify

In this example, different paths get different limits. clk=>q and clr=>q have reject and error limits, while the other paths are assigned a single reject limit.

A module path is a path from a bit of an input to a bit of an output. The input may be a scalar or vector, and if a vector, it may be all bits or a single bit. In the end, there may be lots of module paths, each one going from one bit of input to one bit of output.

[image: image201.png]
A further restriction on the module path output is that there must only be one driver of the output inside the module.

Module paths consist of two parts, the path definition, and delay values assigned to the path. Module paths can be simple paths, edge-sensitive paths, or state-dependent paths. The key constraint on module paths is that they must connect input ports to output ports.

You can define many module paths within the module, but each one must begin at an input and end at an output. You can define paths from individual bits of an input port vector to individual bits of an output port vector as well. Paths can also be qualified by edge transitions or by the local state of the module (for example, if a local reg has a particular value).

Once a path has been identified, a set of delays can be assigned to it. Delays can be assigned for each of the different possible value transitions between 0, 1, x, and z (there are 12). The delays must be constant expressions, but may be of the min:typ:max type.

There are two path operators:

1. full connection

source *> destination

2. parallel connection

source => destination

The full connection operator connects each bit of the source to each bit of the destination. If there are 4 bits in the source and 3 bits in the destination, then the full connection operator creates 12 paths.

The parallel connection operator connects bits in the source to corresponding bits in the destination. If there are 4 bits in the source and 4 bits in the destination, then it creates 4 paths. A parallel connection may only be used between source and destination of the same size.

[image: image202.png]
A simple path can be one of two forms:

1. source *> destination

2. source => destination

The source of a simple module path is simply an input port, or bit- or part-select of an input port, or a list of input ports, or bit- or part-selects.

The destination is simply an output port or bit- or part-select of an output port, or a list of them.

 (d1 => q) = 5;

 (d2 => q) = 6;

 (data[3:5], reset *> out) = 2;

An edge-sensitive path is specified like this:

([edge_specifier] source *> (destination [polarity]: data_source_expression))
An edge-sensitive path may have an edge specifier for the source, either posedge or negedge. The destination does not take an edge specifier.

The edge specifier is interpreted as confining the path delay to apply only when the input signal makes the indicated transition. If the edge specifier is ommitted, then any transition on the source will begin the module path.

There is an additional component to the edge-sensitive path that identifies it as such, and that is the data source expression. The data source expression describes the data flow to the destination.

 (posedge clock => (out +: in)) = 10;

 (negedge clock[0] => (out -: in)) = 10;

 (clock => (out : in)) = 10;

In these examples, + and - are polarity operators, and they indicate that data flows from in to out and is either inverted (-) or not inverted (+). In the absence of the polarity operator, there is no information about how out logically depends on in.

State-dependent paths allow path delays to be applied to paths only under given conditions, or states. The state-dependent path description includes a conditional expression that enables the path when it is true. It looks like:

 if (cond_expression) simple_path

 if (cond_expression) edge_sensitive_path

 ifnone simple_path

The conditional expression can only contain module input or inout ports, or bit- or part-selects of them, local registers, or their bit- or part-selects, and constant expressions. The conditional expression may only use the following operators

 bit-wise logical operators: ~ & | ^ ~^

 relational operators: == != && || !

 reduction operators: & | ^ ~& ~| ~^

 concatenation operators: {} {{}}

 conditional operator: ?:

Specifically missing from this list are the arithmetic operators.

If the conditional expression has a result of 1, x, or z, then the path is enabled, and if it has a result of 0, the path is disabled. If the result is more than one bit wide, the least significant bit is used as the result.

 if (a) (b=>out) = 10;

 if (!reset & !clear) (posedge clk => (out +: in)) = 10;

 if (opcode == 3'b110) (opA => result) = 10;

 if (opcode == 3'b101) (opA => result) = 11;

 ifnone (opA => result) = 12;

Notice that the module path used with ifnone above was the same path as appeared in other state-dependent path specifications. The ifnone condition specifies a delay to use on that path when none of the other specified states are true.

Multiple path.

A single module path statement may describe many module paths. This can be done by using the full connection operator, *>, and by using lists of source and destination specifiers. For example,

 (a, b, c *> x, y) = 10;

is equivalent to:

 (a *> x) = 10;

 (a *> y) = 10;

 (b *> x) = 10;

 (b *> y) = 10;

 (c *> x) = 10;

 (c *> y) = 10;

The delays that are given to a module path may be composed of up to 12 values. These must all be constant expressions, and each may be a min:typ:max expression. The correspondence of value to delay is done positionally, as follows:

[image: image203.png]
Example:

 specparam tRise = 10:20:30, tFall = 15:25:35, tZ = 10;

 specparam tR_ctl = 10, tF_ctl = 15;

 (clk => q) = (tRise, tFall, tZ);

 (clr, preset *> q) = (tR_ctl, tF_ctl);

Timing checks look like system tasks which are called at time 0 from the specify block. In that sense, the specify block is another type of process, like initial and always, that executes once at time 0.

The timing check tasks set up checks which:

· determine the time between two events

· compare the time to a limit value

· emit an error message if the time is outside of the limit

In general, the timing check tasks operate by measuring a time interval which is bounded by a reference event and a data event. If the time interval is either greater or less than a limit value, depending on the particular type of check, an error is reported. The events and time interval values are specified by arguments to the system tasks.

[image: image204.png]
The following timing check tasks are available:

[image: image205.png]
$setup (data_event, reference_event, limit [,notifier]);

This checks for setup time. More precisely, it sets up a check for setup time. The check will be made whenever first the data_event occurs and then the reference_event occurs, even though the task is only executed once.

The check is:

 time(reference_event) - time(data_event) < limit

If this is true, then an error is reported. The time(data_event) is the lower bound of the interval, and time(reference_event) is the upper bound. If reference_event and data_event occur at the same time, the check is made with the previous value of the data_event.

Example:

 $setup (dataIn, posedge clk, tSetup);

$hold (reference_event, data_event, limit [,notifier]);

This sets up a check for hold time. The check will be made whenever first the reference_event occurs and then the data_event occurs.

The check is:

 time(data_event) - time(reference_event) < limit

If this is true, then an error is reported. The time(reference_event) is the lower bound of the interval, and time(data_event) is the upper bound. If reference_event and data_event occur at the same time, the check is made with both new values, which will usually result in a violation.

Example:

 $hold (posedge clk, dataIn, tHold);

$setuphold (reference_event, data_event, setup_limit, hold_limit [,notifier]);

This sets up checks for both setup and hold time. The check will be made whenever first the data_event occurs, then the reference_event occurs, and then the data_event occurs.

This is a short form of the $setup and $hold tasks.

 $setuphold (posedge clk, dataIn, tSetup, tHld, notifyReg);

is short for:

 $setup (dataIn, posedge clk, tSetup, notifyReg);

 $hold (posedge clk, dataIn, tHld, notifyReg);

Unlike $setup and $hold individually, the limits may be negative. However, the sum of the limits must be positive.

$period (reference_event, limit [,notifier]);

This sets up checks for the period of a signal. The event which begins the interval is an edge-triggered reference event, and the event which ends the interval is the next occurence of the reference event.

An error is reported if the following check is true:

 time(next_reference_event) - time(reference_event) < limit

Example:

 $period (posedge writeStrobe, twrite);

$width (reference_event, limit [,threshold [,notifier]]);

This sets up checks for the width of a signal. The event which begins the interval is the given edge on the reference signal, and the event which ends the interval is the opposite edge.

An error is reported if the following check is true:

 threshold < time(opposite_event) - time(reference_event) < limit

The threshold argument is optional, but must be present if a notifier is present.

Examples:

 $width (posedge dataIn, tmin, tepsilon, notifyReg);

 $width (posedge reset, tresetmin, 0, notifyReg);

 $width (negedge set, tSet);

Examples:

Cross-Module References
This is a demonstration of some cross-module references.

This example shows some hierarchical references. The first version shows which references go to which signals.

module top;

 D d();

endmodule

module D;

 integer x;

 initial x = 1;

 initial

 begin:A

 integer x;

 x = 2;

 end

 initial

 begin:B

 integer x;

 x = 3;

 begin:C

 integer x;

 x = 4; // Output

 $display("B.x = %0d", B.x); // B.x = 3

 $display("top.d.x = %0d", top.d.x); // top.d.x = 1

 $display("d.x = %0d", d.x); // d.x = 1

 $display("B.C.x = %0d", B.C.x); // B.C.x = 4

 $display("A.x = %0d", A.x); // A.x = 2

 $display("D.A.x = %0d", D.A.x); // D.A.x = 2

 $display("x = %0d", x); // x = 4

 end

 end

endmodule

Variation:

This variation shows what happens if both the module name and a block name are the same (B). Notice that the block B hides the module B.

module top;

 B b();

endmodule

module B;

 integer x;

 initial x = 1;

 initial

 begin:A

 integer x;

 x = 2;

 end

 initial

 begin:B

 integer x;

 x = 3;

 begin:C

 integer x;

 x = 4; // Output

 $display("B.x = %0d", B.x); // B.x = 3

 $display("top.b.x = %0d", top.b.x); // top.b.x = 1

 $display("b.x = %0d", b.x); // b.x = 1

 $display("B.C.x = %0d", B.C.x); // B.C.x = 4

 $display("A.x = %0d", A.x); // A.x = 2

 //$display("B.A.x = %0d", B.A.x); << illegal

 $display("x = %0d", x); // x = 4

 end

 end

endmodule

ALU
This is a model of a simple ALU.

Create an ALU which performs the following operations:

	operation
	result

	nop
	unchanged

	add
	a+b

	subtract
	a-b

	complement
	~a

	shift left
	a<<B< td>

	shift right
	a>>b

The operands and result are 8 bits wide. The opcode is 3 bits, assigned to the above opcodes from 0 to 5.
The test fixture for this model simply provides inputs and checks the outputs.

Test fixture:

 module test;

 reg clk;

 reg [2:0] opcode;

 reg [7:0] opA, opB;

 wire [7:0] res;

 alu s1 (clk, opcode, opA, opB, res);

 initial

 $display("\t time\topcode\t A\t B\t result");

 always @(posedge clk)

 $display($stime,"\t %h\t %h\t %h\t %h", opcode, opA, opB, res);

 // Definitions of opcodes

 `define NOP 3'b000

 `define ADD 3'b001

 `define SUB 3'b010

 `define NOT 3'b011

 `define SHFL 3'b100

 `define SHFR 3'b101

 always begin // Generate clock

 #50 clk = 0;

 #50 clk = 1;

 end

 task doOp;

 input [2:0] op;

 begin

 opcode = op;

 opA = $random;

 opB = $random;

 end

 endtask

 initial begin // Test vectors for ALU

 doOp(`NOP);

 repeat (2) @(negedge clk) ;

 doOp(`ADD);

 @(negedge clk)

 doOp(`SUB);

 @(negedge clk)

 doOp(`SHFL);

 @(negedge clk) ;

 doOp(`NOT);

 @(negedge clk)

 doOp(`SHFR);

 @(negedge clk) ;

 $finish;

 end

 endmodule

ALU model:

module alu (clock, opcode, opA, opB, result);

 input clock;

 input [2:0] opcode;

 input [7:0] opA,opB;

 output [7:0] result;

 reg [7:0] result;

 `define Nop 3'b000

 `define Add 3'b001

 `define Sub 3'b010

 `define Not 3'b011

 `define Shfl 3'b100

 `define Shfr 3'b101

 always @(posedge clock) begin

 case (opcode)

 `Nop: ;

 `Add: result <= opA + opB;

 `Sub: result <= opA - opB;

 `Not: result <= ~opA;

 `Shfl: result <= opA << opB;

 `Shfr: result <= opA >> opB;

 endcase

 end

endmodule

Results:

	 time
opcode
A B result

 100 0 24 81 xx

 200 1 09 63 6c

 300 2 0d 8d 80

 400 4 65 12 00

 500 3 01 0d fe

 600 5 76 3d 00

$finish at simulation time 650

AMD 2901
This is a model of an AMD 2901 ALU. It is a good deal more complicated than the simple ALU. This comes from the '92 High-level Synthesis Benchmark suite, translated from VHDL.

This is an example of an AMD 2901 ALU. This comes from a translation from VHDL. The original model came from the '92 High Level Synthesis Benchmarks. The author was Sari Coumeri, a graduate student at CMU. There is a test module and the a2901 module. The test module instantiates the a2901 and creates a set of test vectors. It also checks the results, so the output of this test when it runs correctly is one line at the end which says that the test passed. Note that there is a $monitor statement which is commented out.

A2901 model:

`timescale 1 ns / 100 ps

module a2901(I,Aadd,Badd,D,Y,RAM0,RAM3,Q0,Q3,

 CLK,C0,OEbar,C4,Gbar,Pbar,OVR,F3,F30);

 input [8:0] I;

 input [3:0] Aadd, Badd;

 input [3:0] D;

 output [3:0] Y;

 reg [3:0] Y;

 inout RAM0, RAM3, Q0, Q3;

 reg t_RAM0, t_RAM3, t_Q0, t_Q3;

 input CLK, C0, OEbar;

 output C4, Gbar, Pbar, OVR, F3, F30;

 reg C4, Gbar, Pbar, OVR, F3, F30;

 reg [3:0] RAM [15:0];

 reg [3:0] RE, S, A, B, Q, F;

 reg [4:0] R_ext,S_ext,result,temp_p,temp_g;

 wire RAM0 = t_RAM0;

 wire RAM3 = t_RAM3;

 wire Q0 = t_Q0;

 wire Q3 = t_Q3;

always @(RAM[Aadd] or RAM[Badd] or I[2:0] or Aadd or D or Badd or Q)

 begin : alu_inputs

 A = RAM[Aadd];

 B = RAM[Badd];

 // SELECT THE SOURCE OPERANDS FOR ALU. SELECTED OPERANDS ARE "RE" && "S".

 case (I[2:0])

 3'b000,3'b001: RE = A;

 3'b010,3'b011,3'b100: RE = 4'b0000;

 default: RE = D;

 endcase

 case (I[2:0])

 3'b100, 3'b101: S = A;

 3'b001, 3'b011: S = B;

 3'b111: S = 4'b0000;

 default: S = Q;

 endcase

 end

always @(I[5:3] or RE or S or C0) begin : alu

 // TO FACILITATE COMPUTATION OF CARRY-OUT "C4", WE EXTEND THE CHOSEN

 // ALU OPERANDS "RE" && "S" (4 BIT OPERANDS) BY 1 BIT IN THE MSB POSITION.

 // THE ALU'S EXTENDED OUTPUT (5 BITS LONG) IS "result".

 R_ext = (I[5:3] == 3'b001) ? {1'b0,~(RE)} : {1'b0,RE};

 S_ext = (I[5:3] == 3'b010) ? {1'b0,~(S)} : {1'b0,S};

 // SELECT THE FUNCTION FOR ALU.

 // IN THE ADD/SUBTRACT OPERATIONS, THE CARRY-INPUT "C0" (1 BIT) IS EXTENDED

 // BY 4 BITS (ALL 1'b0) IN THE MORE SIGNIFICANT BITS TO MATCH ITS LENGTH TO

 // THAT OF "R_ext" && "S_ext". THEN, THESE THREE OPERANDS ARE ADDED.

 // ADD/SUBTRACT OPERATIONS ARE DONE ON 2'S COMPLEMENT OPERANDS.

 case (I[5:3])

 3'b000, 3'b001, 3'b010: result = R_ext + S_ext + {4'b0000,C0};

 3'b011: result = R_ext | S_ext;

 3'b100: result = R_ext & S_ext;

 3'b101: result = ~(R_ext) & S_ext;

 3'b110: result = R_ext ^ S_ext;

 default: result = ~(R_ext ^ S_ext);

 endcase

 // EVALUATE OTHER ALU OUTPUTS.

 // FROM EXTENDED OUTPUT "result" (5 BITS), WE OBTAIN THE NORMAL ALU OUTPUT,

 // "F" (4 BITS) BY LEAVING OUT THE MSB (WHICH CORRESPONDS TO CARRY-OUT

 // "C4").

 // TO FACILITATE COMPUTATION OF CARRY LOOKAHEAD TERMS "Pbar" && "Gbar", WE

 // COMPUTE INTERMEDIATE TERMS "temp_p" && "temp_g".

 F = result[3:0];

 OVR = !(R_ext[3] ^ S_ext[3]) && (R_ext[3] ^ result[3]);

 C4 = result[4];

 temp_p = R_ext | S_ext; // R || S may get

 temp_g = R_ext & S_ext; // inverted (sub)

 Pbar = !(temp_p[0] && temp_p[1] && temp_p[2] && temp_p[3]);

 Gbar = !(temp_g[3] ||

 (temp_p[3] && temp_g[2]) ||

 (temp_p[3] && temp_p[2] && temp_g[1]) ||

 (temp_p[3] && temp_p[2] && temp_p[1] && temp_g[0])

);

 F3 = result[3];

 F30 = !(result[3] || result[2] || result[1] || result[0]);

end

always @(posedge CLK)

 begin : mem

 // WRITE TO RAM WITH/WITHOUT SHIFTING. RAM DESTINATIONS ARE

 // ADDRESSED BY "Badd".

 RAM[Badd] = ((!(I[8]) & I[7]) == 1'b1) ? F :

 ((I[8] & !(I[7])) == 1'b1) ? {RAM3,F[3:1]} :

 ((I[8] & I[7]) == 1'b1) ? {F[2:0],RAM0} :

 RAM[Badd];

 end

always @(posedge CLK)

 begin : Q_reg

 // WRITE TO Q REGISTER WITH/WITHOUT SHIFTING.

 Q = (I[8:6] == 3'b000) ? F :

 (I[8:6] == 3'b100) ? {Q3,Q[3:1]} :

 (I[8:6] == 3'b110) ? {Q[2:0],Q0} :

 Q;

 end

always @(I[8:6] or OEbar or A or F or Q)

 begin : output_and_shifter

 // GENERATE DATA OUTPUT "Y"

 Y = ((I[8:6] == 3'b010) && (OEbar == 1'b0)) ? A :

 (!(I[8:6] == 3'b010) && (OEbar == 1'b0)) ? F :

 4'bzzzz;

 // GENERATE BIDIRECTIONAL SHIFTER SIGNALS.

 t_RAM0 = ((I[8] == 1'b1) && (I[7] == 1'b0)) ? F[0] : 1'bz;

 t_RAM3 = ((I[8] == 1'b1) && (I[7] == 1'b1)) ? F[3] : 1'bz;

 t_Q3 = ((I[8] == 1'b1) && (I[7] == 1'b1)) ? Q[3] : 1'bz;

 t_Q0 = ((I[8] == 1'b1) && (I[7] == 1'b0)) ? Q[0] : 1'bz;

 end

endmodule
Exersises

Q1

In the following statement,

x = m1.x + 1;

there is a _______. Mark all that apply.

Top of Form

[image: image206.wmf]a. timescale
[image: image207.wmf]b. specify block
[image: image208.wmf]c. task enable
[image: image209.wmf]d. block disable
[image: image210.wmf]e. cross-module reference
[image: image211.wmf]f. quasi-continuous assign

Bottom of Form

Q2

In the following statements,

initial begin

x = 0;

initialize_clocks;

y = 1;

end

there is a _______. Mark all that apply.

Top of Form

[image: image212.wmf]a. timescale
[image: image213.wmf]b. specify block
[image: image214.wmf]c. task enable
[image: image215.wmf]d. task disable
[image: image216.wmf]e. block disable
[image: image217.wmf]f. quasi-continuous assign

Bottom of Form

Q3

In the following statements,

task initialize_x;

begin

x = 0;

#10
x = 1;

end

endtask

initial begin

fork

#10
initialize_x;

#15
disable initialize_x;

join

end

there is a _______. Mark all that apply.

Top of Form

[image: image218.wmf]a. timescale
[image: image219.wmf]b. specify block
[image: image220.wmf]c. task enable
[image: image221.wmf]d. task disable
[image: image222.wmf]e. block disable
[image: image223.wmf]f. quasi-continuous assign

Bottom of Form

Q4

Enter the letters to match each of the following constructs with a purpose for which it is used. There might be more than one correct answer

	Purpose:

	a. to override normal procedureal assignments

	b. to signal errors if setup and hold times are violated during simulation

	c. to override normal continuous assignments

	d. to specify the precision of time delays

	e. to cause delays in signal value updates

	f. to allow library modules to contain all delay information necessary to be used with other library modules

These are the correct answers:
	1. quasi-continuous assign
	a

	2. timescale
	d or f

	3. specify block
	b or e

Q5

What change will result from changing module test1 to module test2?
	
	module test1;

 wire clk;

 assign #10 clk =~clk;

 initial begin

force clk = 0;

 #1
release clk;

 end

endmodule
	module test2;

 wire clk;

 assign #10 clk =~clk;

 initial begin

force clk = 0;

 #1
clk = 1;

 end

endmodule

[image: image224.wmf]1. clk stays x forever
[image: image225.wmf]2. clk changes from x to 0 at time 0, changes to 1 at time 10, 0 at time 20, 1 at time 30, ...
[image: image226.wmf]3. clk changes from x to 0 at time 0 and stays 0 thereafter
[image: image227.wmf]4. module test2 will not compile
Bottom of Form

The correct answer is 4. Module test2 will not compile because clk is a wire and cannot be used as the left-hand side of a procedural assignment.
Q6

What does the following model do?
`timescale 1us/10ns

module dff (q, d, clk);

input d, clk;

output q; reg q;

parameter clktoq = 1.2;

always @(posedge clk)

q <= #clktoq d;

endmodule

`timescale 1us/10ns

module test;

reg clk, d;

dff ff (q, d, clk);

always #1 clk = ~clk;

initial begin

clk = 0;

d = 0;

#2
d = 1;

#2
d = 0;

#2
d = 1;

#2
$finish;

end

endmodule

[image: image228.png]
Q7

What is the waveform of q in the following model?

module AN4 (q, a, b, c, d);

output q;

input a, b, c, d;

assign q = a & b & c & d;

specify

(a => q) = 10;

(b => q) = 12;

(c,d *> q) = 16;

endspecify

endmodule

module test;

reg a, b, c, d;

AN4 n (q, a, b, c, d);

initial begin

#100
a = 1; b = 1; c = 1; d = 1;

#100
a = 0;

#100
a = 1;

#100
c = 0;

#100
c = 1;

#100
$finish;

end

endmodule

[image: image229.png]
Q8

What is the waveform of q in the following model? Note that this is the same model as the preceding exercise, with the exception of the following changes:

#100 a=0; is now #100 b=0;

#100 a=1; is now #100 b=1;

module AN4 (q, a, b, c, d);

output q;

input a, b, c, d;

assign q = a & b & c & d;

specify

(a => q) = 10;

(b => q) = 12;

(c,d *> q) = 16;

endspecify

endmodule

module test;

reg a, b, c, d;

AN4 n (q, a, b, c, d);

initial begin

#100
a = 1; b = 1; c = 1; d = 1;

#100
b = 0;

#100
b = 1;

#100
c = 0;

#100
c = 1;

#100
$finish;

end

endmodule

[image: image230.png]
Q9

Suppose the following changes are made to a line from the model in Question 7:

(a => q) = 10;
is now (a => q) = (10,16);

Now, what is the waveform of q?

module AN4 (q, a, b, c, d);

output q;

input a, b, c, d;

assign q = a & b & c & d;

specify

(a => q) = (10,16);

(b => q) = 12;

(c,d *> q) = 16;

endspecify

endmodule

module test;

reg a, b, c, d;

AN4 n (q, a, b, c, d);

initial begin

#100
a = 1; b = 1; c = 1; d = 1;

#100
a = 0;

#100
a = 1;

#100
c = 0;

#100
c = 1;

#100
$finish;

end

endmodule

[image: image231.png]
Q10

Revise the testbench of the following model so that it only prints a line if the result in res does not agree with the expected result r.

module alu (op, res, d1, d2, clk);

output [3:0] res;

input [3:0] op;

input [11:0] d1, d2;

input clk;

reg [11:0] result;

assign #1 res = result;

always @(posedge clk) begin

case (op)

1:
result = d1 + d2;

2:
result = d1 - d2;

3:
result = -d1;

4:
result = d1 & d2;

5:
result = ~d1;

6:
result = d1 | d2;

endcase

end

endmodule

module top;

wire [11:0] res, d1, d2;

wire [3:0] op;

reg clk;

alu a (op, res, d1, d2, clk);

testbench tb (op, res, d1, d2, clk);

initial begin

clk = 0;

forever

#10 clk = ~clk;

end

endmodule

Task:

module tesmodule testbench (op, res, d1, d2, clk);

input [11:0] res;

output [3:0] op;

output [11:0] d1, d2;

input clk;

reg [3:0] op;

reg [11:0] d1, d2;

integer opcnt, errcnt;

initial begin

opcnt = 0; errcnt = 0;

doadd('h111, 'h111, 'h222);

$display("%0d operations, %0d errors", opcnt, errcnt);

$finish;

end

task doadd;

input [11:0] a, b, r;

begin

op = 1; d1 = a; d2 = b;

@(posedge clk) ;

#1
$strobe ("op %0d: %h + %h = %h", opcnt, d1, d2, res);

end

endtask

endmodule
Answer:

task doadd;

input [11:0] a, b, r;

begin

op = 1;

d1 = a;

d2 = b;

@(posedge clk) ;

#2
if (res !== r) begin
// or @(negedge clk)

$display("error: op %0d %h != %h", opcnt, res, r);

errcnt = errcnt + 1;

end

end

endtask

Q11

Revise the testbench of the following model to print the value of result inside alu in case of an error.

module alu (op, res, d1, d2, clk);

output [3:0] res;

input [3:0] op;

input [11:0] d1, d2;

input clk;

reg [11:0] result;

assign #1 res = result;

always @(posedge clk) begin

case (op)

1:
result = d1 + d2;

2:
result = d1 - d2;

3:
result = -d1;

4:
result = d1 & d2;

5:
result = ~d1;

6:
result = d1 | d2;

endcase

end

endmodule

module top;

wire [11:0] res, d1, d2;

wire [3:0] op;

reg clk;

alu a (op, res, d1, d2, clk);

testbench tb (op, res, d1, d2, clk);

initial begin

clk = 0;

forever

#10 clk = ~clk;

end

endmodule

Task:

module testbench (op, res, d1, d2, clk);

input [11:0] res;

output [3:0] op;

output [11:0] d1, d2;

input clk;

reg [3:0] op;

reg [11:0] d1, d2;

integer opcnt, errcnt;

initial begin

opcnt = 0; errcnt = 0;

doadd('h111, 'h111, 'h222);

$display("%0d operations, %0d errors", opcnt, errcnt);

$finish;

end

task doadd;

input [11:0] a, b, r;

begin

op = 1; d1 = a; d2 = b;

@(posedge clk) ;

#1
$strobe ("op %0d: %h + %h = %h", opcnt, d1, d2, res);

end

endtask

endmodule
Answer:

task doadd;

input [11:0] a, b, r;

begin

op = 1;

d1 = a;

d2 = b;

@(posedge clk) ;

#2
if (res !== r) begin
// or @(negedge clk)

$display("error: op %0d %h != %h", opcnt,

top.a.result, r);

errcnt = errcnt + 1;

end

end

endtask
Q12

Revise the testbench of the following model to force an error in alu. Do this by overriding the value of res in alu to 'ha5a if d1 == 'h010 and d2 == 'h020.

module alu (op, res, d1, d2, clk);

output [3:0] res;

input [3:0] op;

input [11:0] d1, d2;

input clk;

reg [11:0] result;

assign #1 res = result;

always @(posedge clk) begin

case (op)

1:
result = d1 + d2;

2:
result = d1 - d2;

3:
result = -d1;

4:
result = d1 & d2;

5:
result = ~d1;

6:
result = d1 | d2;

endcase

end

endmodule

module top;

wire [11:0] res, d1, d2;

wire [3:0] op;

reg clk;

alu a (op, res, d1, d2, clk);

testbench tb (op, res, d1, d2, clk);

initial begin

clk = 0;

forever

#10 clk = ~clk;

end

endmodule

Task:

module testbench (op, res, d1, d2, clk);

input [11:0] res;

output [3:0] op;

output [11:0] d1, d2;

input clk;

reg [3:0] op;

reg [11:0] d1, d2;

integer opcnt, errcnt;

initial begin

opcnt = 0; errcnt = 0;

doadd('h111, 'h111, 'h222);

$display("%0d operations, %0d errors", opcnt, errcnt);

$finish;

end

task doadd;

input [11:0] a, b, r;

begin

op = 1; d1 = a; d2 = b;

@(posedge clk) ;

#1
$strobe ("op %0d: %h + %h = %h", opcnt, d1, d2, res);

end

endtask

endmodule
Answer:

module testbench (op, res, d1, d2, clk);

input [11:0] res;

output [3:0] op;

output [11:0] d1, d2;

input clk;

reg [3:0] op;

reg [11:0] d1, d2;

integer opcnt, errcnt;

integer i, j;

initial begin

opcnt = 0;

errcnt = 0;

for (i = 0; i < 4096; i=i+1)

for (j=0; j<4096; j=j+1)

doadd (i, j, i+j);

$display("%0d operations, %0d errors", opcnt, errcnt);

$finish;

end

always @(d1 or d2)

if (d1 == 'h010 && d2 == 'h020)

force top.a.res = 'ha5a;

...

endmodule
Chapter 7: Coding Style

· Objectives

· Review

· Modelling Clocks

· Primitive (Gate Level)

· Continuous Assignment

· Procedural

· Two-Phase Clocks

· Finite State Machines

· Implicit

· Explicit

· Next State Logic

· Output Logic: Moore Machine

· Output Logic: Mealy Machine

· Output Timing

· State Memory

· Complications

· Pipelines

· Independent Pipe Stages

· Pipe Stages as Separate Module Instances

· Combinatorial Logic in the Pipeline

· Zero-Delay Models

· Implementation

· Without Using NBAs

· Unit-Delay Models

· Race Conditions

· Initial and Always Blocks at Startup

· Pipelined Data Movement

· Data Change/Wait for Change

· Propagation from Procedural to Continuous Assignment

· Updating the Same Value Twice

· Counting Events

· Efficient Modelling Techniques

· Compile Time vs. Run Time

· Reduce the Number of Events

· Use Higher Levels of Abstraction

· Don't Split Vectors

· Avoid Bi-Direct Primitives

· Minimize RHS Evaluations in Continuous Assigns

· Optimize Always @(event_expression) Blocks

· Examples

· Pipelined Execution Unit

· Local Interrupt Controller

· Limit Counter

· Exercises

OBJECTIVES

Upon completion of this chapter you will be able to:

· identify race conditions in Verilog models

· identify preferred styles in Verilog models

· write Verilog models of clocks, state machines, and pipelines

· convert a synchronous Verilog model to a 0-delay Verilog model

Here are some topics you might want to review before continuing. Click a topic to return to the screen where it was introduced. You can click Back to return to this screen.

· Procedural Assignments

· Blocking

· Non-Blocking

· Events

· Tasks and Named Blocks

· Cross-Module References

· Quasi-Continuous Assigns

· Task Enable and Disable
Modelling clocks in Verilog is surprisingly complicated, considering that a clock just oscillates between 0 and 1. There are lots of ways of making such an oscillator. These are the most obvious:

· Primitive (Gate Level)

 not #period/2 (clk, clk);

· Continuous Assignment

 assign #period/2 clk = ~clk;

· Procedural

 always #period/2

 clk = ~clk;

The problem with all of the clock modelling methods presented so far is how does the clock get started? Remember that the output of all net drivers is initially x, which means that if a net is connected to any drivers at all, its initial value is x. Registers also start out as x until a procedural assignment is made to them.

Consequently, none of the clock modelling examples that have been presented will work, since they all start at x and never change.

As we've seen, making a clock with a single not gate doesn't work, because the initial value of the net is x. You might think that you could force the value of the net to 0 or 1 for half the period and then release it, thus starting the clock. In fact, this doesn't work, because when you release the net, it goes back to x.

In real life, clock circuits usually start out at either 0 or 1 and oscillate from there. You really can't do that in Verilog. The best you can do is to force a net to have a non-x value for some period of time and then release it. The following works:

 not #period/2 (clk, clk);

 initial begin

 #start force clk = 0;

 #period/2+1 release clk;

 end
The above works because the force overrides other drivers on the clk net, but it doesn't cancel them, so the not gate drives a 1 after period/2. When the release is done, the not gate drives the net to 1, which starts the next cycle.

If start=5 and period=20, the clk signal would look like this:

	time
	clk

	0
	x

	5
	0

	16
	1

	26
	0

Notice that the 0->1 transition takes place at 16, not 15.

Clock circuits often use a flip-flop to store the state in. The flip-flop is usually a module which comes from a library, and it may be defined at gate, RTL, or behavioral levels. If it is defined at a gate level, then the problem is the same as discussed above. If, however, it is defined procedurally, then the initial state may be overridden by a force or QCA.

Implementing an oscillator with continuous assignments is possible, but not very common. Here is one that will work:

 assign #period/2 clk = ~clk | reset;

When reset is high, clk will take the value 1. Once reset is set low, then clk will oscillate between 0 and 1.

Question:
How would you modify the above to make it start out at 0?

A:

assign #period/2 clk = ~clk & notreset;

common. Probably the simplest loop is this:

 always begin

 #period/2 clk = 0;

 #period/2 clk = 1;

 end

Here are some variations:

 initial clk = 0;

 always #period/2

 clk = ~clk;

 initial begin

 clk = 0;

 forever #period/2

 clk = ~clk;

 end

Complete the following module so that clk has the following waveform. Click Answer to see a solution.

[image: image232.png]
Answer:

module test;

clkgen c1 (clk1);

initial begin

$monitor($stime,,clk1);

#30
$finish;

end

endmodule

module clkgen (clk);

output clk;

reg clk;

initial begin

clk = 0;

#1
forever begin

#4
clk = 1;

#1
clk = 0;

end

end

endmodule
Two-Phase Clocks

When the design is latch-based, it is often the case that consecutive latches must be latched on opposite clock edges, and that the clock edges must be separated by a non-overlap period. That is, latch 1 must be latched before latch 2 is released. In general, the requirement with this type of design is that at any given time, both phase 1 latches and phase 2 latches may not be flow-through.

The obvious way to write this in Verilog would be as follows:

 always

 #period/2 clk = ~clk

 assign p1clk = clk,

 p2clk = ~clk;

Unfortunately, this may not work due to race conditions. That is, you cannot be sure that a phase1 latch has turned off before a phase2 latch has turned on.

The way to fix this is to separate the two clock phases so there is a non-zero time between one turning off and the other turning on:

 always begin

 p1clk = 0;

 #epsilon p2clk = 1;

 #(period/2-epsilon)

 p2clk = 0;

 #epsilon p1clk = 1;

 #(period/2-epsilon) ;

 end

FSM

Finite state machines are one of the common types of logic designed using Verilog. There are several ways to represent them:

1. Implicit

2. Explicit

State machines always have inputs, a state variable or set of variables (sometimes called a state vector), and a clock. The clock does not have to be periodic, but there must be some strobe signal which indicates when the state transition decision should be made.

Typically, the clock is used to change the state based on the inputs which have been seen up to that point. It is often convenient to think of all the activity of the state machine as taking place on the clock edge:

· sample inputs

· compute next state

· compute outputs

· change state

· produce outputs

There are two common variations of state machines, Mealy and Moore machines. Mealy machines produce outputs based on both current state and input, while Moore machines produce outputs based only on the current state. As you would expect, the Verilog representation of the two types is very similar.

An implicit FSM is simply one whose state encoding is done by means of procedural code. In essence, the program counter is the current state variable.

Consider the FSM used as an example in Chapter 5.

The state machine could be coded as follows:

module stateMachine (dout, din, clock);

 output dout;

 input din, clock;

 reg dout;

 always begin

 @(posedge clock)

 dout = din; // in state A

 if (din == 0)

 begin

 @(posedge clock)

 dout = 0; // in state B

 while (din)

 @(posedge clock) ;

 dout = 1;

 end

 @(posedge clock)

 dout = din; // in state C

 end

endmodule

In this representation, the location of the program counter determines which state the machine is in.

A state machine coded this way cannot be synthesized, so this would typically only be found in test bench code. It is often convenient to write FSMs this way, but this style is usually harder to read and understand than explicit coding.

Representing FSMs explicitly is a better style than implicit coding, both because the code maps well to a state transition table and also because explicit representation is synthesizable.

In general, a state machine (Moore style) looks like this:

[image: image233.png]
The next state logic is combinational, and the state vector is updated synchronously.

To do this in Verilog would look like this:

 reg [msb:lsb] state;

 wire [msb:lsb] nextstate;

 assign nextstate = next(state, in); // Next State Logic

 always @(posedge clock) // State Memory

 state = nextstate;
where next(state, in) is a function which contains the next state computation logic. (Next State Logic and State Memory will be covered in the following screens.)

In this style, notice that nextstate could change several times in a single cycle. If in changed more than once, so would nextstate. Only the last one would be effective, however.

The next state computation can be accomplished a number of ways, but the most common way is with a case statement. The only real requirement is that you specify a nextstate for each possible combination of current state and input.

For example, using the FSM example from Chapter 5, here is the state transition table,

[image: image234.png]
and here is a case statement which would implement it:

 case (state)

 `A: next = din ? `C : `B;

 `B: next = din ? `B : `C;

 `C: next = `A;

 endcase

In this example, we have used 3 states but we have not indicated what the state encoding is. It requires at least 2 bits to encode 3 states, so we have at least one bit combination unused. It would be safest to code this using a default in the case statement:

 case (state)

 `A: next = din ? `C : `B;

 `B: next = din ? `B : `C;

 `C: next = `A;

 default: next = 1'bx;

 endcase

Note that by assigning an x value to the nextstate, logic synthesis (i.e. Synopsys) will treat that as a real don't care, and will not synthesize logic for that case.

In a Moore machine, where the output is a function only of the state, the outputs could be produced by code that looked like this:

 assign out = outfunc(state);

 function outfunc;

 input [1:0] state;

 case (state)

 `A: outfunc = 1;

 `B: outfunc = 0;

 `C: outfunc = 1;

 default: outfunc = 1'bx;

 endcase

 endfunction

Alternatively, the output assignment could be done like this:

 assign out = state==`A ? 1 :

 state==`B ? 0 :

 state==`C ? 1 : 1'bx;

In a Mealy machine, the output logic looks very similar to that of the Moore machine, but it has an additional term for the input. It is often the case that the output logic and the nextstate logic is combined into one case statement, as was done in the State Machine example in Chapter 5.

 case (state)

 `A: begin

 dout = din;

 nextstate = din ? `C : `B;

 end

 `B: begin

 dout = ~din;

 nextstate = din ? `B : `C;

 end

 `C: begin

 dout = din;

 nextstate = `A;

 end

 endcase

Note that in the above we did not use a nextdout variable, so dout would change anytime din changed.

The output of one state machine is usually the input to another (or some other synchronous circuit). The output of the state machine must be stable at the clock edge which it is to be sampled on. In real life, this means that it must obey a setup time constraint. In logic simulation, it means that it must not change on the clock edge which it is being sampled on.

In the formulation we have used so far, it is assumed that the input changes sometime between clock edges, and the state will change on the clock edge. In essence, this means that the input is sampled at the clock edge.

However, when the state changes, so will the output (unless it is registered). Extra measures must be taken to delay the output change so that it does not occur on the clock edge. A common way to do this would be:

 reg [msb:lsb] state;

 wire [msb:lsb] nextstate;

 wire out;

 assign nextstate = next(state, in); // Next State Logic

 assign out = outfunc(state, in); // Output logic

 always @(posedge clock) // State Memory

 state <= nextstate;

By using the non-blocking assign, all evaluations will be done before the state variable changes. Thus, the output will only change after the clock edge, so long as the input only changes after the clock edge. If two state machines like this are put in series, the inputs are sampled on the clock edge and the outputs are changed after the inputs are sampled.

Another solution to this problem is to register the output. This can be done with a nextout register variable which is updated just like the nextstate variable. However, just like with the state variable above, the out register would have to get its new value after the clock edge

Using a function for Next State Logic

The state machine could be coded as follows:

`define A 3'b001

`define B 3'b010

`define C 3'b100

module stateMachine (dout, din, clock);

 output dout;

 input din, clock;

 reg [2:0] state;

 wire [2:0] nextstate;

 initial state = `A;

 assign nextstate = next(state, din); // Next State Logic

 assign dout = state==`A ? 1 : // Output Logic

 state==`B ? 0 :

 state==`C ? 1 : 1'bx;

 always @(posedge clock) // State Memory

 state <= nextstate;

 function [2:0] next;

 input [2:0] state;

 input in;

 case (state)

 `A: next = in ? `C : `B;

 `B: next = in ? `B : `C;

 `C: next = `A;

 endcase

 endfunction

endmodule

This representation is synthesizable (except for the initialization), and is safe to use in series with other state machines coded in this style.

The following is an example of using an always block for next state logic. This style is probably more common, but it is really no different than the first version.

`define A 3'b001

`define B 3'b010

`define C 3'b100

module stateMachine (dout, din, clock);

 output dout;

 input din, clock;

 reg [2:0] state, nextstate;

 initial state = `A;

 assign dout = state==`A ? 1 : // Output Logic

 state==`B ? 0 :

 state==`C ? 1 : 1'bx;

 always @(posedge clock) // State Memory

 state <= nextstate;

 always @(state or din) // Next State Logic

 case (state)

 `A: nextstate = din ? `C : `B;

 `B: nextstate = din ? `B : `C;

 `C: nextstate = `A;

 endcase

endmodule

Typically, the state vector is a single register variable, though sometimes it is a small set of separate registers. When it is more than one, they can be concatenated together, and then treated as a group:

 reg stateBit1, stateBit2, stateBit3;

can be treated as:

 {stateBit1, stateBit2, stateBit3}

so, for the remainder, we will only concern ourselves with a single register variable as the state vector.

The most common way to handle the state vector is with an always block:

 always @(posedge clock)

 state = nextstate;

However, there are several complications:

· Timing

· Efficiency

· Initialization

· Register selection

· State encoding

· Latch inferencing
Complications

Timing
Efficiency
Initialization
Register Selection
State Encoding
Latch Inferencing
Timing
As was discussed in the section on output logic, the cardinal rule with synchronous designs is that a signal cannot both change and be sampled at the same point in simulated time. If it is, that is a race condition, and the results will be unpredictable.

With state machines, the output is dependent on the state, so when the state changes, the output will potentially change as well. If this happens at the same time as the input is sampled (the clock edge), then any subsequent logic which uses the state machine's output as an input will violate the sample/change rule.

The usual way to avoid this situation is to make the state change occur after inputs have been sampled. This can be done in lots of ways, but the most common are:

 always @(posedge clock)

 state <= nextstate; // non-blocking assign
and

 always @(posedge clock)

 state = #del nextstate; // intra-assignment delay
The use of the non-blocking assign does just what you want. All signals which are sampled at the (posedge clock) will be sampled before the state variable gets its new value.

The use of an intra-assignment delay also does what you want, in that the nextstate value is sampled at the (posedge clock) but the state variable will not get its new value until (posedge clock)+1.

Some people find the use of an arbitrary delay of 1 aesthetically displeasing. If you are among them, use the non-blocking assign. However, some people find it hard to think about the distinction between normal events and non-blocking assignments at the same simulation time. This often becomes a problem during monitoring signal values. If you are in that group, use the intra-assignment delay. In most implementations, the intra-assignment delay is somewhat more efficient, but the choice should be made based on personal taste and a consistent style.

Regardless of which style you use, it is very important to be consistent.

Efficiency
Notice that when you use an always loop as above, the state variable gets assigned on every clock, even if the value has not changed. In many cases, this is quite wasteful, as the state machine will change state with the frequency of the input, not of the clock. Surprisingly, this can consume a significant amount of simulation time in a large model.

A technique which can improve efficiency is:

 always @(posedge clock) begin

 state <= nextstate; // non-blocking assign

 @(in) ; // wait for a change

 end
This suspends the always loop until the input changes, which is a necessary condition for the nextstate register to change. This works fine, and will not interfere with synthesis if you put the appropriate synthesis pragmas around it (// synopsys translate off and // synopsys translate on).

Unfortunately, this trick does not work for the intra-assignment delay if there are no other delays in the model, and if the output of one state machine is the input to another. If both of them use this style, there will be a race.

Initialization
Another problem which must be addressed is state machine initialization. In general, the state machine is supposed to start in a well-defined state, and there is usually a reset signal which is supposed to put it into that state.

Sometimes, you simply assume a valid starting state, which is what we have done up to now in the examples. This is done by means of an initial statement with an assignment to the state vector. This, however, is not synthesizable, so if this design is to be synthesized, a better solution must be used.

Synthesizers use a stylized method of inferring flip-flops with reset, so that method is what you should usually use. For example,

 always @(posedge clock or negedge reset)

 if (!reset)

 state <= START;

 else

 state <= nextstate;

This assumes an active-low reset signal which will put the state vector in the proper state (START). Note that START would typically be a parameter or a constant (usually 0).

Register Selection
It is often the case that you want to use a specific register type from the technology library that you are using, and do not want to rely on the synthesizer to pick it for you. In that case, you simply instantiate the register, and do not use the always loop. Here is our previous example, using a register type called RegX4, whose module header is given.

module RegX4 (// this is defined in a library

 regOut, // 4 bit output

 regIn, // 4 bit input

 clkEnable1, // both enables must be on

 clkEnable2, // for the flop to clock

 clock, // clock

 scanShiftOut, // scan chain output

 scanShiftIn, // scan chain input

 scanShiftEnable // scan shiftin if 1

);

module stateMachine (dout, din, clock, SSO, SSI, SSE);

 output dout;

 input din, clock;

 output SSO;

 input SSI, SSE;

 reg [2:0] state, nextstate;

 initial state = `A;

 assign dout = state==`A ? 1 : // Output Logic

 state==`B ? 0 :

 state==`C ? 1 : 1'bx;

 always @(state or din) // Next State Logic

 case (state)

 `A: nextstate = din ? `C : `B;

 `B: nextstate = din ? `B : `C;

 `C: nextstate = `A;

 endcase

 RegX4 stateRegister(// State memory

 .regOut(state),

 .regIn(nextstate),

 .clkEnable1(1'b1),

 .clkEnable2(1'b1),

 .clock(clock),

 .scanShiftOut(SSO),

 .scanShiftIn(SSI),

 .scanShiftEnable(SSE)

);

endmodule

If you instantiate registers like this, you lose some technology independence, but many designers find the control over the registers is worth it to them. It should be noted that there is usually a way to tell the synthesizer which register to use via a synthesis script.

State Encoding
The encoding of states to state vector values can have an important effect on the ultimate area and timing of the synthesized logic. The choice seldom matters to simulation.

Basically, there are two popular ways to encode states: highly encoded and one-hot. Highly encoded means to use as few bits as possible for the state vector, while one-hot means that each state has only one bit of the state vector on.

Because Verilog has no enumerated type, you must pick the state assignment yourself. That is, the numbers which you put into the source code are the state numbers which will be used. In our example, we used the following state assignment:

 `define A 3'b001

 `define B 3'b010

 `define C 3'b100
In order to choose a different assignment, it would be necessary only to change the defines. For example, an alternative would be:

 `define A 0

 `define B 1

 `define C 2
In this case, the state vector could be 2 bits instead of 3 bits

Highly-Encoded States

If you encode the states in a dense manner, then dealing with them in the Verilog source is quite natural. The case statements which decode the state vector are written as we have done up to now:

 case (state)

 `A: nextstate = din ? `C : `B;

 `B: nextstate = din ? `B : `C;

 `C: nextstate = `A;

 endcase

This code will simply compare the state variable with each constant in turn. Note that the semantics of the case statement dictate that this is a priority decoding. That is, if there were two case items for state `A, the first one would be the one selected. This is usually not what you intend, but the synthesizer will generate logic which preserves this behavior unless you tell it not to (e.g. // synopsys parallel_case).

We should also note that Synopsys allows you to tell the synthesizer to optimize the state assignment for you, as best it can. In order to do this, you must use parameters for the state constants, and you must use a synthesis directive to identify both the state constants and the state vector.

One-hot state encoding

One-hot state encoding is a common way of assigning state constants to states. In this method, there is only one bit in the state vector on for each state. For example, the state encoding we have used in the example is one-hot:

 `define A 3'b001

 `define B 3'b010

 `define C 3'b100

However, up to now, we did not take advantage of this in the decoding. To do that, the case statement would look like this:

 parameter SA = 0, SB = 1, SC = 2;

 case (1'b1)

 state[SA]: nextstate = din ? `C : `B;

 state[SB]: nextstate = din ? `B : `C;

 state[SC]: nextstate = `A;

 endcase

While this looks a little odd, it is perfectly well-defined. The case comparisons are each a bit extract followed by acompare to 1.

One-hot state encoding has a number of claimed advantages, which include less logic to decode the state, and less logic to drive outputs. In many cases, synthesizers can produce state machines with as good performance as one-hot when left to do their own optimization, but one-hot is often as good as it will get.

Latch Inferencing
When synthesizing a state machine, the synthesizer must be careful to preserve the semantics of the Verilog code. This can sometimes produce unwanted logic.

Specifically, if you have a case statement for nextstate assignment, the semantics may require some state storage if it is possible that the case expression does not match any of the case selectors.

In our example,

 always @(state or din) // Next State Logic

 case (state)

 3'b001: nextstate = din ? `C : `B;

 3'b010: nextstate = din ? `B : `C;

 3'b100: nextstate = `A;

 endcase

it may be possible for state to have a value other than 1, 2, or 4 (the synthesizer can't tell). So, in the absence of any other information, the logic generated would have to allow for the possibility that nextstate would retain its previous value. The way it would do that is to create a latch to hold nextstate. This process is called latch inferencing and it is usually not what is desired.

To avoid this, the code should be written to cover all cases. There are several ways to do this:

 always @(state or din) begin // Next State Logic

 nextstate = 3'bx; // don't care, or a default value

 case (state)

 3'b001: nextstate = din ? `C : `B;

 3'b010: nextstate = din ? `B : `C;

 3'b100: nextstate = `A;

 endcase

 end

Alternatively, the default case item can be used:

 always @(state or din) // Next State Logic

 case (state)

 3'b001: nextstate = din ? `C : `B;

 3'b010: nextstate = din ? `B : `C;

 3'b100: nextstate = `A;

 default: nextstate = 3'bx;

 endcase

In the above examples, 3'bx was used as a don't care state. Synopsys knows enough to treat a constant x in this case as a real don't care, and will not synthesize any logic for it. It could be that a real state (like 3'b001) was desired, and, if that was used, Synopsys would generate the appropriate logic to set the default to that value.

Finally, the same effect can be obtained by using a synthesis directive:

 always @(state or din) // Next State Logic

 case (state) // synopsys full_case
 3'b001: nextstate = din ? `C : `B;

 3'b010: nextstate = din ? `B : `C;

 3'b100: nextstate = `A;

 endcase

Many designers get in the habit of using "synopsys full_case" on all their state machine case statements. It is worth noting that if you say this, Synopsys will believe you. If in fact there is an unaccounted-for case, the pre-synthesis simulation may not match post-synthesis simulation. In this case, the synthesized circuit has a bug which may be difficult to find.

Q

Rewrite the following state machine so that it uses a single 2-bit state variable:

module fsm (out, in1, in2, clk);

output out;

input in1, in2, clk;

reg state1, state2;

wire next1, next2;

assign out = state1 & state2;

assign next1 = f1(state1, in1);

assign next2 = f2(state2, in2);

always @(posedge clk) begin

state1 <= next1;

state2 <= next2;

end

endmodule

A:

module fsm (out, in1, in2, clk);

output out;

input in1, in2, clk;

reg [1:0] state;

wire [1:0] next;

assign out = state1 & state2;

assign next = f1(state[0], in1) << 1 + f2(state[1], in2);

always @(posedge clk)

state <= next;

endmodule
Pipelines, queues, and FIFOs are common logic structures which are all related, in the sense that data moves from one storage location to another synchronously, based on a strobe signal, usually a clock.

For this discussion, we will talk about a simple pipeline, but the issues covered apply equally to the other types of structures.

[image: image235.png]
module pipeline (out, in, clock);

 output out;

 input in, clock;

 reg out, pipe[1:2];

 always @(posedge clock) begin

 out = pipe[2];

 pipe[2] = pipe[1];

 pipe[1] = in;

 end

endmodule

This code works fine. The only potential problem is that out changes value on the clock edge, so whatever takes it as an input may get the wrong value.

A better version would be to use a non-blocking assign:

 always @(posedge clock) begin

 out <= pipe[2];

 pipe[2] <= pipe[1];

 pipe[1] <= in;

 end

Note that with the non-blocking assign, the order of the assignment statements is irrelevent

An interesting variation is the following:

module pipeline (out, in, clock);

 output out;

 input in;

 reg pipe[1:2];

 always @(posedge clock)

 {out, pipe[2], pipe[1]} = #d {pipe[2], pipe[1], in};

endmodule

Use of the intra-assignment delay is possible here because there is only one statement in the always block.

Independent Pipe Stages.

It is more common for the different pipe stages to be in different processes, and often in different modules. The three stage pipe might look more like this:

module pipeline (out, in, clock);

 output out;

 input in, clock;

 reg out, pipe1, pipe2;

 always @(posedge clock)

 out = pipe2;

 always @(posedge clock)

 pipe2 = pipe1;

 always @(posedge clock)

 pipe1 = in;

endmodule

This, however, doesn't work, and it is worth repeating that the source order of the different always blocks makes no difference. As we have pointed out before, both of the following alternatives will work.

 always@(posedge clock)

always@(posedge clock)

 out <= pipe2;

 out = #d pipe2;

 always@(posedge clock)

always@(posedge clock)

 pipe2 <= pipe1;

 pipe2 = #d pipe1;

 always@(posedge clock)

always@(posedge clock)

 pipe1 <= in;

 pipe1 = #d in;

Many designers use an intra-assignment delay with a non-blocking assign in this case. While it works, there is no benefit to doing it, and it is somewhat less efficient than either of these two methods.

Pipe Stages as Separate module instances
It is common to make a single pipe stage module and use it repetitively, as follows:

module pipeline (out, in, clock);

 output out;

 input in, clock;

 wire s1out, s2out;

 pipestage s1 (s1out, in, clock),

 s2 (s2out, s1out, clock),

 s3 (out, s2out, clock);

endmodule

module pipestage (out, in, clock);

 output out;

 input in, clock;

 reg out;

 always @(posedge clock)

 out <= in;

endmodule

Of course, this works just like the previous version, and the pipestage module is nothing more than a D flip-flop.

Combinational logic in the Pipeline

It is more interesting if there is some combinational logic associated with each pipe stage. Suppose each stage has some logic represented by a function f1, f2, f3 which is applied to the input.

[image: image236.png]
Then, the pipeline might look like this:

module pipeline (out, in, clock);

 output out;

 input in, clock;

 wire s1out, s2out, s1in, s2in, s3in;

 assign s1in = f1(in),

 s2in = f2(s1out),

 s3in = f3(s2out);

 pipestage s1 (s1out, s1in, clock),

 s2 (s2out, s2in, clock),

 s3 (out, s3in, clock);

endmodule

Notice that there is no need to put a delay on the continuous assignments, because the delay is done in the pipestage module (using the NBA). Alternatively, one could make the pipestage delay-less and put a delay on the continuous assignments.

Q

Write a module which implements a 3-stage pipeline. Each stage is a single bit, and there is a single bit as input. The output should be 1 whenever all three stages contain a zero, which is the initial condition. The module template is:

module zero3 (out, in, clk);

output out;

input in, clk;

reg s1, s2, s3;

...

endmodule
Test module:

module test;

wire out;

reg in, clk;

zero3 z3 (out, in, clk);

initial begin

in = 0;

clk = 0;

forever #5 clk = ~clk;

end

initial begin

$monitor($stime,,"clk: %b in: %b out: %b", clk, in, out);

repeat (2) @(posedge clk);

in <= 1;

repeat (2) @(posedge clk);

in <= 0;

repeat (4) @(posedge clk) ;

in <= 1;

repeat (3) @(posedge clk) in <= ~in;

@(posedge clk) in <= 0;

repeat (4) @(posedge clk) ;

#1
$finish;

end

endmodule

Answer:

module zero3 (out, in, clk);

output out;

input in, clk;

reg s1, s2, s3;

assign out = s1==0 & s2==0 & s3==0;

initial begin

s1 = 0;

s2 = 0;

s3 = 0;

end

always @(posedge clk) begin

s1 <= in;

s2 <= s1;

s3 <= s2;

end

endmodule

Many of the examples which we have used are delay-less, or zero-delay models. The advantage of zero-delay models is that they simulate faster than models which have a lot of delays in them.

The reason that zero-delay models are faster in execution can be seen by comparing the steps required to execute the following two functionally equivalent bits of code.

 ...

...

 assign #1 w1 = r1 + r2;

assign w1 = r1 + r2;

 assign #2 w2 = w1 + r1;

assign w2 = w1 + r1;

 assign #3 w3 = r1 - r2;

assign w3 = r1 - r2;

 always@(strobe)

always@(strobe)

 r1 = #1 r1 + 3;

 r1 <= r1 + 3;

 ...

...

These bits of code are functionally equivalent, in that when strobe happens, the various values r1, w1, w2, and w3 all get new values. They are not equivalent with respect to timing, since the signals change as follows.

[image: image237.png]
Because there are different times associated with each of the evaluations, there are separate events scheduled for each of the assignments. The different event lists would look like:

[image: image238.png]
In the zero-delay case, the three evaluations which get done as propagations from the r1 event may be done immediately, one after the other. Thus, the overhead of putting events on the event list and having the scheduler take them off is avoided. This can be substantial. It is possible for the difference in execution time to be as much 50%.

A zero-delay model, by definition, does not have any delays in it. However, in order for a synchronous design to work, there must be at least two events in each cycle.

1. Sample Event
The sample event is usually the one that we think of as happening on the clock edge. The new value for each clocked component is determined at this time.

2. Change Event
The change event is the one where state values are updated. New state values are then computed as a result of propagation.

If we look at a typical piece of delayless code:

 assign nextstate = f(state, in);

 always @(posedge clock)

 state <= nextstate;
The events which occur are:

1. Sample Event

· save nextstate in temp

· schedule NBA update (the change event)

2. Change Event

· update state with temp and propagate state

· compute f(state, in) due to propagation of state and in (in comes from some other register, just like state)

Even though the simulation time has only one value for each clock cycle, there are really two events at each cycle boundary.

Without using NBA

An alternative method of writing zero-delay models is like this:

 always @(negedge clock)

 nextstate = f(state, in);

 always @(posedge clock)

 state = nextstate;

Now, the two events are the rising and falling edge of the clock. Notice that there is no propagation from state or in to f(state, in), since it always gets evaluated at the falling edge. Notice also that now a regular assignment is used for updating state. It is somewhat more obvious that there are two events per cycle when it is done like this, but always doing the next state computation may be inefficient. That could be improved like this:

 always @(state or in)

 @(negedge clock)

 nextstate = f(state, in);

 always @(posedge clock)

 state = nextstate;

Writing the model like this restores the propagation from state and in to the nextstate computation.

Some simulators will work better if the delays are all unit delays (that is, delays = 1) instead of larger numbers. The reason for this is usually ascribed to better efficiency in the scheduler itself. Depending on the implementation (e.g. Verilog-XL), this can be a noticable difference. More modern simulators do not realize much improvement by using unit delays.

Q

Rewrite the following model as a 0-delay model where all signals change at the rising edge of clk:

module autom (out, in, clk);

output [3:0] out;

input in;

input clk;

reg [1:0] state;

initial state = 0;

assign #1 out = state * 5;

always @(posedge clk)

case (state)

0:

state = in ? 1 : 0;

1:

state = in ? 2 : 1;

2:

state = in ? 0 : 2;

endcase

endmodule
Test module:

module test;

wire [3:0] out;

reg in, clk;

integer i;

autom a1 (out, in, clk);

always #5 clk = ~clk;

initial begin

clk = 0;

in = 0;

$monitor ($stime,,"clk: %b in: %b out: %d", clk, in, out);

#15 in <= 1;

for (i=0; i<10; i=i+1)

#10 in <= ~in;

$finish;

end

endmodule

Answer:

module autom (out, in, clk);

output [3:0] out;

input in;

input clk;

reg [1:0] state;

initial state = 0;

assign out = state * 5;

always @(posedge clk)

case (state)

0:

state <= in ? 1 : 0;

1:

state <= in ? 2 : 1;

2:

state <= in ? 0 : 2;

endcase

endmodule
Race condition

We have already defined a race condition to be a situation where the behavior of the model depends on the order of execution of events at the same simulated time. (See Defined vs. Undefined Behavior (Races) in Chapter 3.)

In general, a race condition occurs when a data value is sampled in one process and changed in another at the same simulated time.

A simple race is:

initial

initial

 #100 a = 1;

 #100 if(a) $display("a is 1");
The $display statement may or may not be executed, depending on the order of execution of the two events at time 100.

We will list a few common types of constructs which can cause races. This is by no means an exhaustive list

There is no defined ordering between the first statements of different initial and always blocks. The simplest example of the potential for races is:

 initial y = 1;

 initial $display($time, " y = %b", y);

This is a race because the result could be either:

 0 y = 1

or 0 y = x

depending on which initial block was executed first by the simulator.

A more common example of this type is:

 initial clk = 1;

 always #10 clk = ~clk;

 always @(posedge clk)

 $display($time, " posedge occurred");

The first edge detected could be at either 0 or 20, depending on the order of execution of the initial block and the always @(posedge clk) block.

As we saw in the discussion on pipelines earlier in this chapter, this is a common source of race conditions. Two different always blocks, triggered off the same event, move data from one register to another.

always@(posedge clock)

always@(posedge clock)

 diff1 = in;

 out = diff1;

As we saw, the proper solution for this is to introduce a second event, either by means of an explicit delay or a non-blocking assign, so that the first event can be the sample event and the second event can be the update event.

A common mistake when adding a second event is to add the second event, but simply move the race to the second event, like this:

always@(posedge clock)

always@(posedge clock)

 #1 diff1 = in;

 #1 out = diff1;

Now, the race occurs at (posedge clock)+1 instead of (posedge clock), but it is still a race.

Another class of race condition occurs when a data value is changed in one process and a change on that data value is waited on in another process. For example, the following code has a race between the change of dff1 in one process and the wait for its change in the other:

 always@(posedge clock) always@(posedge clock) begin

 diff1 = #1 in; out = #1 diff1;

 @(diff1);

 end

This is a problem because event controls are part of executable statements, and events are temporal. If the event occurs before a process starts waiting for it, the event will be missed, and the waiting process will be stalled until the next such event occurs.

There are interactions between continuous assignments and procedural assignments which are not defined. For example, consider the following:

 assign cond1 = xyz==1;

 initial begin

 xyz = 0;

 #10 xyz = 1;

 if (cond1)

 $display("condition 1 is now in effect");

 end

In this code, it is not defined whether the propagation from xyz = 1 to the evaluation of xyz==1 will happen before or after the execution of the if (cond1) statement.

Another type of race condition does not involve sampling a signal, but involves two concurrent updates of a signal. The simplest example of this type of race is:

 initial #1 x = 1;

 initial #1 x = 0;

It is pretty obvious that this is an indeterminate situation. It is not so obvious that it remains indeterminate if the assignments were replaced with non-blocking assignments.

Another type of race occurs when the model behavior depends on the number of events which occur at a given simulation time. Consider this example:

 always @(ris1 or rp2)

 evcount = evcount + 1;

 assign ris1 = r == 1;

 assign rp2 = r + 2;

 initial begin

 evcount = 0;

 #10 r = 1;

 #1 $display(evcount);

 end

In this code, when r changes at 10, the always @(ris1 or rp2) will be triggered either one or two times, depending on the order of evaluation and propagation of the two continuous assignments. When this code executes, evcount will have a value of either 1 or 2.

Q:

Which of the following is an example of a race?

	a.

module t;

...

assign x = f(y);

assign z = f(x);

...

 endmodule
	b.

module t;

...

always @(posedge clk)

x = f(y);

always @(posedge clk)

z = f(x);

...

 endmodule

A:

Only b is an example of a race. Code fragment a does not have a race condition because the two continuous assigns propagate the left-hand side of one (x) to the right-hand side of the second (f(x)). Thus, there is a defined order between the execution of the two statements.
Efficient Modelling Technique

When writing a Verilog model, efficiency should be a consideration. However, there are other considerations as well, particularly the characteristics of the synthesized logic when the model has been implemented. There are lots of coding styles that are synthesizable and produce good logic from a synthesizer, but are less efficient than non-synthesizable alternatives.

In general, simulation efficiency is not a primary concern for synthesizable code. But, a great deal of code in most models is devoted to the test environment and to the library elements. Library elements in particular are important, because they are used so much, and their implementation is not a concern to the logic being designed. That is, a fast behavioral implementation of a library element is identical, for simulation purposes, to a slow gate level implementation.

That said, simulation time is important. Many design projects require simulating a set of tests repetitively until the design passes all tests. This regression testing can often consume months of simulation time, so a saving of a few percent can be measured in days, while savings of 50% can mean months off the time to market.

There is no substitute for measuring the performance of a model and experimenting with alternatives. However, besides buying a faster simulator, there are a number of things which can be done to improve the execution time of a simulation model. Here are some techniques to improve efficiency that we will discuss on the following screens.

· Compile Time vs. Run Time

· Reduce the Number of Events

· Use Higher Levels of Abstraction

· Don't Split Vectors

· Avoid Bi-Direct Primitives

· Minimize RHS Evaluations in Continuous Assigns

· Optimize Always @(event_expression) Blocks

In general, Verilog simulators have two separate phases, compilation and simulation. The time taken to compile the model may be relatively short, in the case of an interpreter, or it may be relatively long, in the case of a compiler. However, even interpreters have a compile step.

Compile time is influenced by the requirement that the entire model be compiled at one time. It is possible to incrementally compile only those parts of the model which have changed, but it is necessary to read the entire source to determine which modules have changed - looking at a modification time is not sufficient.

There is not a lot that you can do to influence compile time, with one major exception. That is, if you separate the stimulus from the model, the model needs to be compiled only once for a series of tests while the stimulus changes from test to test. If the stimulus is included in the Verilog source along with the model, then the whole thing must be compiled for each test. This is extremely inefficient, and should be avoided

The way to separate the stimulus from the model source is to read the stimulus into the model. The system tasks $readmemh and $readmemb provide a means for getting data from a file into a memory.

An alternative method is to write a PLI routine to read test vectors, or some other indication to the test driver of what operations to perform. This is straightforward, and very effective.

The main objective of run-time optimization is to reduce the number of events which the simulator executes. This is almost always a good measure of the amount of work the simulator is doing, and most simulators will print out the number of events they executed at the end of a simulation run.

A good example is the use of always blocks triggered on clock edges:

 always @(posedge clk)

 dff1 <= f(in);

A loop like this will execute every clock cycle, even though the input may seldom change. If the function f(in) is significant, this can be very wasteful.

We have seen a number of alternatives to this code, including these:

 always @(posedge clk) begin assign wdff1 = f(in);

 dff1 <= f(in); always @(wdff1)

 @(in); @(posedge clk)

 end dff1 <= wdff1;

Often it is the case that when rewriting some code to execute fewer events, new assumptions are made about when signals will or will not change. If the assumptions are valid, then the improvement can be realized.

It is usually the case that the most effective way to reduce the number of events is to write the code at the highest level of abstraction possible. The most common manifestation of a higher level of abstraction is the use of vectors and vector operations wherever possible.

Consider this example:

 reg [7:0] out, in1, in2;

 assign out = in1 & in2;

vs.

 reg [7:0] out, in1, in2;

 and (out[0], in1[0], in2[0]);

 and (out[1], in1[1], in2[1]);

 and (out[2], in1[2], in2[2]);

 and (out[3], in1[3], in2[3]);

 and (out[4], in1[4], in2[4]);

 and (out[5], in1[5], in2[5]);

 and (out[6], in1[6], in2[6]);

 and (out[7], in1[7], in2[7]);

Performing the and operation on the entire vector requires just a handful of machine instructions. Performing eight single-bit and operations, on the other hand, requires several instructions each, and extracting and inserting the individual bits out of/into the vectors likewise requires several instructions. The end result is that the gate-level version of the above will take about ten times longer to execute than the RTL version.

Another example is often found in library modules.

 module dff4 (out, out_, in, clock);

 output [3:0] out, out_;

 input [3:0] in, clock;

 dff1 d3 (out[3], out_[3], in[3], clock);

 dff1 d2 (out[2], out_[2], in[2], clock);

 dff1 d1 (out[1], out_[1], in[1], clock);

 dff1 d0 (out[0], out_[0], in[0], clock);

 endmodule

vs.

 module dff4 (out, out_, in, clock);

 output [3:0] out, out_;

 input [3:0] in, clock;

 reg [3:0] out;

 assign out_ = ~out;

 always @(posedge clock)

 out <= in;

 endmodule

The second version of this is at least 4 times faster than the first version

Just as it is important to write code at a level of abstraction where vectors are the primary data type, it is also important to write code which does not cause vectors to be split up into individual bits.

vector. For a vector net, however, the representation may be 120-value, or 8 bits per vector bit. In a high-performance simulator, the 120-value representation is only used when needed, but the simulator's idea of when it is needed may be more pessimistic than actually necessary.

For instance, consider an 8 bit tri-state bus:

 wire [7:0] out, in;

 bufif1 (bus[0], local[0], control);

 bufif1 (bus[1], local[1], control);

 .

 .

 bufif1 (bus[7], local[7], control);

This is a common way of specifying the bus drivers. However, it is not a very good way. The problem is that the bufif semantics dictate that if control is x, the output may be a blended strength signal. This means that to be correct, the bus must be 120-value, or 8 bits per bit. In other words, the bus must be "split" into 8 one bit nets.

The impact of this is felt when another operation is to be done with the bus as an operand. For example,

 assign val = bus & mask;

would require mask to be split into 8 bits and each bit would be anded separately. This would go roughly 8 times slower than the operation would go if the bus was not split.

A better alternative to writing the bus driver would be:

 assign bus = control ? local : 'bz;

This coding would preserve the 4-value representation of bus, and thus speed up all operations which were applied to the bus. Note, however, that the semantics are subtly different. The bus value is not the same if control is x and any bits of local are x. In most cases, this does not matter, because control is not expected to be x.

The conclusion to draw from this discussion is to avoid 120-value signals if at all possible, because they can cause vectors to be split into individual bits. When vectors are split, operations on them are much slower than if they are not split.

Q:

Are the following code fragments functionally identical?
	a.
wire [4:0] w, y;

assign w = s==1 ? y : 5'bz;
	b.
wire [4:0] w, y;

bufif1 (w[4], y[4], s);

bufif1 (w[3], y[3], s);

bufif1 (w[2], y[2], s);

bufif1 (w[1], y[1], s);

bufif1 (w[0], y[0], s);

Top of Form

[image: image239.wmf]Yes
[image: image240.wmf]No

Correct. These fragments are not identical. They are identical if the value of the selector variable x is either 0 or 1, but they do not have the same behavior if x has the value x or z.

Other very expensive features in Verilog are the bi-direct primitives tran, rtran, tranif, and rtranif. When these primitives are used, the nets used in their ports must include resolution functions that can determine what the value of the net should be in the face of multiple drivers, each of which may affect the other.

The usual algorithm for computing these resolution functions is called a relaxation method, and it involves iteratively solving a set of equations. As you might imagine, this is quite expensive.

When the right-hand side of a continuous assignment is evaluated, all terms are evaluated. This simple rule causes a good deal of unnecessary computation in some cases.

For example, consider this assignment:

 assign n1 = w1 + f(w2) + g(w3);

If w1 changes, both f(w2) and f(w3) will be evaluated, even though their arguments, w2 and w3, have not changed. In the normal case, where there were no intended side effects of the functions f and g, and they did not depend on any global variables, this re-evaluation is not necessary.

To avoid this, the code could be written as follows:

 assign t2 = f(w2);

 assign t3 = g(w3);

 assign n1 = w1 + t2 + t3;

Now, when w1 changes, only 2 additions are done, and the re-evaluations of f(w2) and g(w3) are avoided.

Along the same lines, cascaded ?: operators in continuous assignments can be expensive. For example, it is often tempting to write multiplexed logic like this:

 assign bus = drive==1 ? f(data1) :

 drive==2 ? f(data2) :

 (drive==3 | ^cntrlbits) ? f(data3) :

 drive==4 ? f(data4) : 'bx;

This is a very concise way to write the code. Unfortunately, it is expensive. Applying the previous rule about RHS evaluation, consider what happens when drive==2 and data4 changes value. The entire right-hand side gets evaluated, including all functions and the reduction exlusive-or, even though ultimately the output cannot change.

A much better way to write this code is:

 assign t1 = f(data1),

 t2 = f(data2),

 t3 = f(data3),

 t4 = f(data4);

 assign s4 = drive==4 ? t4 : 'bx,

 s3 = (drive==3 | ^cntrlbits) ? t3 : s4,

 s2 = drive==2 ? t2 : s3,

 bus = drive==1 ? t1 : s2;

Now, if drive==2 and data4 changes, only t4 and s4 are affected.

Optimize Always @(event_expression) Blocks

State machines are often coded like this:

 always @(A or B or C or D or state)

 nextstate = f(A, B, C, D, state);

(Usually the function is just inlined into the always block. We have abbreviated it here.)

This works fine, and it is what you want to be synthesized. However, if A, B, C, and D all change in a cycle, the function could end up being evaluated up to four times. It would be better if the function were only executed once with all the new values. By adding a delay, this can be assured:

 always @(A or B or C or D or state)

 @(negedge clock)

 nextstate = f(A, B, C, D, state);

Of course, this only works if it is known that all of the changes to A, B, C, and D will occur before the negative clock edge. Because synthesis will ignore the @(negedge clock) event control, this does not change the synthesized logic.

Notice that if this was written as a continuous assignment,

 assign nextstate = f(A, B, C, D, state);

there would be no opportunity to make this optimization.

Examples

Pipelined Execution Unit
This example uses the ALU from Chapter 6 and puts it into a 3-stage pipelined execution unit. There is a register read stage, an ALU stage, and a register write stage.

Local Interrupt Controller
This is a model of a state machine and the data path it controls which manages an interrupt protocol on a bus. This model comes from NeXT computer, and was in fact part of a computer which was produced (but never sold). It is used by kind permission of Firepower, Inc.

Limit Counter
This is a counter which has an up and down mode, along with a limit. There is a reset function and a load limit function. When the counter reaches the limit, either up or down, it stops and holds its value. We present two versions here, one faster (and better style) than the other.

Pipelined Execution Unit

In this example, we will take the ALU example from Chapter 6 and put it into a pipelined execution unit. The description is as follows.

The design consists of three parts plus a test module:

	Test
	This is a module which supplies an instruction stream to the execution unit and, when it is finished, checks the contents of the register file.

	Op Pipe
	The Op Pipe is a 3-stage pipeline (opPipe). This consists of register read, ALU op, register write (stages R, A, and W). Each stage should be active on each cycle. Inputs to the opPipe are an opcode, op1, op2, and res, where opcode is the 3-bit ALU code, op1, op2, and res are 4-bit register numbers.

	ALU
	The same as the ALU Example in Chapter 6, except the operands are 32 bits wide instead of 8 bits. The opcode is 3 bits wide.

	Register File
	The register file is 16 32-bit registers. On any cycle, there can be 2 reads and 1 write. The register module takes 3 address-value pairs, along with a write-valid signal. There should be a bypass so that a write and read to the same register will return the new value for the read. Register 0 always has the value 0.

The Op Pipe will use the nop opcode to mean load the immediate value (3-bit r1 field) into res. This is to be done completely outside of the ALU.

	Results
	This is the result with the debugging output turned on.

Test

module test;

/*

 test the opPipe

 generate an instruction stream

 when its done, check the register file

*/

 `define Ldi 3'b000

 `define Add 3'b001

 `define Sub 3'b010

 `define Not 3'b011

 `define Shfl 3'b100

 `define Shfr 3'b101

 reg [2:0] opcode;

 reg [3:0] r1, r2, res;

 reg clock;

 reg debug; // global flag controls debug output

 initial debug = 0;

 integer errcnt; // error counter

 initial errcnt = 0;

 opPipe op(opcode, r1, r2, res, clock); // pipeline

 always begin // the clock

 #5 clock = 0;

 #5 clock = 1;

 end

 initial begin // test vectors

 inst (`Ldi, 1, 0, 1);

 inst (`Ldi, 0, 0, 0); // bubble

 inst (`Add, 1, 1, 2);

 inst (`Ldi, 0, 0, 0); // bubble

 inst (`Sub, 2, 1, 3);

 inst (`Not, 2, 0, 4);

 inst (`Shfl, 2, 2, 5);

 inst (`Add, 2, 0, 8);

 inst (`Shfr, 5, 2, 6);

 inst (`Shfl, 5, 1, 7);

 inst (`Shfl, 8, 8, 8);

 inst (`Add, 1, 0, 9);

 inst (`Ldi, 0, 0, 0);

 // now check results

 repeat (4) @(posedge clock); // drain pipe

 $display("Registers:");

 check (1, 1);

 check (2, 2);

 check (3, 1);

 check (4, 32'hfffffffd);

 check (5, 8);

 check (6, 2);

 check (7, 16);

 check (8, 8);

 check (9, 1);

 if (errcnt)

 $display("* * * Test Failed * * *");

 else

 $display("* * * Test Passed * * *");

 $finish;

 end

 task inst;

 input [2:0] iopcode;

 input [3:0] ir1, ir2, ires;

 begin

 opcode <= iopcode;

 r1 <= ir1;

 r2 <= ir2;

 res <= ires;

 @(posedge clock) ;

 end

 endtask

 task check;

 input [3:0] rn;

 input [31:0] val;

 begin

 $display("%d: %h", rn, op.rf.registers[rn]);

 if (op.rf.registers[rn] !== val) begin

 $display("*** Error: Register %0d is %h should be %h",

 rn, op.rf.registers[rn], val);

 errcnt = errcnt + 1;

 end

 end

 endtask

endmodule

Op Pipe

module opPipe (opcode, r1, r2, res, clock);

 input [2:0] opcode;

 input [3:0] r1, r2, res;

 input clock;

/* 3-stage pipeline

 R - register read

 A - ALU op

 W - register write

 Inputs: opcode, op1, op2, and res

 Output: none

*/

 // local variables

 wire [3:0] r_reg1, r_reg2;

 wire a_valid, write;

 wire [31:0] a_opA, a_opB;

 wire [31:0] a_wdata;

 // pipe stages

 reg [2:0] a_opcode, w_opcode; // opcode

 reg [3:0] a_reg1, w_reg1; // reg (value) for Ldi

 reg [3:0] a_wreg, w_wreg; // result register

 wire [31:0] w_wdata; // result value

 // module instances

 RegFile rf(r_reg1, r_reg2, w_wreg, a_opA, a_opB, w_wdata, write, clock);

 alu al(clock, a_opcode, a_opA, a_opB, a_wdata);

 // combinational logic

 assign r_reg1 = r1, // these are flow through

 r_reg2 = r2;

 assign write = 1'b1; // write result every cycle

 // pipeline

 //

 // R stage is just the input ports

 //

 // A stage

 //

 always @(posedge clock) begin

 a_opcode <= opcode;

 a_wreg <= res;

 a_reg1 <= r_reg1; // needed for Ldi

 // a_opA and a_opB become valid here from R

 end

 //

 // W stage

 //

 assign w_wdata = (w_opcode == `Ldi) ? w_reg1 : a_wdata;

 always @(posedge clock) begin

 w_wreg <= a_wreg;

 w_reg1 <= a_reg1;

 w_opcode <= a_opcode;

 // write becomes valid from A

 end

 always @(posedge clock) // diagnostic code

 if (test.debug)

 $display($stime,,"opPipe\n",

 " R - %s reg1: %h reg2: %h res: %h\n",

 opname(opcode), r_reg1, r_reg2, res,

 " A - %s opA: %h opB: %h\n",

 opname(a_opcode), a_opA, a_opB,

 " W - %s wreg: %h wdata: %h write: %b",

 opname(w_opcode), w_wreg, w_wdata, write);

 function [4*8:1] opname;

 input [2:0] opcode;

 case (opcode)

 `Ldi: opname = "Ldi ";

 `Add: opname = "Add ";

 `Sub: opname = "Sub ";

 `Not: opname = "Not ";

 `Shfl: opname = "Shfl";

 `Shfr: opname = "Shfr";

 default: opname = "xxx ";

 endcase

 endfunction

endmodule
ALU

 module alu (clock, opcode, opA, opB, result);

 input clock;

 input [2:0] opcode;

 input [31:0] opA,opB;

 output [31:0] result;

 reg [31:0] result;

 `define Nop 3'b000

 `define Add 3'b001

 `define Sub 3'b010

 `define Not 3'b011

 `define Shfl 3'b100

 `define Shfr 3'b101

 always @(posedge clock)

 case (opcode)

 `Nop: ;

 `Add: result <= opA + opB;

 `Sub: result <= opA - opB;

 `Not: result <= ~opA;

 `Shfl: result <= opA<<opB;

 `Shfr: result <= opA>>opB;

 endcase

 endmodule

Register File

module RegFile (r1, r2, wradd, r1val, r2val, wdata, writeValid, clock);

 input [3:0] r1, r2, wradd;

 input [31:0] wdata;

 input writeValid, clock;

 output [31:0] r1val, r2val;

 reg [31:0] r1vt, r2vt;

 reg [31:0] registers [0:15];

 assign #1 r1val = r1vt, // return register values

 r2val = r2vt;

 always @(posedge clock)

 begin

 if (writeValid && wradd) begin // write first

 registers[wradd] = wdata;

 if (test.debug)

 $display($stime,,"stored: reg %h %h", wradd, wdata);

 end

 r1vt = r1==0 ? 0 : registers[r1]; // sample the registers

 r2vt = r2==0 ? 0 : registers[r2];

 end

endmodule
Results

 10 opPipe

 R - Ldi reg1: 1 reg2: 0 res: 1

 A - xxx opA: xxxxxxxx opB: xxxxxxxx

 W - xxx wreg: x wdata: xxxxxxxx write: 1

 20 opPipe

 R - Ldi reg1: 0 reg2: 0 res: 0

 A - Ldi opA: xxxxxxxx opB: 00000000

 W - xxx wreg: x wdata: xxxxxxxx write: 1

 30 opPipe

 R - Add reg1: 1 reg2: 1 res: 2

 A - Ldi opA: 00000000 opB: 00000000

 W - Ldi wreg: 1 wdata: 00000001 write: 1

 30 stored: reg 1 00000001

 40 opPipe

 R - Ldi reg1: 0 reg2: 0 res: 0

 A - Add opA: 00000001 opB: 00000001

 W - Ldi wreg: 0 wdata: 00000000 write: 1

 50 opPipe

 R - Sub reg1: 2 reg2: 1 res: 3

 A - Ldi opA: 00000000 opB: 00000000

 W - Add wreg: 2 wdata: 00000002 write: 1

 50 stored: reg 2 00000002

 60 opPipe

 R - Not reg1: 2 reg2: 0 res: 4

 A - Sub opA: 00000002 opB: 00000001

 W - Ldi wreg: 0 wdata: 00000000 write: 1

 70 opPipe

 R - Shfl reg1: 2 reg2: 2 res: 5

 A - Not opA: 00000002 opB: 00000000

 W - Sub wreg: 3 wdata: 00000001 write: 1

 70 stored: reg 3 00000001

 80 opPipe

 R - Add reg1: 2 reg2: 0 res: 8

 A - Shfl opA: 00000002 opB: 00000002

 W - Not wreg: 4 wdata: fffffffd write: 1

 80 stored: reg 4 fffffffd

 90 opPipe

 R - Shfr reg1: 5 reg2: 2 res: 6

 A - Add opA: 00000002 opB: 00000000

 W - Shfl wreg: 5 wdata: 00000008 write: 1

 90 stored: reg 5 00000008

 100 opPipe

 R - Shfl reg1: 5 reg2: 1 res: 7

 A - Shfr opA: 00000008 opB: 00000002

 W - Add wreg: 8 wdata: 00000002 write: 1

 100 stored: reg 8 00000002

 110 opPipe

 R - Shfl reg1: 8 reg2: 8 res: 8

 A - Shfl opA: 00000008 opB: 00000001

 W - Shfr wreg: 6 wdata: 00000002 write: 1

 110 stored: reg 6 00000002

 120 opPipe

 R - Add reg1: 1 reg2: 0 res: 9

 A - Shfl opA: 00000002 opB: 00000002

 W - Shfl wreg: 7 wdata: 00000010 write: 1

 120 stored: reg 7 00000010

 130 opPipe

 R - Ldi reg1: 0 reg2: 0 res: 0

 A - Add opA: 00000001 opB: 00000000

 W - Shfl wreg: 8 wdata: 00000008 write: 1

 130 stored: reg 8 00000008

 140 opPipe

 R - Ldi reg1: 0 reg2: 0 res: 0

 A - Ldi opA: 00000000 opB: 00000000

 W - Add wreg: 9 wdata: 00000001 write: 1

 140 stored: reg 9 00000001

 150 opPipe

 R - Ldi reg1: 0 reg2: 0 res: 0

 A - Ldi opA: 00000000 opB: 00000000

 W - Ldi wreg: 0 wdata: 00000000 write: 1

 160 opPipe

 R - Ldi reg1: 0 reg2: 0 res: 0

 A - Ldi opA: 00000000 opB: 00000000

 W - Ldi wreg: 0 wdata: 00000000 write: 1

Registers:

 1: 00000001

 2: 00000002

 3: 00000001

 4: fffffffd

 5: 00000008

 6: 00000002

 7: 00000010

 8: 00000008

 9: 00000001

* * * Test Passed * * *

$finish at simulation time 170

Local Interrupt Controller

TestLocalInterruptController
This is the top level test module. It instantiates the LocalInterruptController module and provides an environment for it. The environment includes a fake bus manager to mimic the bus protocol. It also includes a set of tasks which manipulate values on the input ports of the module being tested.

LocalInterruptController
The LocalInterruptController module simply instantiates a state machine (LocalInterruptStateMachine) and a data path module (LocalInterruptDataPath). There is a minimal amount of logic in this module (just one or operation, found in a continuous assignment).

LocalInterruptDataPath
The data path has some combinational logic, a multiplexed register (RegMX10), and some combinational logic on the output of the register. The register is a 10-bit register with two data inputs, selected by reset. One of the inputs is wired to 0, so this is the way the register is reset.

LocalInterruptStateMachine
This is the state machine that controls the logic. The state vector is 3 bits, and there are 7 states. There are 6 different inputs, each 1 bit wide. The state and one output (presentState and ioMasterStart) are registered in a RegX4 module. The other outputs are produced combinationally from the state and the inputs. This module is organized just like our state machine diagram:

[image: image241.png]

Limit Counter
This model comes from the '92 High Level Synthesis Benchmarks, translated from VHDL by Sari Coumeri. The translation was done semi-automatically, which accounts for the poor aesthetics of the original source.

We present here both the original, and a cleaned-up version. Compare the two for readability and also for efficiency. The modified version runs 30% faster on at least one Verilog simulator.

TARMS_COUNTER (original)

TARMS_COUNTER (modified)
This module has a control input and a strobe signal which sets the function. The function is count up until the limit, count down until the limit, reset the counter, and set the limit. There is a data input to set the limit, and the counter value is output. The counter is incremented or decremented at each rising clock edge when it is enabled. When the counter reaches the limit, it simply disables itself.

TARMS_COUNTER (modified)

`timescale 1ns / 100ps

module ARMS_COUNTER(CLK,STRB,CON,DATA,CNT);

 input CLK;

 input STRB; // strobe for function change

 input [1:0] CON; // function control

 input [3:0] DATA; // limit

 output [3:0] CNT; // counter value

 reg [3:0] CNT; // counter

 reg [3:0] LIM; // limit

 reg CNTE; // count enable

 reg COUNTUP; // counter direction

//////////////// The decoder ////////////////////////////////////

initial

 CNTE = 1'b0;

always @(posedge STRB)

 begin

 case (CON)

 2'b00: begin // reset counter

 CNT = 4'b0000;

 CNTE = 0;

 end

 2'b01: begin // load limit

 LIM = DATA;

 CNTE = 0;

 end

 2'b10: begin // count up

 COUNTUP = 1;

 CNTE = (CNT != LIM);

 end

 2'b11: begin // count down

 COUNTUP = 0;

 CNTE = (CNT != LIM);

 end

 default: ;

 endcase

 end // Rising edge of STRB

//////////////// The counter ////////////////////////////////////

always @(posedge CLK)

 if (CNTE)

 if (COUNTUP)

 CNT = CNT + 4'b0001;

 else

 CNT = CNT - 4'b0001;

//////////////// The comparator ////////////////////////////////////

always @(CNT)

 if(CNT == LIM)

 CNTE = 1'b0;

endmodule

TTest Module
This is the top level module. It provides test patterns to the counter module, and checks the result. Notice the repeat placed around the test vectors. This is for timing purposes, and does not serve any useful verification purpose. Note that the error checking is not very helpful if an error actually occurs. It would be difficult to determine which pattern had a problem, since the error messages are all the same

Exercises:

Q1

What is the definition of a race condition?

A:

A race condition occurs when a signal is sampled and modified at the same instant of simulated time.

Q2

Is the following code an example of a race?

module t;

...

always @(posedge clk)

x <= f(y);

always @(posedge clk)

z <= f(x);

...

endmodule
A: No

Q3

What is the value of z printed by this module?

module t;

reg x, y, z;

initial begin

x = 1;

y = 0;

#1
$display(z);

end

always @(posedge x)

z = ~y;

endmodule
A:

either 1 or x

The correct answer is item 5. There is a race between the initial block and the always. If the initial block is executed first, the test for posedge x will wait for the next rising edge, not the one that happened at time 0.

Q4

What is wrong with the following state machine code?

assign nextstate = next(state, in);

assign out = func(state);

always @(posedge clk)

state = nextstate;

A: Because there are no delays in the assignments, the output of this state machine cannot be used as the input to another state machine coded the same way.

Q5

Given the state machine from the previous screen, select all of the following changes that would fix the problem. For each fix, assume that is the only change made to the original code.

assign nextstate = next(state, in);

assign out = func(state);

always @(posedge clk)

state = nextstate;

Top of Form

[image: image242.wmf]1. state <= nextstate;
[image: image243.wmf]2. assign #1 nextstate = next(state, in);
[image: image244.wmf]3. state = #1 nextstate;
[image: image245.wmf]4. assign #1 out = func(state);
[image: image246.wmf]5. #1 state = nextstate;
[image: image247.wmf]6. always @(negedge clk) out = func(state);
Items 1, 3, 4, and 6 would all correct the problem. Item 2 wouldn't work because if "in" changed 1 time unit before "posedge clk", then there would be a race. Item 5 is also inadequate because there is still a race condition if "out" from this module is used as "in" for another module coded the same way.

Q6

Which of the following pipeline representations is written with a preferable style?

	A

always @(posedge clk) begin

stage1 <= in;

stage2 <= stage1;

stage3 <= stage 2;

end
	B

always @(posedge clk) begin

stage1 <= #1 in;

stage2 <= #1 stage1;

stage3 <= #1 stage 2;

end

The correct answer is item A. Item B combines two different language features, a non-blocking assignment and an inter-assignment delay to accomplish the desired delay. Item 1 is better because it uses only a non-blocking assign to do the same job.

Q7

Complete the following module so that "clka" and "clkb" have the following waveforms.

[image: image248.png]
module clkgen (clka, clkb);

output clka, clkb;

reg clka, clkb;

initial begin

clka = 0; clkb = 0;

end

initial

#1
forever begin

#9
clka = 1;

#1
clka = 0;

end

initial

#3
forever begin

#9
clkb = 1;

#1
clkb = 0;

end

endmodule
Q8

Write a state machine whose output is 1 every time it has seen its input be 1 for 3 consecutive cycles. The header for module run3 is shown to get you started. A sample input and output waveform is:

Header:

module run3 (out, in, clk);

 output out;

 input in, clk;

 reg [1:0] count;

 ...

endmodule

Test module:

module test;

wire out;

reg in, clk;

integer cnt;

run3 r3 (out, in, clk);

initial begin

in = 0;

clk = 0;

cnt = 0;

forever #5 clk = ~clk;

end

always @(posedge clk)

 cnt = cnt + 1;

Answer:

module run3 (out, in, clk);

output out;

input in, clk;

reg [1:0] count;

assign out = count == 3;

initial count = 0;

always @(posedge clk)

case (count)

0:

count <= in;

1:

count <= in ? 2 : 0;

2:

count <= in ? 3 : 0;

3:

count <= in ? 3 : 0;

endcase

endmodule
Q9

The module zero3 below implements a 3-stage pipeline. Each stage is a single bit, and there is a single bit as input. Modify this model to use the following pipe stage. Assume the clock period is 10.

module zero3 (out, in, clk);

output out;

input in, clk;

reg s1, s2, s3;

assign out = s1==0 & s2==0 & s3==0;

initial begin

s1 = 0;

s2 = 0;

s3 = 0;

end

always @(posedge clk) begin

s1 <= in;

s2 <= s1;

s3 <= s2;

end

endmodule
	module stage (out, in, clk, reset);

output out;

input in, clk, reset;

reg out;

always @(reset)

if (reset)

assign out = 0;

else

deassign out;

always @(posedge clk)

out <= in;

endmodule
	module test;

wire out;

reg in, clk;

zero3 z3 (out, in, clk);

initial begin

in = 0;

clk = 0;

forever #5 clk = ~clk;

end

initial begin

$monitor($stime,,"clk: %b in: %b out: %b", clk, in, out);

repeat (2) @(posedge clk);

in <= 1;

repeat (2) @(posedge clk);

in <= 0;

repeat (4) @(posedge clk) ;

in <= 1;

repeat (3) @(posedge clk) in <= ~in;

@(posedge clk) in <= 0;

repeat (4) @(posedge clk) ;

#1
$finish;

end

endmodule

Answer:

module zero3 (out, in, clk);

 output out;

 input in, clk;

 wire s1, s2, s3;

 reg reset;

 assign out = s1==0 & s2==0 & s3==0;

 stage p1 (s1, in, clk, reset);

 stage p2 (s2, s1, clk, reset);

 stage p3 (s3, s2, clk, reset);

 initial begin

 #1 reset = 1;

 #1 reset = 0;

 end

endmodule
Q10

Rewrite the following model as a 0-delay model where all signals change at the falling edge of clk.

module autom (out, in, clk);

output [3:0] out;

input in;

input clk;

reg [1:0] state;

initial state = 0;

assign #1 out = state * 5;

always @(posedge clk)

case (state)

0:

state = in ? 1 : 0;

1:

state = in ? 2 : 1;

2:

state = in ? 0 : 2;

endcase

endmodule
Test module:

module test;

wire [3:0] out;

reg in, clk;

integer i;

autom a1 (out, in, clk);

always #5 clk = ~clk;

initial begin

clk = 0;

in = 0;

$monitor ($stime,,"clk: %b in: %b out: %d", clk, in, out);

#15 in <= 1;

for (i=0; i<10; i=i+1)

#10
 in <= ~in;

$finish;

end

endmodule
Answer:

module autom (out, in, clk);

 output [3:0] out;

 input in;

 input clk;

 reg [1:0] state;

 initial state = 0;

 assign out = state * 5;

 always @(posedge clk)

 case (state)

 0: state = @(negedge clk) in ? 1 : 0;

 1: state = @(negedge clk) in ? 2 : 1;

 2: state = @(negedge clk) in ? 0 : 2;

 endcase

endmodule
Q11

Which of the statements about the following code fragment are true?

always @(posedge clk) begin

x <= f(y);

@(y) ;

end

Top of Form

[image: image249.wmf]1. This code will work under all conditions.
[image: image250.wmf]2. This code is efficient. It reduces the simulation activity if "y" does not change on every "clk."
[image: image251.wmf]3. This code is only guaranteed to work if "y" does not change on the positive clock edge.

Items 2 and 3 are true. Item 1 is false because, although the "@(y)" is not blocked by the assignment, this code won't work if "y" changes on the positive clock edge. Item 2 is true because the "@(y)" causes the "always" block to suspend until "y" changes.

Q12

Which of the statements about the following code fragment are true? Assume that "z" changes at "negedge clk" and "clk" has a period of 20 time units.

always @(posedge clk) begin

x <= f(y);

@(y) ;

end

always @(posedge clk) begin

y <= g(z);

@(z) ;

end

Top of Form

[image: image252.wmf]1. This code will work.
[image: image253.wmf]2. This code is efficient. It reduces the simulation activity if "y" or "z" does not change on every "clk."

Both statements are true. Statement 1 is true because the non-blocking assign causes the "@(y)" and "@(z)" to be reached before the values of "x" or "y" change. Statement 2 is true because the "@(y)" and "@(z)" cause the "always" block to suspend until "y" or "z" change.

Chapter 8: DebuggingVerilog Models

· Objectives

· Review

· Edit-Compile-Debug Process

· Stage 2: Compiling a Model

· Incremental Compilation

· Library Files and Directories

· Stage 3: Run the Simulation Until the First Error Occurs

· Observing Model Behavior

· $dumpvars

· Viewing Waveforms

· Viewing Data at Higher Levels of Abstraction

· Stage 4: Debug the Problem

· (Nearly) Universal Interactive Simulator Features

· Non-Interactive Use

· Rerun the Test

· Self-Diagnosis

· [image: image293.png]Dump the History

· Dump a Partial History

· Checkpoint the Dump

· Graphical User Interfaces

· $save

· Exercises

OBJECTIVES

Upon completion of this chapter you will be able to:

· write a monitor statement for a given set of variables

· write a code fragment that checks an assertion

· write a code fragment that detects an illegal sequence of events and stops the execution of a Verilog model

· state how to gain control over a Verilog model at a given time in a given statement

· write Verilog code that produces a given waveform
Here are some topics you might want to review before continuing.

· System Tasks

· $display

· $monitor

· Cross-Module References

· Quasi-Continuous Assigns

The process of debugging a Verilog model usually follows the following stages. Click each stage to learn more about it.

1. Edit the Source
2. Compile the Model
3. Run the Simulation Until the First Error Occurs
4. Debug the Problem
5. Repeat the Process
1. Edit the Source
Since source files are just text, any editor can be used for this step. There is an emacs-mode for Verilog that is available which aides text entry under Emacs. There are also commercial design-entry products which can produce Verilog text from graphical depictions of a design.

2. Compile the Model
Verilog has several features which are consequences of the first simulator implementation (Verilog-XL). These include the way source macros are global, relying on text order, and the ability to modify parameters arbitrarily throughout the design using the defparam statement.

These features require a Verilog compiler to read the entire model source in order to compile it correctly. (This is in contrast to a C compiler, for example, which can compile different source files independently.)

When you run a Verilog simulator, you will generally see informative comments like:

Compiling source file "foo.v"

This shows you that it is compiling, and the order it is processing the files in. The order can be useful when tracking down problems with macro definitions being in effect across file boundaries

It is most often the case that when a change has been made to a model, only a small number of modules, and thus files, are changed. It would be desirable to recompile only the changed parts.

In theory, it is not possible to avoid reading the entire model source before compiling for simulation. However, it is possible to read the entire source, and then make a decision as to what modules have changed, and only compile those modules. There is at least one commercial simulator implementation which does this (VCS). It is not as clean as a C compiler, because it must save a great deal of information, but it is effective. If you use VCS, you should make it a habit to use the incremental compilation option.

Unlike VHDL, Verilog does not include configuration management capabilities in the language itself. It relies on the host operating system and the simulator implementation to manage which version of each module it should use. The way the simulator does this is with libraries.

Verilog simulators generally follow the procedures established by Verilog-XL. There are two types of libraries:

1. library files
A library file is a single file containing a collection of module defintions. Each module definition may instantiate other modules in that file (or defined elsewhere). A library file named library.v is indicated by:

-v library.v

The modules in a library file are only included in the model if some other module instantiates a module of that type.

2. library directories
A library directory contains a collection of files, each of which contains a single module definition. A library directory named libdir is indicated to a Verilog compiler by

-y libdir

By convention, the module name is used for the file name, with a ".v" appended. E.g. file "REG4X.v" contains module REG4X.

Library files and directories can be used to good advantage for managing model cofigurations. For example, suppose you have a model which has four major components:

1. board

2. chip1

3. chip2

4. memory

If there is an RTL and a gate version of the two chips (pre-synthesis and post-synthesis), you may want to run four different configurations of the model. This could be done conveniently by putting each of the different module versions in separate directories:

[image: image254.png]
Then, the four different versions could be run with the following commands (assume VCMP is the name of the Verilog compiler):

[image: image255.png]
3. Run the Simulation Until the First Error Occurs
Now, we'll proceed to Stage 3 of the Edit-Compile-Debug process, finding the first error. The edit-compile-debug process is usually thought of as an interactive process. However, the debug step includes running the simulation for a perhaps long time, and this may be done either interactively or non-interactively. Thus, finding the occurence of the first error may be non-trivial.

There are several general techniques for finding the error, and these are appropriate for different parts of the development cycle.

Eyeball
You run the model interactively, observing the model behavior, often with waveform display or a trace of signals. When you spot something going wrong, you stop the model. This is best for the early part of the design cycle, when errors are frequent and found near the beginning of simulation

Observe Incorrect Output
You run the model, either interactively or not, and observe the output. If it is incorrect, you stop the model and investigate. If the model was run non-interactively, you run it again interactively and stop it when it has the problem (at least you know when the incorrect output was produced). When you run the model again, you may enable diagnostic output (like $dumpvars) that was disabled before. This is used after the model works well enough to run for a while, but is not a great technique when errors occur after long simulation runs

Model Fails Consistency Check
This is a very effective method. The model contains code which checks assertions about the model state. There may be many such assertions in the model. For example, there may be an assertion that only one bus enable may be on at any given time. There may be another assertion that there must be at least one idle cycle after the initiation of a read transaction on the bus. This is a very good technique for identifying errors, as an assertion failure is usually very specific

Model Results Mismatch Expected Results

This is also a powerful debugging technique. In this method, the model contains code which observes the behavior and stops the simulation when it finds a discrepency with what is expected. In essence, there are two models of the circuit, the one being designed and the one doing the checking. This is a very good technique for checking long simulation runs. However, it requires another, presumably correct, model of the circuit.

The output capabilities are mostly built into the language. Effective display of internal state and signals is unique to each model, however, and should be carefully considered while the model is being written.

The language features are:

$monitor
The simplest language feature for exposing the operation of a model is the $monitor system task. The typical way that it is used is to monitor a group of related signals to see how they change in relationship to each other. Often, $monitor system task calls can be very long, monitoring lots of signals, and this can be the primary output of the model. The use of $monitor is constrained by the inability to have more than one set of signals being monitored at a time. The system task $monitor was covered in more detail in Chapter 6.

$dumpvars
A variation on $monitor is the $dumpvars system task. This language feature was added as a means of dumping the state changes of a large number of signals in the model. It always dumps the specified signals to a file in a predefined format which was chosen to minimize the space requirements of the file while still using an ASCII encoding. The file format is called VCD, for Value Change Dump. Using the dumpfile, you have (nearly) all the information available about the changes in signal values. However, you need an external program to interpret the VCD file, which can be quite large

This task causes every value change of its arguments to be logged into a Value-Change-Dump file. Each entry includes the time of the value change and the new value. From this data, a complete history of the simulation can be obtained for the arguments dumped.

The general format is:

 $dumpvars(levels, arg1, arg2, ...);

where:

 levels is

 a number

 argi is

 a module instance identifier

 a net or register identifier

If the arguments are omitted, then all nets and registers in the model are dumped. Otherwise, the levels argument indicates how many levels of the hierarchy are to be dumped.

0 - dump all levels below any given module instance

1 - dump just the nets and registers in the given module instance

2 - dump nets and registers in the module instance and in the modules it instantiates

...

Example:

$dumpvars; // dumps all signals in the model

$dumpvars(0,top.m1); // dump all signals in top.m1 and all module

 // instances below it

$dumpvars(1, r1, r2, n1); //dump only signals r1, r2, and n1

Displaying signals from the model as waveforms is a common practice, and can be a very useful way of visualizing the operation of a model. This is not a standard feature of the language, but it is a simulator implementation feature. Interestingly, displaying waveforms is a relatively late addition to Verilog simulators, and as a result, the normal way of displaying waveforms is not by the simulator at all but by means of a separate program which reads and interprets a history file (the VCD file).

There are several commercially available waveform viewers, Debussy, SignalScan, VirSim, and Undertow among them, which can read and display VCD files, as well as a number of locally-written viewers. These waveform viewers have evolved from simple display programs to quite comprehensive simulation interfaces.

As they have evolved, they have all created their own history file formats which contain more information than the standard VCD file format. In each, you have to use a specific variation of the $dumpvars system task in order to dump the appropriate information into the new history file.

All we will say here about these products is that in general they are quite good, offering good functionality at reasonable prices. Each has distinguishing features from the others

Waveforms can be very useful, but they are a very low level of data representation. For example, if the model is a processor, it treats data as instructions made up of different fields. It would convey more information to display the state as instructions in execution than as a set of control bits and data values.

Unfortunately, there is not much generality in displaying data at a higher level of abstraction, since the level of abstraction is inherently model-dependent. This means that, to do something effective, you have to write the code yourself. Fortunately, the PLI gives you the capability to write programs which can display simulation results and hook them up to the simulation model. For example, it is quite possible to write a C program to draw a picture in an X-window which depicts the simulated model results. This has been done to display the pictures which would be rendered by graphics hardware which was being simulated.

4. Debug the Problem
Once the what of the problem has been identified, you have to identify the why. Thus you move on to Stage 4, debugging the problem. Most of the specific features for exposing the workings of a model are specific to particular simulator implementations. There are, however, some capabilities that are inherent in the language, and some nearly universal features found in simulator implementations. In addition, there are commercial products which provide debugging capabilities that work together with the simulator.

The primary debugging technique is to display information from the model while it simulates, and then analyze the output for incorrect behavior. Of course, this is easy to say but often difficult to do. Analysis of the model results can be done interactively or after-the-fact. As long as there is enough information, both ways are equally difficult.

Most simulators have interactive capabilities. Using these features, one can run a simulation, stop when the problem is manifest (or suspected), and expose the workings of the model sufficiently to diagnose the problem. In general, the interactive interface to the simulator is called the Command Line Interface, or CLI. Most simulators have their own CLI, each somewhat different from the others. However, most of them provide the same capabilities.

· Time Breakpoints

A time breakpoint is a given absolute simulation time at which the simulation is to stop and control returned to the CLI. This is used to run the simulation to a given point at which the state of the model can be inspected. It can also be used to step the model through regular intervals. For example, you might run the model to the first cycle of an interesting transaction, and then step through the transaction, one cycle at a time, using a time breakpoint at each cycle.

· Event Breakpoints

Like time breakpoints, event breakpoints can be used to gain control when some interesting event happens. For example, you might stop when a given bus enable becomes active, and then step through simulation, pausing at each clock edge.

· Source-Line Breakpoints

A source-line breakpoint allows execution to be suspended when a given source line is executed. This is not as straightforward as it would be in a language like C, since a given source line could be executed by a number of processes. Typically, whenever the line is executed by any process, simulation suspends.

· $scope

When referencing nets and registers in a model from the CLI, it is generally necessary to use hierarchical names, just as you would in cross-module references. The $scope system task is a CLI command which changes the command line context. Using this, one can reference nets and registers within a module instance by using their local names instead of their fully qualified names.

· Display

Using the display capability, you can print the values of nets and registers within the model. Typically, you would run the simulation until it hit a breakpoint, display some internal signals, and then continue. The means of displaying internal values varies from simulator to simulator.

· Modify Registers

Just like in a C debugger, you can not only display net and register values, you can modify register values. Question: Why does it make sense to modify registers interactively, but not nets?

· Force-Release

Since you can't, in general, modify nets interactively, it is desirable to have a capability to modify the net drivers interactively. Force allows you to do that, just like the force quasi-continuous assign statement. In essence, you can override existing net drivers with a new, stronger driver for a given net. Using this, you can patch a model dynamically, to try out a possible fix to a problem.

· $showvars

One of the most asked questions is "why does this signal have this value?" For a net, this question is easy to answer. The simulator knows what the drivers are, and what their values are. The system task $showvars is the way it can tell you. This is a system task because it can be used in the model source in many simulator implementations.

· Execution Tracing

Some simulators will display each internal event as it occurs. This can often give you insight into the working of a model, though it is usually too much detail to use for any length of time.

Q1

Given the following module:

module zero3 (out, in, clk);

output out;

input in, clk;

reg s1, s2, s3;

assign out = s1==0 & s2==0 & s3==0;

initial begin

s1 = 0;

s2 = 0;

s3 = 0;

end

always @(posedge clk) begin

s1 <= in;

s2 <= s1;

s3 <= s2;

end

endmodule
1. Write a "$monitor" statement which prints out the value of "s2" every time it changes value, in the format "nnnn: s2 = vvvv", where "nnnn" is the current time and "vvvv" is the value of "s2" in hexadecimal

2. Produce the same output using "$display" with an "always block."

A:

1. $monitor($stime, ": s2 = %h", s2);

2. always @(s2)

$display($stime, ": s2 = %h", s2);

Q2

Given the monitor statement:

$monitor($stime, ": s2 = %h", s2);

for the following module:

module zero3 (out, in, clk);

output out;

input in, clk;

reg s1, s2, s3;

assign out = s1==0 & s2==0 & s3==0;

initial begin

s1 = 0;

s2 = 0;

s3 = 0;

end

always @(posedge clk) begin

s1 <= in;

s2 <= s1;

s3 <= s2;

end

endmodule

Where should the monitor statement be inserted?

Top of Form

[image: image256.wmf]a. before the statement s1 = 0;
[image: image257.wmf]b. after the statement s3 = 0;
[image: image258.wmf]c. before the statement s1 <= in;
[image: image259.wmf]d. after the assign statement
[image: image260.wmf]e. in its own initial block
[image: image261.wmf]f. either a or e
[image: image262.wmf]g. either b or c
[image: image263.wmf]h. none of the above

Bottom of Form

The correct answer is f. The monitor statement should be inserted either before "s1 = 0;" or in its own initial block.

As the design matures, it takes more and more simulation to expose new errors. This is not conducive to interactive debugging. Typically, a simulation model is run on a regression suite of tests (stimulus) which grows during the life of the design project. By the later stages, the regression suite can encompass tests which run for days, weeks, and even months of simulation time. Running such large regression tests is inherently non-interactive. Typically, a large number of processors will be devoted to running the regression tests continuously. Each time a test finishes, its results would be automatically analyzed to see if they were correct (or at least, what was expected for that test), and if the results were incorrect, then it would be flagged for further analysis.

Further analysis often means run the same test over again interactively, waiting for a perhaps long time before it gets to the error. This may be acceptable if you know about when the error occurred. For example, if you know that at cycle 134,512 an improper value was transmitted on a bus, then you can run until somewhere near that before stopping to investigate.

It would obviously be best if you did not have to rerun the offending test. This is where extensive internal model checking can pay big dividends. Ideally, the model stops the simulation and says, "an error ocurred at cycle 153401 because signal busen3 was enabled when it should not have been". If it also dumps out enough of the internal state and local history to tell why the offending signal was wrong, then no further debugging is required. Unfortunately, it is rare that you anticipate the bugs well enough to supply all of the needed information.

An alternative is to simply dump a history of all signal changes into a VCD file (or equivalent) for each regression test. Then, if a test is flagged as being in error, all the information is available, and can be examined with a post-processing viewer. The problem with this approach, of course, is that saving the history files for every regression run would be prohibitive due to disk space requirements. Even saving the complete history of a single regression test could require gigabytes of storage.

A middle ground solution that is often acceptable is to save the model history for a limited period (e.g. the last 10,000 cycles) in a circular buffer. Then, if the results are wrong, you can look at the limited history file and find the problem. This works best if there is enough internal checking to stop the simulation somewhere near where the error occurred. All of the commercial waveform viewers offer this capability.

There is another disadvantage of saving all signal changes in a model, and that is simulation speed is adversely affected. Saving all signal changes can slow down simulation by 10-20%, even if they are not written out to an external file. Consequently, it is somewhat expensive to always save all signal changes, even in a circular buffer that is never written to disk.

A neat trick to get around this problem is to include the $dumpvars (or equivalent) call, but to only execute it under program control. If the model is then checkpointed periodically (using $save), the model can be restarted from the checkpoint with the dump control command line argument turned on.

For example, the checkpoint/restart code could look like this:

 always #100000

 begin

 $save("checkpoint.file");

 if ($test$plusargs("dump")) $dumpvars;

 end
This would allow you to start the last checkpoint file and use "+dump" on the command line.

This system task is not part of the IEEE standard language but it is commonly implemented. It allows the model to check for the existence of a command line argument.

Command line arguments which are model-visible start with a "+". For example,

 VERILOG file1.v file2.v -v libfile +fullvis

The above command has a user-defined command line argument named fullvis. The model could find out if it was included on the command line by using $test$plusargs, as follows:

 if ($test$plusargs("fullvis")) // if +fullvis

 $dumpvars; // dump everything

 else // otherwise

 $monitor($time,,r1,,r2,,r3); // just monitor a few signals
Traditionally, Verilog simulators (i.e. Verilog-XL and VCS) did not incorporate graphical user interfaces. The user interface for these simulators was command-line oriented. This is most appropriate for large-scale, non-interactive simulation which is how most late-stage simulation is characterized.

However, for model development, it is often the case that interactive use is effective, and a graphical interface can enhance the effectiveness. Several commercial products have been created to fill this need. The most popular ones are SignalScan, VirSim, Undertow, and Debussy.

All of these products originated as waveform viewers which read VCD files and displayed waveforms of signals. They were then enhanced to add source display capabilities and then simulation control features. Because these things could be done through the standard PLI, these products are more or less common for the different simulators. That is, you can use one user interface program with several different simulators.

Now there is a rich variety of features available from these products, and new features are being added continually. Some common features are:

· start and control the simulation

· set breakpoints

· display signals both graphically and textually

· display a schematic representation of parts of the model

· trace signal fan-in and fan-out

· display the model hierarchy

· display the signals in each instance

· display the source

This is the system task which allows you to checkpoint a simulation run. $save is not part of the standard language, but most simulator implementations support it or something similar.

The format of the system task is

$save("file_name");

When it is executed, all of the information necessary to restart the simulation at that point is saved into the file whose name is given as an argument.

The format of the saved information is implementation-dependent. The most efficient way to save the model is to simply dump a memory-image, and some simulators do it this way (VCS does this). Verilog-XL dumps the data in its own format, which requires interpretation when restarting. However, from an operational point of view, the only difference is how long it takes to actually dump the data and then read it back in when restarting.

Checkpoint files can be very large - typically they are the same size as the executable memory image of the simulation process. As a result, you would not normally save a lot of checkpoint files. It is common to simply use one, and overwrite it periodically. Another common technique is to alternate between a small number of save files, like this:

 always begin

 #100000 $save("chkpt1");

 #100000 $save("chkpt2");

 end

Exercises:

Q1

Given the following module:

module zero3 (out, in, clk);

output out;

input in, clk;

reg s1, s2, s3;

assign out = s1==0 & s2==0 & s3==0;

initial begin

s1 = 0;

s2 = 0;

s3 = 0;

end

always @(posedge clk) begin

s1 <= in;

s2 <= s1;

s3 <= s2;

end

endmodule

Write a monitoring code fragment which can be added to module zero3to print the value of s2 at the falling clock edge immediately after s2's value has changed.

Answer:

always @(s2)

@(negedge clk)

$display($stime, ": s2 = %h", s2);
end

Q2

Given the following module:

module run3 (out, in, clk);

output out;

input in, clk;

reg [1:0] count;

assign out = count == 3;

initial count = 0;

always @(posedge clk)

case (count)

0:

count <= in;

1:

count <= in ? 2 : 0;

2:

count <= in ? 3 : 0;

3:

count <= in ? 3 : 0;

endcase

endmodule

Write an assertion checking code fragment which can be added to module run3 which prints the following line whenever out is 1, where nnnn is the current time:

nnnn: out = 1

Answer:

 always @(out)

if (out==1)

$display($stime, ": out = %d", out);
or

always wait (out == 1)

$display ($time, ": out = 1");

Q3

Given the following module:
module run3 (out, in, clk);

output out;

input in, clk;

reg [1:0] count;

assign out = count == 3;

initial count = 0;

always @(posedge clk)

case (count)

0:

count <= in;

1:

count <= in ? 2 : 0;

2:

count <= in ? 3 : 0;

3:

count <= in ? 3 : 0;

endcase

endmodule
Write an assertion checking code fragment which can be added to module run3 which stops the simulation if count takes an x value.

Answer:

always @(count)

if (count[0] === 1'bx || count[1] === 1'bx)

$stop;

Q4

Given the following module:

module run3 (out, in, clk);

output out;

input in, clk;

reg [1:0] count;

assign out = count == 3;

initial count = 0;

always @(posedge clk)

case (count)

0:

count <= in;

1:

count <= in ? 2 : 0;

2:

count <= in ? 3 : 0;

3:

count <= in ? 3 : 0;

endcase

endmodule

In the previous screen you wrote assertion checking code fragment which can be added to module run3 which stops the simulation if count takes an x value. Will the following code fragment also produce this result?

always @(count)

if (count === 'bx)

$stop;

Q5

Assume run3 is instantiated from the top-level module test.

module run3 (out, in, clk);

output out;

input in, clk;

reg [1:0] count;

assign out = count == 3;

initial count = 0;

always @(posedge clk)

case (count)

0:

count <= in;

1:

count <= in ? 2 : 0;

2:

count <= in ? 3 : 0;

3:

count <= in ? 3 : 0;

endcase

endmodule

module test;

wire out;

reg in, clk;

run3 r3 (out, in, clk);

initial begin

in = 0;

clk = 0;

forever #5 clk = ~clk;

end

initial begin

#2
in = 1;

repeat (3) @(posedge clk);

in <= 0;

repeat (1) @(posedge clk);

in <= 1;

repeat (4) @(posedge clk) ;

in <= 0;

repeat (2) @(posedge clk);

#1
$finish;

end

endmodule

Write an initial block for module test which causes the model to stop at the 4th rising edge of the clock.

Answer:

 initial #35 $stop;

or

initial begin

repeat (4) @(posedge clk);

$stop;

end
Q6

Assume run3 is instantiated from the top-level module test.

module run3 (out, in, clk);

output out;

input in, clk;

reg [1:0] count;

assign out = count == 3;

initial count = 0;

always @(posedge clk)

case (count)

0:

count <= in;

1:

count <= in ? 2 : 0;

2:

count <= in ? 3 : 0;

3:

count <= in ? 3 : 0;

endcase

endmodule

module test;

wire out;

reg in, clk;

run3 r3 (out, in, clk);

initial begin

in = 0;

clk = 0;

forever #5 clk = ~clk;

end

initial begin

#2
in = 1;

repeat (3) @(posedge clk);

in <= 0;

repeat (1) @(posedge clk);

in <= 1;

repeat (4) @(posedge clk) ;

in <= 0;

repeat (2) @(posedge clk);

#1
$finish;

end

endmodule

Replace the initial block in module test to produce the following sequence for in:

0001011011101111000

Answer:

initial begin : t

integer i;

@(posedge clk);

for (i=0; i<5; i=i+1) begin

in <= 0;

@(posedge clk) ;

in <= 1;

repeat (i) @(posedge clk) ;

end

in <= 0;

repeat (3) @(posedge clk);

#1
$finish;

end

Chapter 9: The Programming Language Interface (PLI)

· Objectives

· Review

· PLI - Programming Language Interface

· Using the PLI

· Step 1: Write the C Routines

· Step 2: Modify Your Verilog Source

· Step 3: Hook Up Your Routines

· a. Create a Data Structure

· b. Link Your Routines

· Getting Control Across the Interface

· Arguments to User-Written Routines

· Data Transfer Across the PLI

· Utility Routines

· TF routines

· ACC routines

· Examples

· tf_getp/putp

· acc_fetch/set_value

· acc_fetch/set_value 4-value

· Check Routine

· Termination Miscs Routine

· Custom Monitor (Value-Change-Link) Routine

· Count the Drivers and Loads

· Modify Gate Delays

· Sparse Memory Data Structure

· Test Language Interpreter

· Exercises

OBJECTIVES

Upon completion of this chapter you will be able to:

· provide input to a Verilog model from a user-written routine through the PLI

· write a C routine to obtain state information from a Verilog model through the PLI

· get structural information about a Verilog model through a PLI routine

· set up a user-written routine to be called through the PLI in response to a given state of the Verilog model

Here are some topics you might want to review before continuing.

· Hierarchical structure

· Modules

· Instances

· Ports
The PLI is a set of data structures and built-in procedures (subroutines) which allow a Verilog model and other procedures, written in some programming language like C, to interact. Some of the things which can be done through this interface are:

· fetch and set

· register and net values

· delays

· parameter values

· respond to events

· find objects in the model

These capabilities have been used to do many things, among them:

· implement user interfaces

· provide custom input features

· provide customized output

· compare the model's operation to a reference model

· back annotate delays

· monitor execution to analyze code coverage

· implement non-Verilog data structures (like a sparse memory)

When people talk about the PLI, they often mix several different things. The objects which are involved are:

· Verilog source

· Verilog simulator (or run-time library)

· C program (or C++ or potentially some other language)

· PLI header - veriuser.h

· simulator-specific data structure

· veriuser.c (Verilog-XL)

· pli.tab (VCS)

· simulator-provided utility routines

In order to use the PLI, you do the following steps.

1. Write the C routines which you would like to use

2. Modify your Verilog source to call your new routines

3. Hook up your routines to the model

a. create the data structure which tells the simulator about your routines

b. link your routines into the executable file for the simulation

The following screens walk through each step using a simple example.

This example is a C routine which will print "Hello World from My Routine".

/* ex_hello.c */

#include

#include "acc_user.h"

int helloWorldFunction ()

{

 io_printf("Hello World from My Routine\n");

}

Note that io_printf is a utility routine which is part of the PLI. It acts just like printf, except that it puts its output both on stdout and the log file, if there is one.

This Verilog module (ex_hello.v) calls the ex_hello.c C routine shown on the previous screen:

/* HelloWorld example */

module ex_hello;

 initial begin

 $hello; // this is a "user-defined system task"

 end

endmodule

The simulator needs some information about the user-defined task or function and also about the C routine[s] which implements it. Thus, you need to create the data structure which tells the simulator about your routines.

For Verilog-XL and VCS, the information communicated is the same, but the method is different. Click each button to learn more about creating data structures for Verilog-XL and VCS simulators.

Verilog-XL:

There is a file called veriuser.c which is part of the Verilog-XL simulator. This file contains a table, called veriusertfs, which must be modified. The compiler in Verilog-XL uses this table to tell it the names and properties of all the user-defined system tasks.

veriuser.c

...

int helloWorldFunction(); /* added */

s_tfcell veriusertfs[] =

{

 (usertask, 0, 0, 0, helloWorldFunction, 0, "$hello"),

 (0) /*** final entry must be 0 ***/

};
There are other lines in the file, but only the ones shown here need to be changed. Note that "usertask" is a defined symbol which is used to distinguish between a user task and a user function. The only fields in the table entry which we need here are the entry point name (helloWorldFunction) and the Verilog source name ($hello).

The different fields in the table entry are:

usertask|userfunction
indicates a task (no return) or a function (returns a value)

data
an integer that will get passed to the routine

checktf
routine which gets called at compile time

sizetf
routine which gets called (at compile time) if it is a userfunction to determine the size of returning data

calltf
routine which gets called when the user task/function is invoked

misctf
routine which gets called at times you can specify

name
the name of the user-defined system task or function

VCS:

Because VCS is a compiler, the compile phase is distinct from the simulation phase. The same information about the user-defined system tasks and functions that is put into veriusertfs for Verilog-XL is simply read from a file. The file, called a .tab file, is just a table, with one entry per line.

hello.tab
$hello call=helloWorldFunction

In general, the table entries look like this:

$ [call=] [check=] [data=n] [misc=] [size=n]

The fields are the same as described for the veriusertfs table, except that the size entry is a number, not a routine to return the number. Note that none of these routines get called at compile time, so they do not have to be linked with the compiler. The check routine is called before simulation begins at time 0, but this is at simulation time, not compile time.

When the compiler is run, the table file is provided as a command-line argument.

VCS ex_hello.v -P hello.tab

Finally, you need to link your routines into the executable file for the simulation. This step is also simulator-dependent.

Verilog-XL:

Because Verilog-XL is an interpreter, it has its compiler and its simulator all together in one executable file. Consequently, the hello.o object file must be linked in, along with the new veriuser.o. Cadence has instructions on how to perform this link (you can run a program they supply called vconfig which will produce a sample link command). It is usually best to run vconfig once, put the output into a make file, and then modify the make file as needed for your routines.

The compile/link command would look like this:

 cc -o verilog_custom \

 $(VERILOG_HOME)/verilog/lib/vlog.o \

 $(VERILOG_HOME)/verilog/lib/omnitasks.o \

 $(VERILOG_HOME)/verilog/lib/env_vxl.o \

 $(VERILOG_HOME)/verilog/lib/cw_vlog.o \

 $(VERILOG_HOME)/verilog/lib/shm_vlog.o \

 hello_veriuser.c \

 hello.c \

 $(VERILOG_HOME)/virtuos9404/lib/virtuos.a \

 -I$(VERILOG_HOME)/verilog/include \

 -L$(VERILOG_HOME)/verilog/lib \

 -lsdfa -lsdf \

 $(VERILOG_HOME)/liib/libcman.a \

 -L/usr/openwin/lib \

 -lxt -lx11 -lvoids -lm \

 $(VERILOG_HOME)/lib/libansi.a \

 -L$(VERILOG_HOME)/cxx-3.0.1/External/lib \

 -lc

The important point about this is that you have to link all of Verilog-XL with your routines. Then, you run the simulation and Verilog-XL can make the connection.

VCS:

Linking with VCS is different, because in the normal course of its operation it must link the object produced by the compiler with the run-time library. In essence, you simply add the object for your new routines to this link command and it will include them appropriately.

Because the link is done automatically by the VCS command, all you need to do is include the object files with the Verilog source files in the VCS command.

 VCS ex_hello.v ex_hello.o -P hello.tab -o hello

This would produce an object file (hello) which can be run.

A user-written routine needs to be called at an appropriate time during the simulation. The PLI defines a set of times at which a user-written routine may be called.

1. at compile time

2. when the user-defined task/function is called in the Verilog source

3. at miscellaneous times:

end of simulation

change of value of an argument

end of a time step

simulation event scheduled by tf_setdelay

execution of $stop

execution of $save

execution of $restart

The times at which a user-written routine may be called are identified by the table entries in veriusertfs (for Verilog-XL) or in the .tab file (for VCS). The routine name is given for that type of call. For instance, a table entry might indicate that the user-defined system task had the following associated routines:

[image: image264.png]
Verilog-XL example:

The veriuser.c (Verilog-XL) file would look like this:

int checkArgs(); /* added */

int myTask(); /* added */

int myTaskCleanup(); /* added */

s_tfcell veriusertfs[] =

{

 (usertask, 0, checkArgs, 0, myTask, myTaskCleanup, "$mytask"),

 (0) /*** final entry must be 0 ***/

};
VCS example:

The .tab file (VCS) for the same thing would look like this:

$mytask check=checkArgs call=myTask misc=myTaskCleanup

Note that there is only one entry point, myTaskCleanup, for all of the different misc type of events. An argument to myTaskCleanup will be provided which identifies the reason for the call. So, if the misc routine was supposed to be called for three different types of events, e.g. end of a time step, expiration of a delay, and end of simulation, then it must test the reason argument each time it is called to determine which event caused the current call.

There are a variety of reasons why a user-written routine is called. The reason argument is always the second argument to the routine when it is called (the data field from the table is the first).

The possible reasons are:

 reason_calltf

 user-defined task/function was called

 reason_checktf

 user-defined task/function was scanned during compilation

 reason_sizetf

 user-defined function was scanned during compilation

 reason_endofcompile

 compilation finished, simulation about to start

 reason_paramvc

 change of value of a user-defined system task/function argument

 reason_paramdrc

 change of value of a driver of a user-defined system task/function argument

 reason_synch

 end of a time step enabled by tf_synchronize()

 reason_rosynch

 end of a time step enabled by tf_rosynchronize()

 reason_reactivate

 event scheduled by tf_setdelay()

 reason_force

 execution of a quasi-continuous assign on any net or register

 reason_release

 release of a quasi-continuous assign on any net or register

 reason_disable

 execution of a disable statement

 reason_interactive

 execution of $stop

 reason_scope

 execution of $scope

 reason_startofsave

 start of execution of $save

 reason_save

 completion of execution of $save

 reason_restart

 execution of $restart

 reason_reset

 start of execution of $reset

 reason_endofreset

 completion of execution of $reset

 reason_finish

 execution of $finish

Note that there is only one entry point, myTaskCleanup, for all of the different misc type of events. An argument to myTaskCleanup will be provided which identifies the reason for the call. So, if the misc routine was supposed to be called for three different types of events, e.g. end of a time step, expiration of a delay, and end of simulation, then it must test the reason argument each time it is called to determine which event caused the current call.

The call, check, and size routines are called with two arguments, data and reason. The misc routine is called with three arguments, data, reason, and paramvc.

For example, the headers of our example routines would look like this:

checkArgs (int data, int reason);

myTask (int data, int reason);

myTaskCleanup (int data, int reason, int paramvc);

where:

data

The integer value found in the table entry (veriusertfs or the .tab file).

reason

The reason as given in the table. Notice that this is only really useful for the misc routine, since it is always the same for the check, size, and call routines. The reason that it is an argument to all of the routines is so you can have a single routine field all the different types of calls.

paramvc

The argument number of the argument whose value changed, causing this call. This is only used if the reason was reason_paramvc.

Writing user routines for use with Verilog models would not be interesting unless data could be passed back and forth between the model and the user routines. This is done by means of utility routines, which are part of the PLI.

Data can be passed as:

· unsigned integers

· reals

· vectors up to 32 bits

· vectors up to 64 bits

· vectors over 64 bits

· 4-value scalars or vectors

· 120-value scalars

· strings

The utility routines which are provided allow you to obtain data from the model and let you modify data in the model. There are too many utility routines (more than 200 at last count) to describe them all here. We will describe some of the most common, and use some in examples. You should consult the Verilog-1364 LRM for complete descriptions.

In general, there are two classes of utility routines:

1. TF routines
Routines whose names begin with "tf_". These routines are used when the signal (net or register) to be read or written (register) has been identified in the system task or function's parameter list.

2. ACC routines
Routines whose names begin with "acc_". These routines can be used to access arbitrary data values within the model.

There is history involved in the two sets of routines. The TF routines were the first implemented, and are more limited than the ACC routines. Consequently, they are simpler and more efficient. The ACC routines, on the other hand, can do many more things than the TF routines can.

The TF routines are so-called because they are used with user-defined tasks and functions. These were the original utility routines in the PLI, and as such are considerably more limited in functionality than the later ACC routines.

In general, the TF routines allow you to get and put the values of arguments to the user-defined task or function. The utility routines can only manipulate registers or nets which appear in the argument list, and no others.

Some of the TF routines are:

io_printf (<printf-type arguments>)

A print routine which prints to both stdout and the log file (if any). This is one of a few utility routines that does not begin with tf_ or acc_. It is usually classified as a TF routine.

tf_dofinish()

Stop the simulation.

tf_error (string)

Causes an error message to be printed. Does not stop the simulation.

tf_evaluatep (narg)

Returns the value of the argument in a field of the s_tfexprinfo structure. This field allows 4-value results to be obtained. Used with tf_exprinfo.

tf_exprinfo (narg, exprinfo_p)

Returns a pointer to a structure containing information about the argument to the user task/function. This structure contains information about type, length, and value.

tf_getp (narg)

A function that returns the value of the nth parameter of the user-defined task. The value returned is 2-value (x and z values are returned as 0) and is 32 bits.

tf_getlongp (narg, hival)

Returns two words, so it can retrieve the value of a vector up to 64 bits. The low-order word is the function value, and the high-order word is returned in hival. Like tf_getp, the value returned is 2-value.

tf_gettime()

Returns the simulation time as a 32-bit quantity.

tf_nodeinfo (narg, nodeinfo_p)

Returns a pointer to a structure containing information about the argument to the user task/function. Like the structure for tf_exprinfo, this structure contains information about type, length, and value. This can only be used for arguments which are writable, that is, registers.

tf_nump ()

Return the number of parameters given to the user-defined task or function.

tf_propagatep (narg)

This causes a value put into the value field of the structure returned by tf_exprinfo to be written back to the argument associated with it. All appropriate propagations are then performed. So, for example, if there was an @(sig) waiting for a change on sig, tf_propagate would change the value of sig and then cause the @ to be triggered.

tf_putp (narg, new)

Change the nth parameter to the value given by new.

tf_putlongp (narg, newlo, newhigh)

Change the nth parameter to the value given by {newhi,newlo}. The new value is 2-value (no x or z).

tf_warning (string)

Print a warning message.

The ACC routines are so-called because they are used to access arbitrary objects in the model. These were later additions to the PLI, and are considerably more powerful than the older TF routines.

In general, the ACC routines allow you to get and put the values of objects in the model identified by "handles". These utility routines can manipulate any object in the model for which a handle can be obtained.

Handles can be obtained from a variety of sources, like a hierarchical name. One of the more useful ways to obtain a handle is by means of the "acc_next_" functions. If you know one handle, you can find the "next" one in a list by means of these routines. For instance, if you know the handle of a port, you can get the handle of the "next" port. Giving a next routine a null handle as the current object will cause it to return the first object in its list.

Some of the ACC routines are:

acc_fetch_fullname (net)

Returns the full hierarchical name of the object.

acc_fetch_name (handle)

Returns the name of the given object.

acc_fetch_size (handle)

Returns the size of the object in number of bits.

acc_fetch_tfarg (narg)

Function returns the value of the nth parameter to the user-defined task.

acc_fetch_type (handle)

Returns the type of the object. The return value is an int.

acc_fetch_type_str (arg1type))

Returns the type as a string. The argument is the type as returned by acc_fetch_type.

acc_fetch_value (handle, formatstring, newValue_p)

Returns the logic or strength value of the object. The result is returned either as a string or in a structure, depending on the format string.

acc_handle_by_name (name, scope)

Returns a handle (32-bit quantity) to the object whose name is "name". The scope parameter is a handle to a scope (module instance, task, function, or named block). A null scope handle means the name is a fully-qualified hierarchical name.

acc_handle_object (name)

Function returns a handle to the named object. The name is either fully-qualified or relative, starting at the current PLI scope.

acc_handle_tfarg (narg)

Returns the handle of the nth argument to the user-defined task/function.

acc_next_driver (netHandle, driverHandle)

Returns a handle to the next driver for this net. All the drivers of each net are ordered. The next driver is determined by the driver whose handle is given as the second argument.

acc_next_load (netHandle, loadHandle)

Returns a handle to the next load on this net (the fan-out). All the loads on each net are ordered. The next load is determined by the load whose handle is given as the second argument.

acc_next_net (moduleHandle, netHandle)

Returns a handle to the next net in the module instance. All the nets in a module instance are ordered. The next net is determined by the net whose handle is given as the second argument.

acc_set_value (anIntHandle, &newValue, &delay)

Set the value of the object designated by the handle to the value contained in the given structure. The delay indicates a delay before the assignment is to take place.

acc_vcl_add (handle, callbackFunc, ndata, vcl_flag)

Adds a callback to the indicated object (either a register or net). The callback function is called whenever the object's value changes. "ndata" is arbitrary user-defined data passed to the callback routine. "vcl_flag" is a flag which indicates which type of change to be called back on.

This is only a small sampling of the ACC routines, but it includes some of the most useful. Unfortunately, there is no substitute for consulting the reference manual for the definitions of the various ACC routines.

Examples:

tf_getp/putp
This is a user-defined task which takes two parameters, a register and a value. It changes the register value to the given value, using the tf_ routines tf_getp and tf_putp.

This example is a user-defined task which, when called, will set a given register to a given value. Both the register and the value are given as parameters to the system task.

The utility routines it uses in the C code are:

tf_getp(narg)
A function that returns the value of the nth parameter of the user-defined task. The value returned is 2-value (x and z values are returned as 0).

tf_putp(narg, new)
Change the nth parameter to the value given by new. If narg is 0, the function value is returned.

io_printf ("In my_tf: old=%d, new=%d\n", old, new)
A print routine which prints to both stdout and the log file (if any).

Verilog source:

/* ex2_tf.v */

module ex2_tf;

 integer anInt;

 initial begin

 $monitor ("time=%0t, anInt", $time, anInt);

 #1 anInt = 1234;

 #1 $my_tf_call (anInt, 5678);

 #1 anInt = 0;

 end

endmodule /* ex2_tf */
PLI table entry:

/* ex2_tf.tab */

$my_tf_call call=my_tf

User-written C-code:

/* ex2_tf.c */

#include "acc_user.h"

#include "vcsuser.h"

int my_tf ()

{

 int old;

 int new;

 old = tf_getp (1); // gets the first parameter's value

 new = tf_getp (2); // gets the second parameter's value

 io_printf ("In my_tf: old=%d, new=%d\n", old, new);

 tf_putp (1, new); // changes the first parameter's value

 return 0;

}

Results:

time=0, anInt x

time=1, anInt 1234

In my_tf: old=1234, new=5678

time=2, anInt 5678

time=3, anInt 0

acc_fetch/set_value
This is the same example but the user-defined task takes only one argument, the new value, and it modifies a fixed register in the Verilog model. It does this using the acc_ routines acc_fetch_value and acc_set_value, as well as acc_handle_by_name.

This is the same as the tf_getp/tf_putp example, except that the system task will not take the register to be modified as a parameter, but it will always modify the register named "anInt".

New utility routines used:

acc_fetch_tfarg(narg)
Function returns the value of the nth parameter to the user-defined task.

acc_handle_by_name(name, scope)
Returns a handle (32-bit quantity) to the object whose name is "name". The scope parameter is a handle to a scope (module instance, task, function, or named block). A null scope handle means the name is a fully-qualified hierarchical name.

acc_set_value (anIntHandle, &newValue, &delay)
Set the value of the object designated by the handle to the value contained in the given structure. The delay indicates a delay before the assignment is to take place.

Verilog source:

/* ex4_acc.v */

module ex4_acc;

 integer anInt;

 initial begin

 $monitor ("time=%0t, anInt", $time, anInt);

 #1 anInt = 1234;

 #1 $set_anInt (5678);

 #1 anInt = 0;

 end

endmodule /* ex4_acc */

PLI table entry:

* ex4_acc.tab */

$set_anInt call=set_anInt acc+=rw:%TASK

The "acc+=rw:%TASK" entry on the table line indicates to VCS that this task needs read and write privileges for all registers in it.

User-written C-code:

/* ex4_acc.c */

#include "acc_user.h"

#include "vcsuser.h"

int set_anInt ()

{

 int new;

 handle anIntHandle;

 static s_setval_delay delay={accNoDelay};

 s_setval_value newValue;

 delay.model = accNoDelay;

 newValue.format = accIntVal;

 new = acc_fetch_tfarg (1)

 anIntHandle = acc_handle_by_name ("ex4_acc.anInt", 0);

 io_printf ("In my_acc: new=%d\n", new);

 newValue.value.integer = new;

 acc_set_value (anIntHandle, &newValue, &delay);

 return 0;

}

Results:

time=0, anInt x

time=1, anInt 1234

In my_acc: new=5678

time=2, anInt 5678

time=3, anInt 0

acc_fetch/set_value 4-value
This again sets a fixed register to a value, but this time the register is 100 bits long, the value is 4-value, and only 32 bits of the register are set on each call to the user-defined task.

This example is similar to the previous fetch/set example. The register which is to be modified is named "longReg", and it is a vector of arbitrary bit width. The user-defined task takes two parameters, a value and a word number. The word number (32-bit words) is used to decide which bits of longReg to update with the value.

New utility routines used:

acc_handle_object ("longReg")
Function returns a handle to the named object. The name is either fully-qualified or relative, starting at the current PLI scope.

acc_fetch_size (longRegHandle)
Returns the size of the object in number of bits.

acc_fetch_value (longRegHandle, "%%", &newValue)
Returns the logic or strength value of the object. The result is returned either as a string or, as in this case, in a structure.

tf_warning ("word parameter is out of range!")
Print a warning message

Verilog source:

/* ex5_acc4.v */

module ex5_acc4;

 reg [99:0] longReg;

 initial begin

 $monitor ("time=%0t, longReg=%x", $time, longReg);

 #1 longReg = 100'h11223344556677889900;

 #1 $set_longReg (32'h11111111, 1);

 #1 $set_longReg (32'h22222222, 2); // longReg not

 #1 $set_longReg (-1, 3);

 #1 $set_longReg (-1, 4);

 #1 $set_longReg (-1, 5); // ERROR - out of range

 #1 longReg = 0;

 end

endmodule

PLI table entry:

/* ex5_acc4.tab */

$set_longReg call=set_longReg acc+=rw:%TASK

The "acc+=rw:%TASK" entry on the table line indicates to VCS that this task needs read and write privileges for all registers in it.

User-written C-code:

/* ex5_acc4.c */

#include "acc_user.h"

#include "vcsuser.h"

/* Sets a word of a signal to a specific value */

int set_longReg ()

{

 int new; /* New value to process */

 int word; /* Which word to set */

 static s_setval_delay delay;

 s_acc_value newValue;

 handle longRegHandle;

 int words;

 delay.model = accNoDelay;

 new = acc_fetch_tfarg (1);

 word = acc_fetch_tfarg (2);

 io_printf ("In my_acc: new=0x%x, word=%d\n", new, word);

 longRegHandle = acc_handle_object ("longReg");

 words = ((acc_fetch_size (longRegHandle) -1) / 32) + 1;

 if (word > words) {

 tf_warning ("word parameter is out of range!");

 return 1;

 }

 word--;

 newValue.format = accVectorVal;

 newValue.value.vector = (p_acc_vecval)malloc(words*sizeof(s_acc_vecval));

 acc_fetch_value (longRegHandle, "%%", &newValue);

 /* If new is -1, then set word to unknown */

 if (-1 == new) {

 newValue.value.vector[word].aval = 0xffffffff;

 newValue.value.vector[word].bval = 0xffffffff;

 } else {

 newValue.value.vector[word].aval = new;

 newValue.value.vector[word].bval = 0x0;

 }

 acc_set_value (longRegHandle, &newValue, &delay);

 return 0;

}

This time the handle is obtained by acc_handle_object. The size is obtained by acc_fetch_size, and the value is set with acc_set_value as before

Results:

time=0, longReg=xxxxxxxxxxxxxxxxxxxxxxxxx

time=1, longReg=0000011223344556677889900

In my_acc: new=0x11111111, word=1

time=2, longReg=0000011223344556611111111

In my_acc: new=0x22222222, word=2

time=3, longReg=0000011222222222211111111

In my_acc: new=0xffffffff, word=3

time=4, longReg=0xxxxxxxx2222222211111111

In my_acc: new=0xffffffff, word=4

time=5, longReg=xxxxxxxxx2222222211111111

In my_acc: new=0xffffffff, word=5

Warning: word parameter is out of range!

 From $set_longReg at time 6 in file ex5_acc4.v line 11

time=7, longReg=0000000000000000000000000

Check Routine
Using the fetch/set 4-value example above, this adds a check routine to it. The check routine can then screen out any erroneous calls before simulation starts.

This example is an addition to the previous example (fetch/set 4-value). We add a check routine so that the bad call could be caught at compile time (or at least before simulation starts) instead of run time.

To do this, there are no changes to the Verilog source, and no changes to the set_longReg routine. All that is necessary is to include a check= field in the PLI table, and add the check routine.

Utility routines used:

acc_fetch_type (acc_handle_tfarg(1))
Returns the type of the object. The return value is an int.

acc_fetch_type_str (arg1type))
Returns the type as a string.

tf_error ("word parameter is out of range!")
Causes an error message to be printed. Does not stop the simulation.

tf_dofinish()
Stop the simulation

Verilog source:

/* ex5_acc4.v */

module ex5_acc4;

 reg [99:0] longReg;

 initial begin

 $monitor ("time=%0t, longReg=%x", $time, longReg);

 #1 longReg = 100'h11223344556677889900;

 #1 $set_longReg (32'h11111111, 1);

 #1 $set_longReg (32'h22222222, 2); // longReg not

 #1 $set_longReg (-1, 3);

 #1 $set_longReg (-1, 4);

 #1 $set_longReg (-1, 5); // ERROR - out of range

 #1 longReg = 0;

 end

endmodule

PLI table entry:

/* ex6_check.tab */

$set_longReg call=set_longReg check=check_longReg acc+=rw:%TASK

User-written C-code:

int check_longReg ()

{

 int arg1type = acc_fetch_type (acc_handle_tfarg(1));

 int word = acc_fetch_tfarg (2);

 handle longRegHandle = acc_handle_object ("longReg");

 int words = ((acc_fetch_size (longRegHandle)-1)/32)+1;

 switch (arg1type) {

 case accNet: /* Argument is a net/wire */

 case accNetBit: /* one bit of a net/wire */

 /* More */

 break;

 default:

 tf_error ("parameter 1 is wrong type=%s,

 acc_fetch_type_str (arg1type));

 }

 if (word > words) {

 tf_error ("word parameter is out of range!");

 tf_dofinish();

 }

}

This routine would be added to the existing .c file, or it could be compiled separately. Note the call to tf_dofinish prevents simulation in the case of an error.

Results:

Error: word parameter is out of range!

 From $set_longReg at time 0 in file ex6_check.v line 11:

Termination Miscs Routine
This example is a user-defined routine which only gets called when simulation finishes. It then allows interaction with the user.

Here the user-defined routine is just a place-holder - there is no call= entry point. The C routine my_abort is to be called at the end of simulation, at which time it implements a small command loop.

To do this, we use the misc= field in the PLI table. Then, we write the C routine. Note that the user-defined routine must still appear in the Verilog source, even though it does nothing when executed (and, in fact, does not need to be executed).

Verilog source:

/* ex12_reason.v */

module ex12_reason;

 reg [31:0]Areg;

 initial begin

 $my_abort;

 $monitor ("Areg = %d", Areg);

 #1 Areg = 1;

 #1 Areg = 2;

 $finish;

 end

endmodule /* ex12_reason */

PLI table entry:

/* ex12_reason.tab */

$my_abort misc=my_abort acc+=rw:%TASK

User-written C-code:

/* ex12_reason.c */

#include "acc_user.h"

#include "vcsuser.h"

#include <stdio.h>

int my_abort (int data, int reason)

{

 int request;

 if (reason_finish != reason) { return; }

 io_printf ("Welcome to my abort routine. (limited)\n\n");

 io_printf ("Legal commands are as follows:\n");

 io_printf ("\t1 - Get current value of Areg as an integer.\n");

 io_printf ("\t0 - exit.\n\n");

 while (1) {

 io_printf ("What is your command? ");

 scanf ("%d", &request);

 io_printf ("\n");

 switch (request) {

 case 1 :

 io_printf ("\t The value of Areg is %s.\n",

 acc_fetch_value (acc_handle_object ("Areg"), "%d", 0));

 break;

 default : return;

 }

 }

 return 0;

}

This routine could be added to the existing .c file, or it could be compiled separately.

Results:

Areg = x

Areg = 1

$finish at simulation time 2

Welcome to my abort routine. (limited)

Legal commands are as follows:

 1 - Get current value of Areg as an integer.

 0 - exit.

What is your command? 1

 The value of Areg is 2.

What is your command? 0

Custom Monitor
This user-defined routine implements a customized monitor using a Value-Change-Link (VCL) routine which gets called when signals change. The arguments to $my_monitor are monitored, but only the ones that change are printed.

The user-defined routine is $my_monitor. It takes an arbitrary number of arguments, and it monitors them for value changes, using acc_vcl_add. Each time one of the arguments changes value, the specified routine (callBackFunc) gets called.

New utility routines used:

acc_vcl_add (argHandle, callbackFunc, numSig, vcl_verilog_logic)
Adds a callback to the object (either a register or net) indicated by "argHandle". The callback function (callbackFunction) is called whenever the object's value changes. "numSig" is arbitrary user-defined data passed to the callback routine.

tf_gettime()
Returns the simulation time as a 32-bit quantity.

acc_fetch_name(sigArray[(int)vc_record->user_data])
Returns the name of the given object.

Verilog source:

/* ex7_vcl.v */

module ex7_vcl;

 integer Aint;

 reg [9:0] Breg;

 wire [9:0] Cwire = Aint & Breg;

 initial begin

 $my_monitor (Aint);

 #1 Aint = 1;

 #1 Breg = 1001;

 $my_monitor (Breg);

 #50 Aint = 3;

 #50 Breg = 1003;

 $my_monitor (Cwire);

 #1 Aint = 4;

 #1 Breg = 1004;

 end

endmodule

PLI table entry:

/* ex7_vcl.tab */

$my_monitor call=my_monitor acc+=callback:%TASK

Notice the use of "acc+=callback:%TASK". This is VCS-specific, and would be unnecessary with Verilog-XL.

User-written C-code:

/* ex7_vcl.c */

#include "acc_user.h"

#include "vcsuser.h"

#include <assert.h>

#include <stdio.h>

#define MAX_SIG 10

handle sigArray[MAX_SIG]; /* Space - a pretty small limit */

int numSig=0;

void callbackFunc (p_vc_record, vc_record);

void my_monitor ()

{

 handle argHandle = acc_handle_tfarg(1);

 assert (numSig < MAX_SIG);

 acc_vcl_add (argHandle, callbackFunc, numSig, vcl_verilog_logic);

 sigArray[numSig] = argHandle;

 numSig++;

}

void callbackFunc (p_vc_record, vc_record)

{

 int i;

 io_printf (

 "Time is %d. Signal #%d (%s) changed to value %s\n",

 tf_gettime(),

 vc_record->user_data,

 acc_fetch_name(sigArray[(int)vc_record->user_data]),

 acc_fetch_value (sigArray[(int)vc_record->user_data],"%d", null));

}

The my_monitor routine sets up the call-backs, and the callBackFunc routine fields them.

Results:

Time is 1. signal #0 (Aint) changed to value 1

Time is 52. signal #0 (Aint) changed to value 3

Time is 102. signal #1 (Breg) changed to value 1003

Time is 103. signal #0 (Aint) changed to value 4

Time is 103. signal #2 (Cwire) changed to value 0

Time is 104. signal #1 (Breg) changed to value 1004

Time is 104. signal #2 (Cwire) changed to value 4

Count the Drivers and Loads
This example counts the total number of drivers and loads in a module. It accomplishes this by using several "acc_next_" routines.

The point of this example is to show how a user routine can inspect the structure of a model. This routine (power) gets called with a module instance name as the argument, and it uses that to find out how many drivers and how many loads each net in the module has.

New utility routines used:

acc_next_net (module, net)
Returns a handle to the next net in the module instance. All the nets in the module are ordered (somewhat arbitrarily), so "next" means "the one after this one", where "this one" is the one whose handle is the second parameter.

acc_next_driver (net, driver)
Returns a handle to the next driver for this net. Again, the drivers of each net are ordered.

acc_next_load (net, load)
Returns the next load on this net. This is the fan-out of the net.

acc_fetch_fullname (net)
Returns the full hierarchical name of the object.

Verilog source:

/* ex8_next.v */

module ex8_next;

 reg [1:0] A;

 reg [1:0] B;

 wire [2:0] result;

 add2 a (A[1], A[0], B[1], B[0], result[2], result[1], result[0]);

 initial begin

 $power (a);

 $monitor ("time=%0t,A=%b,B=%b,result=%b",$time,A,B,result);

 #100 A=0; B=0;

 #100 A=1; B=0;

 #100 A=2; B=0;

 #100 A=3; B=0;

 #100 A=3; B=1;

 #100 A=3; B=2;

 #100 A=3; B=3;

 end

endmodule /* ex8_next */

module add2 (A1, A0, B1, B0, C2, C1, C0);

 // a 2-bit adder

 input A1, A0, B1, B0;

 output C2, C1, C0;

 wire tmp1, tmp2;

 wire tmp3, tmp4, tmp5, tmp6, tmp7;

 xor (C0, A0, B0);

 and (tmp1, A0, B0);

 xor (tmp2, A1, B1);

 xor (C1, tmp1, tmp2);

 and (tmp3, A1, B1);

 and (tmp4, A0, B0);

 and (tmp5, tmp4, A1);

 and (tmp6, tmp4, B1);

 or (tmp7, tmp3, tmp5);

 or (C2, tmp7, tmp4);

endmodule /* add2 */

PLI table entry:

$power call=power
User-written C-code:

#include "acc_user.h"

#include "vcsuser.h"

#include <assert.h>

#include <stdio.h>

int power ()

{

 handle module = acc_handle_tfarg(1);

 handle net = null;

 handle driver, load;

 int net_number = 0;

 int grand_num_driver = 0;

 int grand_num_load = 0;

 int num_driver;

 int num_load;

 while (net = acc_next_net (module, net)) {

 net_number++;

 driver = null;

 num_driver = 0;

 while (driver=acc_next_driver(net,driver)) { num_driver++;}

 grand_num_driver = grand_num_driver + num_driver;

 load = null;

 num_load = 0;

 while (load = acc_next_load (net, load)) {num_load++;}

 grand_num_load = grand_num_load + num_load;

 io_printf ("net #%d, %s, has %d drives and %d loads\n",

 net_number, acc_fetch_fullname (net),

 num_driver, num_load);

 }

 io_printf ("Grand total of %d drivers and %d loads\n",

 grand_num_driver, grand_num_load);

}

This uses three acc_next_ routines, acc_next_net, acc_next_driver, and acc_next_load. Each call returns the next one, using the previous result as an argument.

Results:

net #1, ex8_next.a.tmp7, has 1 drives and 1 loads

net #2, ex8_next.a.tmp6, has 1 drives and 0 loads

net #3, ex8_next.a.tmp5, has 1 drives and 1 loads

net #4, ex8_next.a.tmp4, has 1 drives and 3 loads

net #5, ex8_next.a.tmp3, has 1 drives and 1 loads

net #6, ex8_next.a.tmp2, has 1 drives and 1 loads

net #7, ex8_next.a.tmp1, has 1 drives and 1 loads

net #8, ex8_next.a.C0, has 1 drives and 0 loads

net #9, ex8_next.a.C1, has 1 drives and 0 loads

net #10, ex8_next.a.C2, has 1 drives and 0 loads

net #11, ex8_next.a.B0, has 0 drives and 3 loads

net #12, ex8_next.a.B1, has 0 drives and 3 loads

net #13, ex8_next.a.A0, has 0 drives and 3 loads

net #14, ex8_next.a.A1, has 0 drives and 3 loads

Grand total of 10 drivers and 20 loads

time=0, A=xx, B=xx, result=xxx

time=100, A=00, B=00, result=000

time=200, A=01, B=00, result=001

time=300, A=10, B=00, result=010

time=400, A=11, B=00, result=011

time=500, A=11, B=01, result=100

time=600, A=11, B=10, result=101

time=700, A=11, B=11, result=110
Change Delays (Modify Gate delays)
This example changes the delays for particular gates in the Verilog model to the values contained in the C routine.

This example shows how to change the delays in the Verilog source. This is the way back-annotation usually works with Verilog. In this case, the new delays are simply compiled into the C routine. It would be more realistic to read them from a file (typically a file in SDF format).

New utility routines used:

acc_configure (accPathDelayCount, "2")
Sets configuration information for a variety of other acc routines. In this case, it sets those routines having to do with delays to use 2 delay values, as opposed to 1, 3, 6, or 12.

acc_fetch_delays (objHandle, &rise, &fall)
Gets the rise and fall delays for the specified object.

acc_replace_delays (objHandle, d[i].rise, d[i].fall)
Changes the rise and fall delays for the object.

Verilog source:

/* ex9_delay.v */

module ex9_delay;

 reg [1:0] A;

 reg [1:0] B;

 wire [2:0] result;

 add2 a (A[1], A[0], B[1], B[0], result[2], result[1], result[0]);

 initial begin

 $monitor ("time=%0t, A=%b, B=%b, result=%b",

 $time, A, B, result);

 #100 A=0; B=0;

 #100 A=3; B=0;

 #100 A=0; B=3;

 #100 A=3; B=3;

 #100 $change_delays;

 #100 A=0; B=0;

 #100 A=3; B=0;

 #100 A=0; B=3;

 #100 A=3; B=3;

 #100 $finish;

 end

endmodule /* ex9_delay */

module add2 (A1, A0, B1, B0, C2, C1, C0);

 input A1, A0, B1, B0;

 output C2, C1, C0;

 wire tmp1, tmp2;

 wire tmp3, tmp4, tmp5, tmp6, tmp7;

 xor #(1) x1 (C0, A0, B0);

 and #(1,2) a1 (tmp1, A0, B0);

 xor #(1,2) x2 (tmp2, A1, B1);

 xor #(1) x3 (C1, tmp1, tmp2);

 and #(1) a2 (tmp3, A1, B1);

 and #(1) a3 (tmp4, A0, B0);

 and #(1) a4 (tmp5, tmp4, A1);

 and #(1) a5 (tmp6, tmp4, B1);

 or #(1) x4 (tmp7, tmp3, tmp5);

 or #(1) x5 (C2, tmp7, tmp6);

endmodule /* add2 */

PLI table entry:

/* ex9_delay.tab */

$change_delays call=change_delays acc+=gate_backannotation:add2

The use of "acc+=gate_backannotation:add2" allows module add2 to be back annotated. This is VCS-specific, and would be unnecessary with Verilog-XL

User-written C-code:

/* ex9_delay.c */

#include "acc_user.h"

#include "vcsuser.h"

#include <stdio.h>

typedef struct DELAY {

 char *netName;

 double rise;

 double fall;

} delay;

delay d[]= {

 { "ex9_delay.a.x1", 11.0, 12.0 },

 { "ex9_delay.a.a1", 13.0, 14.0 },

 { "ex9_delay.a.x2", 15.0, 16.0 }

};

int numD = (sizeof (d)/sizeof(delay));

int change_delays ()

{

 handle objHandle;

 double rise, fall;

 int i;

 printf ("\n");

 acc_configure (accPathDelayCount, "2");

 for (i=0; i>numD; i++) {

 objHandle = acc_handle_object (d[i].netName);

 acc_fetch_delays (objHandle, &rise, &fall);

 printf (" %s- rise=%lf, fall=%lf\n",

 acc_fetch_fullname (objHandle), rise, fall);

 acc_replace_delays (objHandle, d[i].rise, d[i].fall);

 acc_fetch_delays (objHandle, &rise, &fall);

 printf (" %s- rise=%lf, fall=%lf\n\n",

 acc_fetch_fullname (objHandle), rise, fall);

 }

}
Results:

time=0, A=xx, B=xx, result=xxx

time=100, A=00, B=00, result=xxx

time=101, A=00, B=00, result=xx0

time=103, A=00, B=00, result=000

time=200, A=11, B=00, result=000

time=201, A=11, B=00, result=001

time=202, A=11, B=00, result=011

time=300, A=00, B=11, result=011

time=400, A=11, B=11, result=011

time=401, A=11, B=11, result=010

time=402, A=11, B=11, result=000

time=403, A=11, B=11, result=110

 ex9_delay.a.x1- rise=1.000000, fall=1.000000

 ex9_delay.a.x1- rise=11.000000, fall=12.000000

 ex9_delay.a.a1- rise=1.000000, fall=2.000000

 ex9_delay.a.a1- rise=13.000000, fall=14.000000

 ex9_delay.a.x2- rise=1.000000, fall=2.000000

 ex9_delay.a.x2- rise=15.000000, fall=16.000000

time=600, A=00, B=00, result=110

time=603, A=00, B=00, result=010

time=615, A=00, B=00, result=000

time=700, A=11, B=00, result=000

time=711, A=11, B=00, result=001

time=716, A=11, B=00, result=011

time=800, A=00, B=11, result=011

time=900, A=11, B=11, result=011

time=903, A=11, B=11, result=111

time=912, A=11, B=11, result=110

time=914, A=11, B=11, result=100

time=917, A=11, B=11, result=110

Sparse Memory Model
Implement a sparse memory. There are two user-defined tasks, $set_memory and $get_memory. The memory is word addressable.

This is an implementation of a sparse memory data structure. There is a user-defined system task, $set_memory, and a user-defined system function, $get_memory. The address is 32 bits and the data is 32 bits.

Verilog source:

/* ex10_mem.v */

module ex10_mem;

 reg [31:0] Areg;

 initial begin

 $monitor ("time=%0t, Areg=%0h(%0d)", $time, Areg, Areg);

 // address, value

 $set_memory (1, 32'hFFFFFFFF);

 $set_memory (10, 1000);

 $set_memory (100, 100);

 $set_memory (1000, 10);

 $set_memory (32'hFFFFFFFF, 1);

 #1 Areg = $get_memory (1);

 #1 Areg = $get_memory (10);

 #1 Areg = $get_memory (100);

 #1 Areg = $get_memory (1000);

 #1 Areg = $get_memory (10000);

 // #1 $get_memory (32'hFFFFFFFF); // Illegal

 end

endmodule /* ex10_mem */
PLI table entry:

/* ex10_mem.tab */

$set_memory call=sparsMemory data=1 acc+=rw:%TASK

$get_memory call=sparsMemory data=2 size=32 acc+=rw:%TASK

Notice the use of the data fields with the same call entry point to determine which task/function was called. The size field indicates this is a function

User-written C-code:

/* ex10_mem.c */

#include "acc_user.h"

#include "vcsuser.h"

#include <stdio.h>

typedef unsigned int UInt;

typedef struct AMEM {

 UInt address;

 UInt value;

 struct AMEM *next;

} aMem, *aMemPtr;

static aMemPtr topMem = 0;

void setMem (UInt address, UInt value)

{

 aMemPtr tmpMem = (aMemPtr) malloc (sizeof (aMem));

 tmpMem->address = address;

 tmpMem->value = value;

 tmpMem->next = topMem;

 topMem = tmpMem;

}

/* return 0 if memory not found */

UInt getMem (UInt address)

{

 aMemPtr tmpMem = topMem;

 while (tmpMem != 0) {

 if (tmpMem->address == address) {

 return tmpMem->value;

 }

 tmpMem = tmpMem->next;

 }

 return 0; /* not found */

}

int sparsMemory (int data)

{

 int address;

 int value;

 switch (data) {

 case 1: /* This is a set_memory call */

 address = acc_fetch_tfarg_int (1);

 value = acc_fetch_tfarg_int (2);

 setMem (address, value);

 break;

 case 2: /* get memory */

 address = acc_fetch_tfarg_int (1);

 value = getMem (address);

 tf_putp (0, value);

 break;

 }

}
Results:

time=0, Areg=xxxxxxxx(x)

time=1, Areg=ffffffff(4294967295)

time=2, Areg=3e8(1000)

time=3, Areg=64(100)

time=4, Areg=a(10)

time=5, Areg=0(0)

Test Language Driver (Interpreter)
This is a test language interpreter which allows the Verilog model to read in stimulus from a file. The stimulus is in the form of commands which cause the model to execute Verilog tasks which drive the simulation.

This is an implementation of a simple command language which can be used to write stimulus (tests) in. The Verilog model can then read its tests from a file, so many tests can be run without recompiling the model.

Notice the use of "tf_putp (0, cmd)" where cmd is the command number. Using parameter 0 is the way to return the function value.

Verilog source:

/* ex11_testLang.v */

module ex11_testLang;

 reg [2:0]address;

 reg [31:0]data;

 integer cmd;

 initial forever begin

 cmd = $get_cmd (address, data);

 case (cmd)

 1 : begin

 mem.read_mem (address, data);

 $display ("READ - mem[%0d]=%0x", address, data);

 end

 2 : begin

 mem.write_mem (address, data);

 $display ("WRITE- setting mem[%0d] to %0x",address,data);

 end

 3 : mem.print_mem;

 default : $finish;

 endcase

 end

endmodule /* ex11_testLang */

module mem;

 reg [31:0] mem [0:7];

 task read_mem;

 input [2:0] addr;

 output [7:0] data;

 begin

 #2 data = mem[addr];

 end

 endtask

 task write_mem;

 input [2:0] addr;

 input [7:0] data;

 begin

 #2 mem[addr] = data;

 end

 endtask

 task print_mem;

 integer i;

 begin

 $write ("Memory=");

 for (i=0; i<8; i=i+1) begin

 $write ("%0h ", mem[i]);

 end

 $display ("");

 end

 endtask

endmodule /* mem */

PLI table entry:

/* ex11_testLang.tab */

$get_cmd call=get_cmd size=32 check=init_cmd acc+=rw:%TASK

The size field indicates this is a function.

User-written C-code:

/* ex11_testLang.c */

#include "acc_user.h"

#include "vcsuser.h"

#include <stdio.h>

FILE *cmdFile;

int init_cmd ()

{

 cmdFile = fopen ("ex11_testLang.cmd", "r");

}

/*

The name of the file to open could have been defined many ways:

 Via Verilog

 a parameter

 a text macro

 a text macro defined on the verilog/vcs command line

 In C via:

 an environmental variable

 hardcoded

 a file which contains a list of files to process.

*/

int get_cmd ()

{

 char cmd[10];

 int addr;

 int data;

 if (EOF == fscanf (cmdFile, "%s %d %d", cmd, &addr, &data)) {

 tf_putp (0, 0);

 } else {

 tf_putp (1, addr);

 tf_putp (2, data);

 if (0 == strcmp (cmd, "READ")) {

 tf_putp (0, 1);

 } else if (0 == strcmp (cmd, "WRITE")) {

 tf_putp (0, 2);

 } else if (0 == strcmp (cmd, "PRINT")) {

 tf_putp (0, 3);

 } else {

 tf_warning ("Bad command in command file = %s", cmd);

 }

 }

}
Input:

PRINT 0 0

WRITE 7 0

WRITE 6 1

WRITE 5 2

WRITE 4 3

WRITE 3 4

WRITE 2 5

WRITE 1 6

WRITE 0 7

PRINT 0 0

READ 0 0

READ 1 0

READ 2 0

READ 3 0

READ 4 0

READ 5 0

READ 6 0

READ 7 0

PRINT 0 0

Results:

Memory=xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

WRITE - setting mem[7] to 0

WRITE - setting mem[6] to 1

WRITE - setting mem[5] to 2

WRITE - setting mem[4] to 3

WRITE - setting mem[3] to 4

WRITE - setting mem[2] to 5

WRITE - setting mem[1] to 6

WRITE - setting mem[0] to 7

Memory=7 6 5 4 3 2 1 0

READ - mem[0]=7

READ - mem[1]=6

READ - mem[2]=5

READ - mem[3]=4

READ - mem[4]=3

READ - mem[5]=2

READ - mem[6]=1

READ - mem[7]=0

Memory=7 6 5 4 3 2 1 0

$finish at simulation time 32

Exercises:

Q1

The following C routine counts the number of times it is called.

#include <stdio.h>

#include "acc_user.h"

static int count = 0;

int EdgeCounter ()

{

 count ++;

}

int ResetCounter ()

{

 count = 0;

}

int GetCounter ()

{

 tf_putp(0, count);

}

int PrintCount (int data, int reason)

{

 if (reason == reason_finish)

io_printf("count = %0d/n", count);

EdgeCounter is to be called whenever the Verilog task $positiveEdge() is called. What is the proper entry in pli.tab to make this correspondence?
Top of Form

[image: image265.wmf]1. $positiveEdge call=EdgeCounter
[image: image266.wmf]2. $EdgeCounter call=positiveEdge
[image: image267.wmf]3. $positiveEdge check=positiveEdge
[image: image268.wmf]4. $positiveEdge call=positiveEdge
[image: image269.wmf]5. none of the above

Q2

The following C routine counts the number of times it is called. How does the pli.tab entry need to be modified in order to make PrintCount be called when simulation finishes?

#include <stdio.h>

#include "acc_user.h"

static int count = 0;

int EdgeCounter ()

{

 count ++;

}

int ResetCounter ()

{

 count = 0;

}

int GetCounter ()

{

 tf_putp(0, count);

}

int PrintCount (int data, int reason)

{

 if (reason == reason_finish)

io_printf("count = %0d/n", count);

}
[image: image270.wmf]1. $positiveEdge call=EdgeCounter check=PrintCount
[image: image271.wmf]2. $positiveEdge call=EdgeCounter misc=reason_finish
[image: image272.wmf]3. $positiveEdge call=EdgeCounter misc=PrintCount
[image: image273.wmf]4. $EdgeCounter call=positiveEdge size=count
[image: image274.wmf]5. none of the above

Q3

Assuming a Verilog routine named $countval was associated with the C routine GetCounter, what code fragment would you add to a model in order to print an error if reset was 1 for more than 100 cycles?

Top of Form

	[image: image275.wmf]1.
	 always @(posedge clock)

 if (reset) begin

 $positiveEdge;

 if ($countval > 100) $display("***reset error***");

 end

 else

 $resetCount;

	[image: image276.wmf]2.
	 always @(reset or posedge clock)

 if (reset)

 $positiveEdge;

 else

 $resetCount;

 initial

 if ($countval > 100) $display ("***reset error***");

	[image: image277.wmf]3.
	 always @(posedge clock)

 $positiveEdge;

 always @(negedge reset)

 $resetCount;

 always @($countval)

 if ($countval > 100) $display ("***reset error***");

	[image: image278.wmf]4.
	 always @(reset)

 if (clock) begin

 $positiveEdge;

 if ($countval > 100) $display ("***reset error***");

 end

 else

 $resetCount;

	[image: image279.wmf]5.
	none of the above

Bottom of Form

The correct answer is code fragment 1. Code fragment 2 is wrong because the test of $countval is done only once, at initialization time. Code fragment 3 is wrong because you can't use $countval in an event control - it will never get called. Code fragment 4 is wrong because it doesn't count the clock events, only the reset events.

Q4

The following Verilog code uses $nextInput(invar) to get a new value for the integer variable invar for successive tests. What is the proper entry in pli.tab if the C routine is named NextIn?

module testbench;

 integer invar;

 initial begin

 for ($nextInput(invar); invar>0; $nextInput(invar))

 case(invar)

 1: test1;

 2: test2;

 3: test3;

 endcase

 end

task test1; ... endtask

task test2; ... endtask

task test3; ... endtask

endmodule /* testbench */
Top of Form

[image: image280.wmf]1. $nextInput call=NextIn
[image: image281.wmf]2. $nextInput call=NextIn size=32
[image: image282.wmf]3. $nextInput call=NextIn data=invar
[image: image283.wmf]4. $nextInput call=NextIn misc=NextIn
[image: image284.wmf]5. none of the above
Bottom of Form

Answer (2) specifies that $nextInput is a function and it sets up a call to NextIn whenever $nextInput is called. Answer (1) forces $nextInput to be a task, so it could not be used in the for statement. Answer (3) has an incorrect value for data (it must be a constant), and answer (4) specifies that NextIn should be called for misc events, which is not what is wanted.

Q5

Given the following Verilog module and associated pli.tab:

module test;

reg [127:0] in1, in2;

reg clk;

wire [127:0] out1, out2;

BigChip bc1 (in1, in2, out1, out2, clk);

integer nets;

initial begin

nets = $countNets(bc1);

$display("BigChip has %d nets", nets);

end

endmodule

pli.tab

$countNets call=CountEm size=32
Which pli routines would CountEm be most likely to use?
Top of Form

[image: image285.wmf]1. acc_handle_object, tf_putp, and acc_next_object
[image: image286.wmf]2. acc_next_net, tf_putp, and acc_fetch_value
[image: image287.wmf]3. tf_arg, tf_putp, and acc_next_net
[image: image288.wmf]4. acc_handle_tfarg, tf_putp, and acc_next_net
[image: image289.wmf]5. all of the above

Bottom of Form

Q6

The following C routine checks the state of the first argument of $monitorStateVar whenever it changes. If the value is ever greater than 10, it prints an error. Note that there are placeholders (e.g. <**acc1**>) for four acc routines.

#include <stdio.h>

#include "acc_user.h"

#include "vcsuser.h"

handle argHandle;

void callbackFunc (p_vc_record vc_record)

{

 int v;

 sscan(<**acc1**> , "%d", v);

 if (v > 10)

 io_printf("***error, %s has value %d ***", <**acc2**>,

 v);

}

int MonitorStateVar (int data, int reason)

{

 argHandle = <**acc3**>;

 <**acc4**>;

}
Enter the correct letters to match the acc routines with their placeholders:
	Top of Form

Placeholders

	1. <**acc1**>
	 d

	2. <**acc2**>
	 f

	3. <**acc3**>
	 b

	4. <**acc4**>
	 c

acc routines:

a. acc_handle_object("argHandle")
b. acc_handle_tfarg(1)
c. acc_vcl_add (argHandle, callbackFunc, 0, vcl_verilog_logic)
d. acc_fetch_value (argHandle, "%d", null)
e. acc_next_load (net, load)
f. acc_fetch_name(argHandle),
g. acc_vcl_add (argHandle)

GLOSSARY

A

ACC routines

utility routines provided to access simulation data within a model from a user-provided C routine.

always block

a procedural block which loops continuously.

ambiguous signal strength

a signal with multiple strength levels.

assertion check

a bit of Verilog code which checks for a logical condition which should always be true (or false).

ambiguous signal strength

a signal with multiple strength levels.

asynchronous

events or processes which are not ordered with respect to each other.

B

bi-directional primitive

one of tran, rtran, tranif, and rtranif.

bit-select

an operator which produces a single bit from a vector.

blocking assignment

a procedural assignment. This is the normal assignment statement with no special timing characteristics.

breakpoint

a specified point in model execution at which execution should stop. Breakpoints may be specified by time, event, or execution of a particular statement.

C

call routine

a user-provided routine which is called when the user-defined system task or function is executed.

calling reason

a parameter given to a user-provided routine at the time of call to indicate why it is being called.

case statement

a selection statement which executes one of a set of statements, based on the value of a case selector.

casex statement

a variation of case which allows x or z bits in the selector or the case expression to be ignored.

casez statement

a variation of case which allows z bits in the selector or the case expression to be ignored.

check routine

a user-provided routine which is called when the user-defined system task or function is compiled.

checkpoint

a snap-shot of the execution image of a model at a given point in time. Checkpoints are done so that simulation may be resumed from the checkpoint at a later time.

child module

a module which is instantiated by another (parent) module.

CLI

command line interface. Each simulator has its own CLI, often with different command languages.

clock

a periodic signal used to synchronize logic. Clocks are not special signals in Verilog models, but are just ordinary nets or registers whose values change regularly.

combinational UDP

a user-defined primitive whose output is a state-less function of its input ports.

compilation

the process of tranforming the Verilog source statements of a model into an executable (or interpretable) image.

compiler

the program which transforms the model's Verilog source into an executable image, usually an object file.

concatenation

an operation which creates a vector whose width is the sum of its operands' widths.

concurrent

events or processes which may occur or progress at the same time.

consistency check

see assertion check.

continuous assignment

an assignment in declarative code. Continuous assignments are introduced by the assign keyword. The right-hand side expression of the continuous assignment is evaluated as a result of propagation of its operands.

cross-module reference

a reference to a net, register, task or function in another module instance. This is also known as a hierarchical reference. Abbreviated XMR.

D

data event

the event which denotes one end-point of a timing check interval. The other event is the reference event.

deassign

the statement which disables, or releases, a procedural continuous assignment.

declarative code

Verilog statements which are executed as a result of signal propagation. Continuous assignments, primitive, and module instances are declarative.

declared event

an event variable which can be set under program control.

default nettype

the net type used for implicitly defined nets. This is set with the `default_nettype compiler directive.

defparam

a statement that assigns a non-default value to a parameter for a given module instance.

delay

a construct which indicates the passage of simulation time between two events. Delays may occur in procedural code or declarative code.

delay expression

an expression whose value is used for a time delay.

design entry

the process of creating the Verilog source representation of a model. Design entry can be accomplished by either writing source statements using a text editor, or by using a special-purpose program which converts drawn symbols into Verilog source.

disable statement

statement used to stop execution of a task or named block.

distributed delay

a delay attached to a primitive, continuous assignment, or procedural code. Distributed delays are so-called because a path from an input to an output may contain many such delays, the sum of which make up the overall delay.

driver

a model component which can cause a new value to be put onto a net. Drivers can be output ports of module and primitive instances, or continuous assignments.

E

edge event

event which occurs on the rising or falling edge of a signal. There are two edge events: posedge and negedge.

edge-sensitive module path

a module path which begins with an edge transition (posedge or negedge).

edge-sensitive sequential UDP

a sequential user-defined primitive which changes state (and output value) based on input port transitions.

emacs-mode

an addition to the Emacs editor which enables context-sensitive text entry.

error limit

a time value which delimits an error interval for timing checks. If the data event occurs before (or after) the error limit (depending on the particular timing check), then an error is signaled.

escaped identifier

an identifier which is preceded by a \ (backslash). Such an identifier may contain any character in its name,which is terminated only by the next white space.

event

an action or set of actions which take place at a single point in simulated time.

event control

an event which must occur before execution can proceed to the next statement. The statement which follows the event control is the "controlled" statement.

event expression

an expression which may be in an event control. The only operator allowed in an event expression is event or.

event or operator

the operator used in event expressions to make a compound event.

explicit finite-state machine

code which implements a finite-state machine using a separate state transition function and state variable. Explicit state machine code is usually implemented using a case statement.

F

finite-state machine

sequential logic, usually implemented with a case construct.

for statement

a general looping statement, similar to the for statement in C.

force statement

the strongest procedural continuous assign. Deactivated by a corresponding release statement.

forever statement

a special case of a looping statement which does not terminate.

format string

a specification of how output should be printed.

function

a set of procedural statements whose execution results in a single value. Functions may be used as operands in any expression.

G

H

hierarchical reference

a fully-qualified name which uniquely identifies an entity in a model. This is another name for a cross-module reference.

hierarchy

a tree structure of module instances which starts at a top-level module and proceeds to leaf modules.

I

if statement

the standard conditional statement.

implicit finite-state machine

code which implements a finite-state machine using a sequence of procedural statements with time or event controls to manage the timing.

implicit net

a net which is used in a port expression in a module instance without a previous declaration. It will be defined using the default nettype.

incremental compilation

the process of compiling a model in which only the parts of the model which have been changed are transformed, being merged with the already transformed parts which did not change. This is a problematic capability in Verilog.

implicit net

a net which is used in a port expression in a module instance without a previous declaration. It will be defined using the default nettype.

inertial delay

a model of signal propagation through devices which have delays in which a pulse shorter than the delay does not appear on the output. This is the delay model used in Verilog, and it applies to all declarative code delays, including continuous assignments.

initial block

a procedural block which executes only once.

inout port

a bi-directional port.

input port

a port where signal values go from parent to child module.

instance

an embodiment of a module in the overall Verilog model.

instantiation

the statement which creates a module instance.

integer

a type of register. Integers are signed, 32-bit quantities.

interpreter

a program which simulates a Verilog model by re-analyzing each statement or operation as it is executed. Many Verilog simulators are interpreters.

intra-assignment delay

a time delay placed in the middle of an assignment. This causes the right-hand side to be evaluated immediately, but the assignment is not done until after the delay has expired.

intra-assignment event control

an event delay placed in the middle of an assignment. This causes the right-hand side to be evaluated immediately, but the assignment is not done until after the event has occured.

J

K

L

latch inferencing

the process of inserting a latch (or register) into a synthesized netlist to realize the logic described by RTL (or behavioral) code.

level-sensitive event control

an event control which is satisfied when the argument expression becomes true. The expression is re-evaluated whenever any of its operands changes.

library directory

a directory which contains modules for use in Verilog models. Each file in a library directory contains just one module, and the file name indicates the module name contained in it.

library file

a file which contains modules for use in Verilog models. A model which references a library file will have only those modules it references included in the model's execution.

linking

the process of producing an executable image for simulation, including user-provided routines along with the standard simulation library and support routines.

M

macro

an identifier which has its definition substituted for it textually during compilation. Also called a "source macro". Macros are created by the `define statement, and their use is always preceded by ` (back-quote).

Mealy machine

a finite-state machine which produces outputs as a function of both the current state and the input.

memory

an array of registers. The registers may be scalars or vectors. Memories are singly-dimensioned.

misc routine

a user-provided routine which is called when some event occurs which has been enabled by that routine or some other user-provided routine.

model

the logic design that a set of Verilog source files describes. This is a generic term which comes from "simulation model". System and design are often used as synonyms.

module

a logical component of a model. Modules have definitions and instances. The definition contains declarative and procedural code sections, net and register declarations, task and function definitions, module instantiations, and port definitions for connecting to other parts of the hierarchy.

module path

a relationship between a change on an input port and the corresponding change on an output port. The input port-output port pair is considered the path. The path may be further qualified by particular values on the input or output.

module path delay

the delay associated with a module path. A module path delay is a lumped delay (all of the delay is represented in a single "lump" value), as opposed to distributed delays.

Moore machine

a finite-state machine which produces outputs as a function of only the current state.

MOS primitive

one of cmos, rcmos, pmos, rpmos, nmos, or rnmos.

multi-channel descriptor

an integer which is a bit-map to the set of open files for output.

N

named block

a sequential or parallel compound statement which has a label attached. Named blocks may have local variables (registers) declared within them, and may be disabled.

negedge

an edge event which occurs when a transition is made from 1, x, or z to 0.

net

an identifier which has a value determined by its drivers. A net may have more than one driver, and zero or more drivers may be active at any given time.

net driver

a declarative construct (continuous assignment, primitive output port, or module instance output port) which causes a value to be placed onto a net.

netlist

a model which contains only module or primitive instantiations.

non-blocking assignment

an assignment which occurs in two parts, the evaluation part and the update part. The evaluation takes place immediately, but the update is deferred until the end of the time step after all other types of events have occured.

notifier

a register which is toggled in the event of a timing check error.

O

one-hot state encoding

a method of assigning state variable values to states in which only one bit in the state variable is on in any state. For example, three states would have the state values 3'b001, 3'b010, and 3'b100.

output port

a port where signal values go from child module to parent.

P

parallel block

a compound statement in which each statement is executed at the same time (in parallel). Parallel blocks are enclosed by fork...join.

parameter

a run-time constant whose value is determined at compile time. Parameters are useful to change the behavior or structure of different instances of a module.

parent module

a module which instantiates other modules. The instantiated modules are children of this parent.

part-select

an operator which produces a set of contiguous bits from a vector.

path pulse specparam

a parameter which is used to regulate the propagation of pulses through modules with delays. In general, by using a path pulse parameter, you can prevent short pulses from causing further activity on the output of a module path.

pipeline

a set of storage elements (stages) in which the value from each stage is stored in the next stage. Pipelines are usually synchronous, and there may be transformations on the data values between stages (corresponding to combinational logic).

PLI

Programming Language Interface.

pli.tab

a table used by VCS to indicate to the compiler information about user-provided routines, user-provided system tasks and functions, and how they should be related.

port

a connection from the outside into a module (an input port) or a connection from a module to the outside (an output port) or a bi-directional connection (an inout port).

port expression

an expression which appears in a port list, either in an instance (the common case) or a definition (the rare case).

port type

the direction of the port (input, output, or inout).

posedge

an edge event which occurs when a transition is made from 0, x, or z to 1.

primitive

a built-in module type. A primitives may be instantiated like any other module, but its definition is pre-determined.

procedural block

a (compound) statement which makes up a process. The initial and always keywords introduce procedural blocks.

procedural code

statements which appear inside initial or always blocks, or inside tasks or functions.

procedural continuous assign

a continuous assignment which can be activated in procedural code. Deactivated with a deassign statement. Also known as a quasi-continuous assign (QCA).

process

a set of events which are sequential with respect to each other. Typically, an initial or always block is a process.

program counter

a "pointer" to the next statement to be executed in a sequential block. There is one program counter for each process in the simulation model.

propagation

the action of causing declarative code to be executed as the result of a signal (register or net) changing value.

Q

QCA

abbreviation for quasi-continuous assign.

quasi-continuous assign

see procedural continuous assign.

R

race condition

two or more processes which are unordered with respect to each other (or partially ordered) and whose results differ depending on execution order. Race conditions are usually present when a single signal (register or net) is modified in one process and sampled from a different process at the same time.

range

the width specification of a vector. The range is in the form of [high-order-bit:low-order-bit].

real

a floating-point quantity, 64-bit IEEE format.

reference event

the event which denotes one end-point of a timing check interval. The other event is the data event.

register

an identifier which holds a value. Registers are assigned their values in procedural code.

reject limit

time value which sets a minimum length for a pulse. Any pulse less than this limit will not propagate to the output, but will be ignored.

release statement

the statement which deactivates a force.

repeat concatenate

an operation which creates a vector by repeating its operands multiple times.

repeat statement

a specialized looping statement which causes the loop body to be executed a given number of times.

S

scalar

a single-bit quantity. Both nets and registers may be scalars.

sequential block

a compound statement in which each statement is executed in order. Sequential blocks are enclosed by begin...end.

sequential UDP

a user-defined primitive whose output is a function of both its input ports and its previous output, or state.

simple module path

a module path whose source is an input port, or bit- or part-select of an input port, or a list of input ports, or bit- or part-selects. The destination is an output port or bit- or part-select of an output port, or a list of them.

simulation

the execution of a model to reveal its behavior.

simulation history

a trace of the simulation behavior. A simulation history is usually contained in a dumpfile, and produced by the $dumpvars system task or a varient of it.

simulation time

the value of the central clock in the simulation.

single-input primitive

a primitive which has only one input port and (potentially) more than one output port. The input port is the last in the list. The single-input primitives are not and buf.

single-output primitive

a primitive which has only one output port and (potentially) more than one input port. The output port is the first in the list. The single-output primitives are and, or, xor, nand, nor, and xnor.

sized constant

a constant whose width is explicitly specified.

sparse memory

a particular application of the PLI.

specify block

section of a module which supplies detailed timing information about the module.

specparam

a specparam is a parameter used in specify blocks. Specparams can be modified through the PLI for back-annotation.

state encoding

the mapping of state variable values to states. For example, if the state variable is 3 bits wide, and there are 4 states (A, B, C, D), a state encoding would be A - 3'b001, B - 3'b010, C - 3'b011, D - 3'b100.

state-dependent path

a module path that is qualified by the value of one or more signals. Thus different paths can have the source and sink by being qualified by different states.

state memory

the location used to hold the state variable.

state variable

the value which indicates the current state of the state machine. This is also sometimes called the state vector.

strength scalar

a scalar whose value may be one of 120 different values. Strengths are mapped into 0, 1, x, or z, and may be combined to form other strength values. For example, a strong 1 combined with a weak 0 will produce a 1 as a result.

switch primitive

a primitive which is intended to model transistor-level structures. The switch primitives are nmos, pmos, cmos, rnmos, rpmos, and rcmos.

system function

a function whose definition is built-in. System functions all begin with "$".

system task

a task whose definition is built-in. System tasks all begin with "$".

T

task

a set of procedural statements which are treated as a sub-unit. Tasks may be invoked from other procedural blocks, including other tasks.

task enable

the act of invoking a task.

TF routines

utility routines provided to access simulation data within a model from a user-provided C routine. These routines primarily deal with nets and registers which appear as arguments to the user-defined system task or function.

time

a 64-bit unsigned register. Time registers are used to hold the simulation time, which is a 64-bit positive number.

time control

a time delay which must occur before execution can proceed to the next statement. The statement which follows the time control is the "controlled" statement.

time scale

the time unit and precision to be applied to delays. This is a means of providing a physical meaning to the otherwise dimensionless time units of simulation.

time unit

the unit for all delays which appear after the `timescale directive.

timing check task

a system task which appears in a specify block. Timing check tasks enforce timing constraints on signal change events.

time precision

the minimum unit of accuracy is for delays in the model.

transport delay

a model of signal propagation through devices which have delays in which a pulse shorter than the delay appears faithfully on the output. This is not the delay model used in Verilog, though it can be realized using the PLI.

transition event

event which occurs on the change of a signal. Edge events are special cases of transition events.

tri-state primitive

a primitive which can produce a z value on its output. The tri-state primitives are bufif1, bufif0, notif1, and notif0.

two-phase clock

a clock made of two signals. The two signals are usually inverses of each other, with an offset so that consecutive latches triggered with different clock phases will have a margin of safety to prevent unwanted flow-through.

U

upward reference

a cross-module reference which is resolved by looking up in the heirarchy to the parent module for resolution. The actual reference target may be found anywhere in the hierarchy except in a descendant of the referencing module instance.

unambiguous signal strength

a signal with a single strength level.

unit-delay model

a model in which all delays have the value 1. Unit delay models are sometimes more efficient to simulate because there are fewer distinct times in which events occur. Their disadvantage is that they do not capture the timing behavior of the design being modelled.

user-defined primitive

a primitive defined by means of a truth table.

V

vector

a multiple-bit quantity. Nets and registers may be vectors. Vectors have only one dimension.

veriuser.c

a C file which contains the veriusertfs table for Verilog-XL.

veriuser.h

a C header file which defines many constants used by PLI routines.

veriusertfs

the table used by Verilog-XL to communicate information about user-provided routines, user-provided system tasks and functions, and how they should be related.

W

wait event control

wait is the keyword which specifies a level-sensitive event control.

waveform

a picture of a signal (net or register) value over time. Waveforms can be produced from simulation history files, or directly from the simulation.

while statement

a looping statement similar to the while statement in C.

X

XL algorithm

a method of handling signal changes which occur before a delay has expired. The XL algorithm is faster to simulate, but less accurate than a strict inertial delay.

XMR

abbrevation for cross-module reference.

Y

Z

zero-delay model

a model in which there are no time delays other than the delays which govern the behavior of the clock. All other delays are derived from clock events.

PAGE
1

_1095249671.unknown

_1095249721.unknown

_1095249770.unknown

_1095251738.unknown

_1095260587.unknown

_1095266260.unknown

_1095266435.unknown

_1095266557.unknown

_1095266648.unknown

_1095266650.unknown

_1095266652.unknown

_1095266649.unknown

_1095266560.unknown

_1095266561.unknown

_1095266646.unknown

_1095266558.unknown

_1095266437.unknown

_1095266439.unknown

_1095266556.unknown

_1095266436.unknown

_1095266363.unknown

_1095266366.unknown

_1095266367.unknown

_1095266433.unknown

_1095266364.unknown

_1095266263.unknown

_1095266264.unknown

_1095266362.unknown

_1095266262.unknown

_1095262751.unknown

_1095262754.unknown

_1095262755.unknown

_1095266259.unknown

_1095262752.unknown

_1095262748.unknown

_1095262750.unknown

_1095262745.unknown

_1095262747.unknown

_1095260588.unknown

_1095258548.unknown

_1095259782.unknown

_1095260542.unknown

_1095260543.unknown

_1095259784.unknown

_1095260541.unknown

_1095259780.unknown

_1095259781.unknown

_1095259777.unknown

_1095259778.unknown

_1095258549.unknown

_1095252235

_1095252369

_1095252441

_1095252322

_1095251942.unknown

_1095251944.unknown

_1095251939.unknown

_1095251941.unknown

_1095251739.unknown

_1095251486.unknown

_1095251578.unknown

_1095251735.unknown

_1095251736.unknown

_1095251732.unknown

_1095251734.unknown

_1095251580.unknown

_1095251576.unknown

_1095251577.unknown

_1095251573.unknown

_1095251574.unknown

_1095251487.unknown

_1095249775.unknown

_1095251483.unknown

_1095251484.unknown

_1095251480.unknown

_1095251482.unknown

_1095249777.unknown

_1095249773.unknown

_1095249774.unknown

_1095249771.unknown

_1095249746.unknown

_1095249758.unknown

_1095249764.unknown

_1095249767.unknown

_1095249768.unknown

_1095249765.unknown

_1095249761.unknown

_1095249762.unknown

_1095249759.unknown

_1095249752.unknown

_1095249755.unknown

_1095249757.unknown

_1095249754.unknown

_1095249749.unknown

_1095249750.unknown

_1095249747.unknown

_1095249733.unknown

_1095249739.unknown

_1095249743.unknown

_1095249744.unknown

_1095249741.unknown

_1095249736.unknown

_1095249738.unknown

_1095249735.unknown

_1095249727.unknown

_1095249730.unknown

_1095249732.unknown

_1095249729.unknown

_1095249724.unknown

_1095249726.unknown

_1095249722.unknown

_1095249696.unknown

_1095249708.unknown

_1095249715.unknown

_1095249718.unknown

_1095249719.unknown

_1095249716.unknown

_1095249712.unknown

_1095249713.unknown

_1095249710.unknown

_1095249702.unknown

_1095249705.unknown

_1095249707.unknown

_1095249704.unknown

_1095249699.unknown

_1095249701.unknown

_1095249697.unknown

_1095249683.unknown

_1095249690.unknown

_1095249693.unknown

_1095249694.unknown

_1095249691.unknown

_1095249686.unknown

_1095249688.unknown

_1095249685.unknown

_1095249677.unknown

_1095249680.unknown

_1095249682.unknown

_1095249679.unknown

_1095249674.unknown

_1095249675.unknown

_1095249672.unknown

_1095249621.unknown

_1095249646.unknown

_1095249658.unknown

_1095249664.unknown

_1095249667.unknown

_1095249669.unknown

_1095249666.unknown

_1095249661.unknown

_1095249663.unknown

_1095249660.unknown

_1095249652.unknown

_1095249655.unknown

_1095249657.unknown

_1095249654.unknown

_1095249649.unknown

_1095249650.unknown

_1095249647.unknown

_1095249633.unknown

_1095249639.unknown

_1095249643.unknown

_1095249644.unknown

_1095249641.unknown

_1095249636.unknown

_1095249638.unknown

_1095249635.unknown

_1095249627.unknown

_1095249630.unknown

_1095249632.unknown

_1095249628.unknown

_1095249624.unknown

_1095249625.unknown

_1095249622.unknown

_1095249594.unknown

_1095249607.unknown

_1095249614.unknown

_1095249617.unknown

_1095249619.unknown

_1095249616.unknown

_1095249611.unknown

_1095249613.unknown

_1095249609.unknown

_1095249601.unknown

_1095249604.unknown

_1095249606.unknown

_1095249602.unknown

_1095249598.unknown

_1095249599.unknown

_1095249596.unknown

_1095249579.unknown

_1095249585.unknown

_1095249589.unknown

_1095249591.unknown

_1095249588.unknown

_1095249582.unknown

_1095249584.unknown

_1095249580.unknown

_1095249572.unknown

_1095249575.unknown

_1095249577.unknown

_1095249573.unknown

_1095249569.unknown

_1095249570.unknown

_1095249567.unknown

_1095244243

